
Exploration of FEAST Algorithm

Stephanie Kajpust, Chathuri Samarasinghe, Nathasha Weerasinghe

April 27, 2012

Abstract

1 In 2009 a numerical algorithm for solving the symmetric eigen-
value problem, named FEAST, was presented by Eric Polizzi. Using
this algorithm we wrote a code in Mathematica in order to find a
given number of eigenvalues in a specified interval. The accuracy of
the algorithm was tested for finding single, repeated, clustered, and
small eigenvalues, and the results are presented in this report.

1NW

1

Contents

1 Introduction 3

2 Algorithm 3

3 Code 4

4 Results 7
4.1 General testing of algorithm 7

4.1.1 Find 1 eigenvalue . 7
4.1.2 Find 2 eigenvalues . 7
4.1.3 Finding 3-5 eigenvalues 8
4.1.4 Testing accuracy of finding 1 eigenvalue multiple times 9

4.2 Testing M . 12
4.2.1 Underestimating the number of eigenvalues 12
4.2.2 Overestimating the number of eigenvalues 13

4.3 Testing search interval . 13
4.4 Testing clustered eigenvalues 14

4.4.1 Eigenvalues {1, 298, 299, 300, 301, 302, 600} 14
4.4.2 Eigenvalues {1, 4998, 4999, 5000, 5001, 5002, 10000} . 15
4.4.3 Eigenvalues {1, 200.003, 200.004, 200.005, 200.006, 200.007,

400} . 16
4.4.4 Matrix with 30 very close eigenvalues and 2 eigenvalues

far away . 17
4.5 Testing small eigenvalues . 19

4.5.1 Looking for one specific eigenvalue 19
4.5.2 Looking for multiple eigenvalues 22

4.6 Testing repeated eigenvalues 23
4.6.1 Eigenvalues {1, 5, 10, 10, 10, 15, 20, 25} 23

5 Complex Version 24
5.1 Testing for Eigenvalues {1 + i, 2 + 2i, 3− 5i} 27
5.2 Testing for Eigenvalues {3− 5i, 2− 3i, 2 + 2i, 2− i, 1− i} . . . 27

6 Future Work 27

2

1 Introduction

2 In this paper we explore the FEAST algorithm written by Eric Polizzi at the
University of Massachusetts [1]. FEAST enables you to find the eigenvalues
in a given range.

The goal of this project was to find out just how well Polizzi’s algorithm
works. He has written a computer package [2] to implement his algorithm,
and it is available for distribution to anyone. However, we chose to follow
Polizzi’s pseudocode and write the algorithm in Mathematica. Polizzi ran his
code on a 12450×12450 matrix and looked for various numbers of eigenvalues.
He used a relative residual

max
i

‖Axi − λiBxi‖1
‖Axi‖1

(1)

and his residuals are all 10−10 or better [1]. Using our Mathematica code, we
tested to see if ours held up to Polizzi’s claims, using the same residual and
using a different relative residual.

‖λactual − λcalculated‖2
‖λactual‖2

(2)

2 Algorithm

3 Figure 1 is the pseudocode that Polizzi gives in [2]. The variables are as
follows:

• N is the matrix size

• [λmin, λmax] is the interval in which you want to find the eigenvalues

• Ne is the number of points for Gauss-Legendre quadrature. Polizzi says
he gets consistent results with Ne = 8 [2], so that is what we used.

• M is the number of eigenvalues in the search interval.

• M0 is the size of the working subspace, which Polizzi says works well if
M0 ≥ 1.5M [2]

2SK
3SK

3

For this verson of FEAST, the matrix A is real symmetric and B is
symmetric positive definite.

Figure 1: FEAST pseudocode for real symmetric matrices [2]

3 Code

4 We wrote several Mathematica modules to implement FEAST.
Our first module (see figure 2) created the Q matrix. Our code uses the

special case where B = Id to solve Ax = λBx.
The second module was the main part of the FEAST code itself. In the

pseudocode seen in figure 1, the Q portion is run several times, along with
steps 3-5. The goal is to run until we get accurate values. Figure 3 is our
Mathematica code for the rest of the algorithm.

4SK

4

Clear[FeastQ]Clear[FeastQ]Clear[FeastQ]
FeastQ[{A ,Y }, {Lmin ,Lmax }]:=Module[FeastQ[{A ,Y }, {Lmin ,Lmax }]:=Module[FeastQ[{A ,Y }, {Lmin ,Lmax }]:=Module[
{Ne = 8, r, c, B, n = Length[A],XW, Q, θe,Ze,Qe},{Ne = 8, r, c, B, n = Length[A],XW, Q, θe,Ze,Qe},{Ne = 8, r, c, B, n = Length[A],XW, Q, θe,Ze,Qe},
{r, c} = 0.5{Lmax− Lmin,Lmax + Lmin};{r, c} = 0.5{Lmax− Lmin,Lmax + Lmin};{r, c} = 0.5{Lmax− Lmin,Lmax + Lmin};
B = SparseArray[Band[{1, 1}]→ 1.0, {n, n}];B = SparseArray[Band[{1, 1}]→ 1.0, {n, n}];B = SparseArray[Band[{1, 1}]→ 1.0, {n, n}];
(* XW are the Gaussian integration data from Polizzi *)(* XW are the Gaussian integration data from Polizzi *)(* XW are the Gaussian integration data from Polizzi *)

