
Experiments on ILU(0) Preconditioning

Cagri Abis
Kyle Bordeau
Andrew Rice

April 27, 2012

Contents

Abstract . 2
1.0 Introduction & Background . 2
2.0 Theory . 2
3.0 Testing & Results . 4

3.1 ILU speeds on varying size and density matrices . 4
3.2 ILU Residual Testing . 6
3.3 Preconditioning Results . 6

4.0 Conclusions & Future Work . 7

1

Abstract

The goal of this paper is to investigate the effect of using preconditioners in solving the linear equation Ax = b with
three different types of iterative solvers: conjugate gradient method, biconjugate gradient method, and generalized
minimum residual method. Specifically, the incomplete LU decomposition for a sparse matrix, ILU(0), is used to
obtain the preconditioning matrices. MATLAB is used to compute the decompositions, solve the equations, and
record timings, residuals, and iterations for the testing.

1.0 Introduction & Background

Systems of linear equations are very common in the real world. A set of linear equations can be used to describe
physical shapes or the behavior of structures. Because linear equations are so prevalent, it is important that there
are efficient methods to solve them. The most direct method of solving a system is to find the inverse of the
coefficient matrix. However for large systems of more than 1000 equations, it becomes difficult to compute the
matrix inverse. In this case it is often best to use an iterative solving method to obtain an accurate answer.

Iterative solvers yield more accurate and faster results for well-conditioned matrices. The condition number of
a matrix A is defined as

KP (A) = ||A||P ||A−1||P
and is an indicator of how accurate a result can be derived from a matrix. For a linear solution of a matrix,
the condition number is the number of digits that will be lost in matrix multiplication [2]. Solving with iterative
methods requires many iterations to coverage to a solution. Therefore, computing matrix multiplications again and
again will cause a considerable loss in precision. A small condition number helps to preserve the precision after
numerous iterations.

The lowest possible condition number is 1 and occurs for the identity matrix. If the identity matrix were used
as the coefficient matrix, then the solution can be reached in one iteration. A desired method then to improve the
efficiency of some iterative solver is to use a preconditioning matrix, P , that will decrease the condition number of
the problem such that P−1Ax = P−1b [1]. Ideally P = A−1, but as previously mentioned it is not always feasible
to compute a matrix inverse. One alternative is to decompose A into upper and lower triangular matrices using the
LU decomposition. Then, the preconditioner would be P = LU and the new problem is U−1L−1Ax = U−1L−1b.
This new equation is much easier to compute because the condition number of the resulting coefficient matrix is
small.

For small problems the LU decomposition will compute the correct matrices such that LU = A. For the real
world case, the matrix A is often very large and mostly sparse. For these large sparce matrices, the LU decomposition
needs to be replaced with the incomplete LU decompositon for sparce matrices with no fill, or ILU(0). This paper
investigates the performance of using the ILU(0) as preconditioners for three iterative methods: conjugate gradient
(CG), biconjugate gradient (BCG), and generalized minimum residual (GMRES).

2.0 Theory

In this paper the conjugate gradient, biconjugate gradient, and general minimum residual iterative methods are
used to solve systems of linear equations and are going to be tested for preconditioning effects. The algorithms for
CG, BCG, and GMRES are shown in Figures 1, 2, and 3 respectively. The exact applications for and differences
between these algorithms is not the concern of this report, however it is worth noting that the CG method only
works for symmetric posititive definite matrices.

In MATLAB there are three different kinds of incomplete LU decomposition. The first is the crout version, which
requires the specification of a drop tolerance value, δ. In the crout version, entries of both the upper and lower
triangular matrices are compared to the desired drop tolerance. In U , nonzero entries must satisfy |Ui,j | ≥ δ||A∗,j ||.
In L, nonzero entries must satisfy |Li,j | ≥ δ||A∗,j/Uj,j ||. Any entry that does not meet the requirement will be
thrown out, the exception is diagonal entries which are all kept regardless of their value.

The second type of ILU