XW =



0.183434642495649 0.362683783378361
−0.183434642495649 0.362683783378361
0.525532409916328 0.313706645877887
−0.525532409916328 0.313706645877887
0.796666477413626 0.222381034453374
−0.796666477413626 0.222381034453374
0.960289856497536 0.101228536290376
−0.960289856497536 0.101228536290376


;XW =



0.183434642495649 0.362683783378361
−0.183434642495649 0.362683783378361
0.525532409916328 0.313706645877887
−0.525532409916328 0.313706645877887
0.796666477413626 0.222381034453374
−0.796666477413626 0.222381034453374
0.960289856497536 0.101228536290376
−0.960289856497536 0.101228536290376


;XW =



0.183434642495649 0.362683783378361
−0.183434642495649 0.362683783378361
0.525532409916328 0.313706645877887
−0.525532409916328 0.313706645877887
0.796666477413626 0.222381034453374
−0.796666477413626 0.222381034453374
0.960289856497536 0.101228536290376
−0.960289856497536 0.101228536290376


;

(* Initializing then forming Q*)(* Initializing then forming Q*)(* Initializing then forming Q*)
Q = 0 ∗ Y ;Q = 0 ∗ Y ;Q = 0 ∗ Y ;
For[e = 1, e ≤ Ne, e++,For[e = 1, e ≤ Ne, e++,For[e = 1, e ≤ Ne, e++,
θe = −(π/2)(XW[[e, 1]]− 1);θe = −(π/2)(XW[[e, 1]]− 1);θe = −(π/2)(XW[[e, 1]]− 1);
Ze = c+ r ∗ E∧(I ∗ θe);Ze = c+ r ∗ E∧(I ∗ θe);Ze = c+ r ∗ E∧(I ∗ θe);
Qe = LinearSolve[Ze ∗B − A, Y];Qe = LinearSolve[Ze ∗B − A, Y];Qe = LinearSolve[Ze ∗B − A, Y];
Q = Q− (XW[[e, 2]]/2) ∗ Re[r ∗ E∧(I ∗ θe) ∗Qe];Q = Q− (XW[[e, 2]]/2) ∗ Re[r ∗ E∧(I ∗ θe) ∗Qe];Q = Q− (XW[[e, 2]]/2) ∗ Re[r ∗ E∧(I ∗ θe) ∗Qe];
];];];
QQQ
]]]

Figure 2: Module to create the Q matrix

A is an n × n matrix that is real and symmetric. Lmin and Lmax are
the values for the search interval, and M is the number of eigenvalues in that
interval.

The algorithm uses Q to create smaller matrices, Aq and Bq. These ma-
trices are small enough that we can use the built-in Mathematica command
Eigensystem to find the eigenvectors and eigenvalues of the smaller matrix.

Q is always of a bigger dimension than the number of eigenvalues in the
interval. This means the code always outputs more eigenvalues than we need.
In fact, it outputs 1.5 times more than we need, rounded up. The assumption
would be that we would use the first M eigenvalues output, but the built-in
eigensystem solver automatically sorts the values from largest to smallest, so

5

FEAST[A , {Lmin ,Lmax },M]:=Module[FEAST[A , {Lmin ,Lmax },M]:=Module[FEAST[A , {Lmin ,Lmax },M]:=Module[
{n = Length[A],M0 = Ceiling[1.5 ∗M], Y, evals, evecs},{n = Length[A],M0 = Ceiling[1.5 ∗M], Y, evals, evecs},{n = Length[A],M0 = Ceiling[1.5 ∗M], Y, evals, evecs},
(* Initial Random Directions *)(* Initial Random Directions *)(* Initial Random Directions *)
Y = RandomReal[{−1, 1}, {n,M0}];Y = RandomReal[{−1, 1}, {n,M0}];Y = RandomReal[{−1, 1}, {n,M0}];
(* Initializing then forming Q*)(* Initializing then forming Q*)(* Initializing then forming Q*)
Q = FeastQ[{A, Y }, {Lmin,Lmax}];Q = FeastQ[{A, Y }, {Lmin,Lmax}];Q = FeastQ[{A, Y }, {Lmin,Lmax}];
(* forming Aq and Bq *)(* forming Aq and Bq *)(* forming Aq and Bq *)
(*Note doing special case with B = Id*)(*Note doing special case with B = Id*)(*Note doing special case with B = Id*)
Aq = Transpose[Q].A.Q;Aq = Transpose[Q].A.Q;Aq = Transpose[Q].A.Q;
Bq = Transpose[Q].Q;Bq = Transpose[Q].Q;Bq = Transpose[Q].Q;
{evals, evecs} = Eigensystem[{Aq,Bq}];{evals, evecs} = Eigensystem[{Aq,Bq}];{evals, evecs} = Eigensystem[{Aq,Bq}];
{evals, Q.Transpose[evecs]}{evals, Q.Transpose[evecs]}{evals, Q.Transpose[evecs]}
]]]

Figure 3: Module that does the main FEAST code

there is a question of which ones are the ones we are supposed to look at.
The solution would be to run the algorithm multiple times. The value that
shows up the most would be the correct eigenvalue.

To make testing easier, we also have a module (seen in figure 4) that
creates symmetric matrices when given specified eigenvalues. That way we
could control the testing process.

Clear[SymMatWithEvals]Clear[SymMatWithEvals]Clear[SymMatWithEvals]
SymMatWithEvals[evals List]:=Module[SymMatWithEvals[evals List]:=Module[SymMatWithEvals[evals List]:=Module[
{n = Length[evals], Q,A},{n = Length[evals], Q,A},{n = Length[evals], Q,A},
(* Form a random rotation *)(* Form a random rotation *)(* Form a random rotation *)
Q = QRDecomposition[RandomVariate[NormalDistribution[0, 1], {n, n}]][[1]];Q = QRDecomposition[RandomVariate[NormalDistribution[0, 1], {n, n}]][[1]];Q = QRDecomposition[RandomVariate[NormalDistribution[0, 1], {n, n}]][[1]];
(* Similarity transforms the input eigenvalues to be unrecognizable *)(* Similarity transforms the input eigenvalues to be unrecognizable *)(* Similarity transforms the input eigenvalues to be unrecognizable *)
A = Q.DiagonalMatrix[evals].Transpose[Q];A = Q.DiagonalMatrix[evals].Transpose[Q];A = Q.DiagonalMatrix[evals].Transpose[Q];
(* A is already symmetric in exact arithmetic *)(* A is already symmetric in exact arithmetic *)(* A is already symmetric in exact arithmetic *)
(* but for some purposes I need to fix any floating point asymmetry *)(* but for some purposes I need to fix any floating point asymmetry *)(* but for some purposes I need to fix any floating point asymmetry *)
0.5(A+ Transpose[A])0.5(A+ Transpose[A])0.5(A+ Transpose[A])
]]]

Figure 4: Module that creates symmetric matrices given eigenvalues

6

4 Results

4.1 General testing of algorithm
5 The majority of our work was done on the real version of Polizzi’s algorithm.
The initial goal was to see if the algorithm actually worked.

4.1.1 Find 1 eigenvalue

The first step of testing the FEAST algorithm was to see if it could accurately
find one specific eigenvalue. Table 1 shows the result of testing a 5 × 5 real
symmetric matrix. Each run found the correct eigenvalue and placed it first
on the list. FEAST output 2 eigenvalues becaue it created a 2× 2 matrix to
find the eigenvalues. The second eigevalue can be ignored as it is not actually
an eigenvalue of the original matrix.

Eigenvalues λmin λmax M Output
1, 25, 50, 400, 1000 0 5 1 {1., 0.}
1, 25, 50, 400, 1000 20 30 1 {25., 0.}
1, 25, 50, 400, 1000 45 55 1 {50., Indeterminate}
1, 25, 50, 400, 1000 350 500 1 {400., 123.586}
1, 25, 50, 400, 1000 900 1200 1 {1000., 365.714}

Table 1: Testing the ability to find one specific eigenvalue

4.1.2 Find 2 eigenvalues

The next test was to see how well the algorithm performed finding 2 eigen-
values. The results can be seen in table 2.

Polizzi specifically says in his algorithm (see figure 1) that only the val-
ues within the search interval are eigenvalues. The algorithm performs as
expected. The value of 50.0013 in the first row of the table is not considered
an eigenvalue by Polizzi since it is not in the range. However, we know that
50 is actually an eigenvalue. It was just not one we were looking for.

Row 3 shows that the output isn’t always exact. As seen in table 3, our
relative residual is 10−6 which is less than the residual that Polizzi said he

5SK

7

Eigenvalues λmin λmax M Output
1, 25, 50, 400, 1000 -2 30 2 {50.0013, 25., 1.}
1, 25, 50, 400, 1000 20 75 2 {50., 25., 1.}
1, 25, 50, 400, 1000 40 500 2 {399.94894163701554,

49.99974501865308,
19.06911267847751}

1, 25, 50, 400, 1000 350 1200 2 {1000., 400., 1.81701}

Table 2: Testing the ability to find two specific eigenvalues

was getting, and much smaller than the residual we found using Polizzi’s
residual in equation 1.

Correct Algorithm
Eigenvalue Eigenvalue Equation 1 Equation 2

400 399.94894163701554 0.011914984061113687 0.00012764590746115802
50 49.99974501865308 0.002148514867156731 5.099626938402935× 10−6

Table 3: Comparing the Accuracy of Eigenvalues

4.1.3 Finding 3-5 eigenvalues

In table 4 you can see that sometimes there is an eigenvalue found that is
nearly the same as the one we were looking for. In the case of looking for all
5, you can see that 50 is found twice, though the second one is very close. 25
is found twice in row 1 of the same table.

Eigenvalues λmin λmax M Output
1, 25, 50, 400, 1000 0 60 3 {50., 25., 24.6902, 1., 0.}
1, 25, 50, 400, 1000 20 450 3 {1006.24, 400., 50., 25., 1.}
1, 25, 50, 400, 1000 40 1500 3 {1000., 400., 50., 25., 1.}
1, 25, 50, 400, 1000 0 500 4 {997.753, 400., 50., 25., 1.00061, 1.}
1, 25, 50, 400, 1000 20 1200 4 {1000., 400., 50., 40.0445, 25., 1.}
1, 25, 50, 400, 1000 0 1200 5 {1000., 400., 50., 49.9727, 25., 22.3177,

1., Indeterminate}

Table 4: Looking for 3-5 eigenvalues

8

Table 5 shows the relative residuals for the results from row 1 of table 4.
In this case the residuals are all better than Polizzi’s numbers for our relative
residual. Polizzi’s residuals are respectable, but the difference implies that
perhaps the eigenvectors are not as accurate as they should be.

Correct Algorithm
Eigenvalue Eigenvalue Equation 1 Equation 2

50 50. 4.04765× 10−10 7.10543× 10−16

25 25. 4.13696× 10−8 8.5123× 10−14

1 1. 1.68769× 10−7 1.9762× 10−14

Table 5: Comparing the Accuracy of Eigenvalues found in row 1 of table 4

4.1.4 Testing accuracy of finding 1 eigenvalue multiple times

The next test was to see how accurately it finds one eigenvalue when done
repeatedly. We looked for the eigenvalue 1 given a matrix with eigenvalues of
{1, 25, 50, 400, 1000}. The search interval was [0,2]. The FEAST algorithm
was run 200 times with the same input. Figure 5 shows the result. The
consistency is very good.

50 100 150 200
run number

1. ´ 10 - 16

2. ´ 10 - 16

3. ´ 10 - 16

4. ´ 10 - 16

Accuracy of eigenvalue

Figure 5: Relative Residual (eqn 2) of looking for 1 eigenvalue over 200 runs

Figure 6 shows another run using the same information as in the previous
test. This time the algorithm was run 400 times. Red dots show the first
eigenvalue, and blue dots show the second eigenvalue. Clearly 1 is found as
it should be. However, there are times when either the first value is incorrect
or the second one is incorrect.

9

100 200 300 400
run number

0.5

1.0

1.5

2.0

eigenvalue

Figure 6: Graph of resulting eigenvalues when looking for an eigenvalue of 1
on range [0,2]

The interpretation of figure 6 is supported by figure 7, which is a table of
the results of 25 runs looking for an eigenvalue of 1.

10



2.323 1.
1. 0.
1. Indeterminate
1. Indeterminate
1. Indeterminate
1. Indeterminate
1. 0.
1. Indeterminate
1. 1.
1. 0.993538
1. Indeterminate
∞ 1.

1.25424 1.
−2. 1.
1. Indeterminate
∞ 1.
1. Indeterminate
1. Indeterminate
1. 1.
1. Indeterminate
1. 1.
1. 0.
1. 0.962441
1. 1.
1. Indeterminate


Figure 7: Eigenvalues for 25 runs looking for λ = 1 in interval [0,2]

11

4.2 Testing M
6 Once we established that the algorithm worked, we were interested in how
picking M effects the results.

4.2.1 Underestimating the number of eigenvalues

The first test was to see what happens if you underestimate the number of
eigevalues by 1. Table 6 shows that the accuracy is not affected in any way.
1, 200.003, 200.004, 200.005, 200.006, 200.007, 400

Eigenvalues λmin λmax M Output
{1, 25, 50, 400, 1000} 0 30 1 {25., 1.}
{1, 25, 50, 400, 1000} 20 55 1 {50., 25.}
{1, 25, 50, 400, 1000} 40 500 1 {399.276, 49.9987}
{1, 25, 50, 400, 1000} 350 1200 1 {1000., 400.}
{1, 25, 50, 400, 1000} 0 55 2 {50., 25., 1.}
{1, 25, 50, 400, 1000} 0 450 3 {829.44, 400., 50., 25., 1.}
{1, 25, 50, 400, 1000} 0 1200 4 {1000., 400., 50., 49.043, 25., 1.}

Table 6: Eigenvalues found when underestimating M by 1

Underestimating the number of eigenvalues in a range by 2 means that
the FEAST output is extremely inaccurate. Figure 8 shows the results of
this. We were looking for 1 eigenvalue in the range [0,55], which actually
contains 3 eigenvalues (original eigenvalues were {1, 25, 50, 400, 1000}). The
resulting plot (FEAST run 25 times) shows that the values are all over the
place.

6SK

12

5 10 15 20 25
run number

10

20

30

40

50

eigenvalue

Figure 8: Plot of eigenvalues found when underestimating M by 2

4.2.2 Overestimating the number of eigenvalues

Based on how the algorithm works, overestimating the number of eigenvalues
will not affect the output. Overestimating M just means we use a larger
matrix size to find eigenvalues from. We already overestimated the number
of eigenvalues by using the ceiling of 1.5M .

4.3 Testing search interval
7 Surprisingly, the search interval is not so important when looking for the
specific eigenvalues. The algorithm will find eigenvalues that are near the
search interval, though technically they are not considered eigenvalues be-
cause they are not in the range. So we find none in the range, but we do find
the nearby ones. This can be seen in table 7.

Eigenvalues λmin λmax M Desired λ Output
{1, 25, 50, 400, 1000, 20, 45, 500} 0 1 1 1 {1.,0.5}
{1, 25, 50, 400, 1000, 20, 45, 500} 0 .9 1 1 {1.,0.}
{1, 25, 50, 400, 1000, 20, 45, 500} -1 0 1 1 {23.6169,1.}
{1, 25, 50, 400, 1000, 20, 45, 500} 55 60 1 50 {50.,44.9802}

Table 7: Testing to see if an eigenvalue near the range can be found

7SK

13

4.4 Testing clustered eigenvalues
8 We tested how accurate the algorithm is when there are a bunch of clustered
eigenvalues.

4.4.1 Eigenvalues {1, 298, 299, 300, 301, 302, 600}

We created a matrix with eigenvalues {1, 298, 299,300, 301, 302,600}. With
search range [290,305] and M = 5 we ran the algorithm 25 times and plotted
the results, which can be seen in figure 9.

5 10 15 20 25
Number of runs

292

294

296

298

300

302

304

Eigen Values

Figure 9: Plot of eigenvalues in a cluster, run 25 times with search interval
[290,305]

We asked for the 5 eigenvalues clustered together but the algorithm gives
us 8 eigenvalues, all inside the range we need and close to the exact eigen
values. The first run had an output of {353.488, 302.001, 302.,301., 300.,
299.674, 299., 298.}. All the needed eigenvalues are there, along with others
that are extremely close. However, the difference between them are relatively
large. For example, the residual between 299 and 299.674 is 0.00225475 (using
2), which shows that they are different enough.

Using the same initial eigenvalues, we then tested the results of 25 runs.
This time we had a range of [300,305] so we were looking for the eigenvalues
300, 301, and 302. Then we plotted the resulting output on a range from
[295,305] where all the clustered eigenvalues were. The idea was to see the
eigenvalues near the range turned up. The results are in figure 10.

8CS

14

5 10 15 20 25
Number of runs

296

298

300

302

304

Eigen Values

Figure 10: Plot of eigenvalues in a cluster when run 25 times. Search interval
was [300,305]

We asked for 3 eigenvalues in the interval [300, 305], but we got all the
correct clustered eigenvalues instead. This time there were no really close
values to the ones we were looking for, as seen in the following sample output:
{302., 301., 300., 299., 297.993}.

4.4.2 Eigenvalues {1, 4998, 4999, 5000, 5001, 5002, 10000}

We looked at clustered eigenvalues again, with a matrix that had the eigen-
values {1, 4998, 4999, 5000, 5001, 5002, 10000}. We did 25 runs looking
for the eigenvalues in the range [4900,5050]. This time some of the re-
sults gave us complex eigenvalues, which should not occur since in the algo-
rithm we are taking the real part. One run gave us eigenvalues of {5002. +
0.i, 5001.01 + 0.i, 5000.74 + 0.i, 5000.+ 0.i, 4999.+ 0.i, 4998.+ 0.i, 4872.16−
279.761i, 4872.16 + 279.761i}. Clearly there are some with quite large imag-
inary parts, and they are complex conjugates.

Figure 11 shows the graph of the 25 runs where complex eigenvalues
showed up. We got 8 eigenvalues in the interval we wanted. The results
changed as we got some complex eigenvalues for some runs.

15

5 10 15 20 25
Number of runs

4995

5000

5005

5010

Eigen Values

Figure 11: 25 runs looking for eigenvalues in the range [4900,5050]

4.4.3 Eigenvalues {1, 200.003, 200.004, 200.005, 200.006, 200.007,
400}

Next we tested clustered eigenvalues that were very close together. We cre-
ated a matrix with the eigenvalues {1, 200.003, 200.004, 200.005, 200.006,
200.007, 400}. A single run looking for the 5 eigenvalues near 200 (range
[200,201] resulted in {203.178, 200.021, 200.008, 200.007, 200.006, 200.005,
200.004, 200.003}. When the clustered eigenvalues were very close to each
other we got the 5 correct eigenvalues and some extras.

Figure 12 shows the graph of the 30 runs to find the very closely clustered
eigenvalues. We wanted 5 eigenvalues but received all 8 of the clustered ones.

0 5 10 15 20 25 30
Number of runs

199.6

199.8

200.0

200.2

200.4

Eigen Values

Figure 12: 30 runs looking for eigenvalues in the range [200,201]

16

4.4.4 Matrix with 30 very close eigenvalues and 2 eigenvalues far
away

To test larger matrices, we created a matrix with 30 eigenvalues between
[290,310] and eigenvalues of 1 and 600. Then we compared the output to
the correct values. In this case we underestimated by 10 eigenvalues, setting
M = 20.

The 32 eigenvalues that were correct were {1, 290.034, 290.227, 290.658,
291.621, 293.748, 294.924, 298.976, 299.017, 299.294, 299.449, 299.581, 301.276,
302.009, 302.254, 303.125, 303.321, 303.913, 304.455, 305.458, 305.798, 306.337,
306.445, 306.642, 306.655, 306.729, 307.044, 307.221, 308.003, 309.644, 309.848,
600}.

The output of FEAST was {290.028, 290.227, 290.658, 291.667, 293.748,
294.924, 298.976, 299.017, 299.294, 299.449, 299.581, 301.276, 302.009, 302.254,
303.125, 303.321, 303.913, 304.455, 305.458, 305.798, 306.337, 306.445, 306.642,
306.655, 306.729, 307.044, 307.221, 308.003, 309.644, 309.846}.

We get all 30 clustered eigenvalues even though we only ask for 20 but
other than 2 eigenvalues (291.621 and 309.848) the other eigenvalues are a
perfect match.

Figure 13 shows the graph of the 30 runs to find all the close eigenvalues.
We get all 30 eigenvalues in the interval we want and they are almost always
equal to the original eigenvalues.

0 5 10 15 20 25 30
Number of runs

290

295

300

305

310

315

Eigen Values

Figure 13: 30 runs looking for eigenvalues in the range [290,310]

We then did the same thing, this time asking for all the eigenvalues in
the range (M = 30). Everything else was the same.

17

The 32 correct eigenvalues: {1, 290.193, 290.24, 291.473, 292.34, 292.821,
292.947, 293.636, 295.315, 295.914, 296.55, 298.423, 300.702, 301.269, 301.434,
301.533, 302.801, 305.344, 305.456, 305.504, 305.531, 306.007, 306.338, 306.562,
306.597, 306.973, 307.108, 307.362, 308.361, 308.443, 309.09, 600}.

The output of FEAST: {278.742+7.92246i, 278.742−7.92246i, 290.242+
0.i, 290.431+0.i, 291.634+0.i, 292.715+0.i, 292.958+0.i, 293.682+0.i, 295.079+
0.i, 295.392+0.i, 295.605+15.9858i, 295.605−15.9858i, 295.949+0.i, 298.438+
0.i, 299.581+0.i, 300.224−4.36456i, 300.224+4.36456i, 301.392+0.0646473i, 301.392−
0.0646473i, 301.795+0.i, 302.557+0.i, 304.112−2.24116i, 304.112+2.24116i, 305.358+
0.i, 305.486+0.i, 305.52+0.i, 306.177+0.i, 306.354+0.i, 306.596+0.i, 306.793+
0.i, 306.967 + 0.i, 307.383 + 0.i, 308.563 + 0.i, 308.713 − 10.8968i, 308.713 +
10.8968i, 309.685+0.419621i, 309.685−0.419621i, 311.316−25.7048i, 311.316+
25.7048i, 313.172 + 0.i, 342.176 + 0.i, 392.884 + 0.i, 404.573 + 0.i, 462.882 +
0.i, 689.925 + 0.i}.

When we ask for all 30 of the eigenvalues inside the interval we do not
get an accurate solution. We end up with more complex results, and while
some of them have a complex part of essentially zero, not all of them do.

291.621→ 291.667

309.848→ 309.846

The last thing we did was to graph the results when there are 30 close
eigenvalues. Figure 14 shows that the results are consistent.

5 10 15 20 25
Number of runs

290

295

300

305

310

315

Eigen Values

Figure 14: Multiple runs looking for 30 close eigenvalues

Then we wanted to see what would happen if we only asked for 19 eigen-
values in the interval. We get 29 eigenvalues and they were not as accurate
as our earlier attempts.

18

The eigenvalues we get are: 309.905, 309.882, 308.201, 308.116, 308.08,
307.572, 307.559, 307.473, 305.6, 304.957, 304.665, 303.918, 303.888, 303.793,
302.924, 301.92, 301.369, 300.722, 299.96, 297.833, 297.399, 297.204, 295.279,
294.833, 294.294, 292.784, 292.491, 291.328, 290.526

290.034→ 290.525

294.924→ 294.833

As Figure 15 shows the results are not consistent.

0 5 10 15 20 25 30
Number of runs

290

295

300

305

310

315

Eigen Values

Figure 15: Multiple runs looking for 30 close eigenvalues for M = 19

4.5 Testing small eigenvalues
9 We tested to see how accurately FEAST performs with small eigenvalues.

4.5.1 Looking for one specific eigenvalue

Before extensive testing of small eigenvalues, we wanted to make sure that
we could get a good result looking for 1 of them. With a matrix that had
eigenvalues of {0.0001,0.0025,0.005,0.04,0.1}, we ran FEAST on an interval
of [0,0.0002] and M = 1. {0.0001,0.0000496878} was the resulting output. It
correctly found the eigenvalue of 0.0001.

9NW

19

The next step was to find the accuracy of finding 0.0001 over 300 runs.
Using the same interval and M , we plotted the relative residual using equa-
tion 2. Figure 16 shows that the relative residual is quite small, even smaller
than for large eigenvalues.

50 100 150 200 250 300
Run Number

5. ´ 10 - 19

1. ´ 10 - 18

1.5 ´ 10 - 18

2. ´ 10 - 18

2.5 ´ 10 - 18

3. ´ 10 - 18

3.5 ´ 10 - 18

Accuracy of Eigenvalue

Figure 16: Plot of the accuracy of finding a small eigenvalue of 0.0001 over
300 runs

We decided to run this algorithm multiple times and compare plots of
the eigenvalues found. Figure 17 shows the plot of eigenvalues over 200, 400,
and 800 runs. Comparing the 3 plots you can see that a “ghost” eigenvalue
shows up around 0.00012. The more runs, the more times it shows up. Our
theory is that because it is such a small range, the likelihood of the same
number showing up is higher than if the range is larger.

20

50 100 150 200
Run Number

0.00005

0.00010

0.00015

0.00020

Eigenvalue

100 200 300 400
Run Number

0.00005

0.00010

0.00015

0.00020

Eigenvalue

200 400 600 800
Run Number

0.00005

0.00010

0.00015

0.00020

Eigenvalue

Figure 17: Multiple runs finding 0.0001 results in a “ghost” eigenvalue show-
ing up

21

4.5.2 Looking for multiple eigenvalues

Using a matrix with the same eigenvalues as before ({0.0001, 0.0025, 0.005,
0.04, 0.1}) we tested finding 3 eigenvalues in a range. Figure 18 shows FEAST
run 300 times to find the eigenvalues between 0 and 0.0051. There were 3
eigenvalues in this range. Because of how the algorithm works, FEAST gives
d1.5 × 3e = 5 possible eigenvalues. In this plot each eigenvalue was given
a different color in the following order: Red, Yellow, Blue, Magenta, Green.
As can be seen in figure 18, the first eigenvalue output from the algorithm
was always an eigenvalue because the red dots appear only in front of the
eigenvalue 0.005. This was the largest eigenvalue in the range since the
output is always sorted. Therefore we can assume that for small eigenvalues,
the largest would always be an actual eigenvalue.

50 100 150 200 250 300
Run Number

0.001

0.002

0.003

0.004

0.005

Eigenvalue

Figure 18: Plot of FEAST output looking for 3 small eigenvalues, run 300
times

Note that even though this algorithm outputs values (which are also in
the range of consideration) that are not eigenvalues, we can always run the
algorithm several times and figure out what the real eigenvalues are. As seen
in figure 18, the actual eigenvalues appear frequently when the algorithm is
run multiple times. The algorithm does not take much time to run, so this
a feasible way to find which of the resulting numbers are eigenvales.

22

One sample from the run of 300 gave an output of {0.005, 0.00301705,
-0.00252876, 0.0025, 0.0001}. We computed the relative residual of the cor-
rect eigenvalues using our norm and Polizzi’s norm. Table 8 shows these
residuals. In general they are more accurate by a power of ten than the
residuals obtained in table 5.

Correct Algorithm
Eigenvalue Eigenvalue Equation 1 Equation 2

0.0050 0.005 1.97687× 10−11 1.73472× 10−16

0.0025 0.0025 1.87104× 10−9 1.21431× 10−15

0.0001 0.0001 7.91298× 10−9 1.07065× 10−14

Table 8: Comparing the accuracy of small eigenvalues

4.6 Testing repeated eigenvalues
10 We tested what happened when there were multiple eigenvalues in an
interval.

4.6.1 Eigenvalues {1, 5, 10, 10, 10, 15, 20, 25}

We did 25 runs of FEAST looking for 4 eigenvalues in the interval [4,12] from
a matrix with eigenvalues of {1, 5, 10, 10, 10, 15, 20, 25}. In that interval
10 appears 3 times.

Output for one run was {15.0003, 10., 10., 10., 5., 1.00222}. It has the
correct eigenvalues of 10 in there 3 times, and also has the eigenvalue of 5.
In fact, when we plot the eigenvalues in the interval for the 25 runs, we find
that it is extremely consistent in finding the correct eigenvalues. Figure 19
portrays this.

Table 9 shows the residual between the calculated eigenvalues and the
correct eigenvalues for the run previously mentioned.

10CS

23

5 10 15 20 25
Number of runs

6

8

10

12

Eigen Values

Figure 19: Looking for eigenvalues of 10,10,10 and 5 over 25 runs

Correct λ Calculated λ Difference
5 5.000000000000304 3.0375701953744283× 10−13

10 10.000000000000004 3.552713678800501× 10−15

10 10.000000000000012 1.2434497875801753× 10−14

10 10.000000000000357 3.5704772471945034× 10−13

Table 9: Residual for repeated eigenvalues

5 Complex Version

11 We used Polizzi’s pseudocode [2] for complex eigenvalues to write the
algorithm in Mathematica. Figure 20 shows Polizzi’s pseudocode.

The code we use is almost the same as earlier with the main difference
being that we do not ignore the complex parts on the way to compute Q.
The modified Q code is in figure 21.

Our general code for running the complex version of FEAST can be seen
in figure 22.

Testing of the complex version was not complete, as there seemed to be
a lot more issues in getting it started.

11CS

24

Figure 20: FEAST pseudocode for the complex version

25

Clear[FeastQComplex]Clear[FeastQComplex]Clear[FeastQComplex]
FeastQComplex[{A ,Y }, {Lmin ,Lmax }]:=Module[FeastQComplex[{A ,Y }, {Lmin ,Lmax }]:=Module[FeastQComplex[{A ,Y }, {Lmin ,Lmax }]:=Module[
{Ne = 8, r, c, B, n = Length[A],XW, Q, θe,Ze,Qe,Qhe},{Ne = 8, r, c, B, n = Length[A],XW, Q, θe,Ze,Qe,Qhe},{Ne = 8, r, c, B, n = Length[A],XW, Q, θe,Ze,Qe,Qhe},
{r, c} = 0.5{Lmax− Lmin,Lmax + Lmin};{r, c} = 0.5{Lmax− Lmin,Lmax + Lmin};{r, c} = 0.5{Lmax− Lmin,Lmax + Lmin};
B = SparseArray[Band[{1, 1}]→ 1.0, {n, n}];B = SparseArray[Band[{1, 1}]→ 1.0, {n, n}];B = SparseArray[Band[{1, 1}]→ 1.0, {n, n}];

XW =



0.183434642495649 0.362683783378361
−0.183434642495649 0.362683783378361
0.525532409916328 0.313706645877887
−0.525532409916328 0.313706645877887
0.796666477413626 0.222381034453374
−0.796666477413626 0.222381034453374
0.960289856497536 0.101228536290376
−0.960289856497536 0.101228536290376


;XW =



0.183434642495649 0.362683783378361
−0.183434642495649 0.362683783378361
0.525532409916328 0.313706645877887
−0.525532409916328 0.313706645877887
0.796666477413626 0.222381034453374
−0.796666477413626 0.222381034453374
0.960289856497536 0.101228536290376
−0.960289856497536 0.101228536290376


;XW =



0.183434642495649 0.362683783378361
−0.183434642495649 0.362683783378361
0.525532409916328 0.313706645877887
−0.525532409916328 0.313706645877887
0.796666477413626 0.222381034453374
−0.796666477413626 0.222381034453374
0.960289856497536 0.101228536290376
−0.960289856497536 0.101228536290376


;

Q = 0 ∗ Y ;Q = 0 ∗ Y ;Q = 0 ∗ Y ;
For[e = 1, e ≤ Ne, e++,For[e = 1, e ≤ Ne, e++,For[e = 1, e ≤ Ne, e++,
θe = −(π/2)(XW[[e, 1]]− 1);θe = −(π/2)(XW[[e, 1]]− 1);θe = −(π/2)(XW[[e, 1]]− 1);
Ze = c+ r ∗ E∧(I ∗ θe);Ze = c+ r ∗ E∧(I ∗ θe);Ze = c+ r ∗ E∧(I ∗ θe);
Qe = LinearSolve[Ze ∗B − A, Y];Qe = LinearSolve[Ze ∗B − A, Y];Qe = LinearSolve[Ze ∗B − A, Y];
Qhe = LinearSolve[Transpose[Ze ∗B − A], Y];Qhe = LinearSolve[Transpose[Ze ∗B − A], Y];Qhe = LinearSolve[Transpose[Ze ∗B − A], Y];
Q = Q− (XW[[e, 2]]/4) ∗ r ∗

((
ei∗θe ∗Qe

)
−
(
e−i∗θe ∗Qhe

))
;Q = Q− (XW[[e, 2]]/4) ∗ r ∗

((
ei∗θe ∗Qe

)
−
(
e−i∗θe ∗Qhe

))
;Q = Q− (XW[[e, 2]]/4) ∗ r ∗

((
ei∗θe ∗Qe

)
−
(
e−i∗θe ∗Qhe

))
;

];];];
QQQ
]]]

Figure 21: Complex version of code to create the Q matrix

FEASTComplex[A , {Lmin ,Lmax },M]:=Module[FEASTComplex[A , {Lmin ,Lmax },M]:=Module[FEASTComplex[A , {Lmin ,Lmax },M]:=Module[
{n = Length[A],M0 = Ceiling[1.5 ∗M], Y, evals, evecs},{n = Length[A],M0 = Ceiling[1.5 ∗M], Y, evals, evecs},{n = Length[A],M0 = Ceiling[1.5 ∗M], Y, evals, evecs},
Y = RandomReal[{−1, 1}, {n,M0}];Y = RandomReal[{−1, 1}, {n,M0}];Y = RandomReal[{−1, 1}, {n,M0}];
Q = FeastQComplex[{A, Y }, {Lmin,Lmax}];Q = FeastQComplex[{A, Y }, {Lmin,Lmax}];Q = FeastQComplex[{A, Y }, {Lmin,Lmax}];
Aq = Transpose[Q].A.Q;Aq = Transpose[Q].A.Q;Aq = Transpose[Q].A.Q;
Bq = Transpose[Q].Q;Bq = Transpose[Q].Q;Bq = Transpose[Q].Q;
{evals, evecs} = Eigensystem[{Aq,Bq}];{evals, evecs} = Eigensystem[{Aq,Bq}];{evals, evecs} = Eigensystem[{Aq,Bq}];
{evals, Q.Transpose[evecs]}{evals, Q.Transpose[evecs]}{evals, Q.Transpose[evecs]}
]]]

Figure 22: Complex version of FEAST

26

5.1 Testing for Eigenvalues {1 + i, 2 + 2i, 3− 5i}
We tested the code on a complex diagonal matrix with eigenvalues 1 + i, 2 +
2i, 3− 5i and we got the result {3.− 5.i, 2.+ 2.i, 1.+ 1.i}.

It is to be noted that no matter the interval for M = 2 we always get all
3 correct eigenvalues. The error was found to be: {−2.6645352591003757×
10−15−8.881784197001252×10−16, 3.9968028886505635×10−15−1.3322676295501878×
10−15i,−1.3322676295501878× 10−15 − 8.881784197001252× 10−16i}.

Then we tried to just find one eigenvalue (3−5i) in the interval and we got
the following results which is not accurate at all: {3.546−4.64787i, 1.83322+
2.24231i}.

When we tried M = 3 we got the correct eigenvalues: {3. − 5.i, 2. +
2.i, 1.+ 1.i, Indeterminate, Indeterminate}.

5.2 Testing for Eigenvalues {3−5i, 2−3i, 2+2i, 2−i, 1−i}
We tried to find 2 eigenvalues out of the 5 but we get 3 eigenvalues and the
error is very large as can be seen from the results we obtained: {2.02814 −
1.9919i, 1.81547 + 1.86346i, 1.03128− 1.13449i}.

Next we tried for M = 3. We get all 5 eigenvalues and the error is
negligible: {3.− 5.i, 2.− 3.i, 2.+ 2.i, 2.− 1.i, 1.− 1.i}.

6 Future Work

12 The Complex FEAST algorithm looses its accuracy for larger complex
matrices. We would like to find out why this happens. Also we would like
to find a better way to give the search interval for the complex FEAST
algorithm rather than giving λmin, λmax. Thirdly, it would be nice to test
the complex version with full matrices.

Multiple questions popped up regaring the input range. Is there is a min-
imum range for λmin and λmax. Is there a maximum range? What happens
as we decrease the range? Do we get more “ghost” eigenvalues? Does it fail?
Does it get even more accurate?

Additional hopes are to:

1. Get the algorithm working for non-symmetric matrices.

12CS, SK, NW

27

2. Find out why it works better on small eigenvalues.

3. Find out the threshold for underestimating M .

4. Find out why sometimes we get complex results even though we take
the real part.

28

References

[1] Eric Polizzi. Density-matrix-based algorithm for solving eigenvalue prob-
lems. Physical Review B, 79:115112–115117, 2009.

[2] Eric Polizzi. A High-Performance Numerical Library for Solving
Eigenvalue Problems: FEAST Solver v2.0 User’s Guide, March 2012.
http://arxiv.org/abs/1203.4031.

29

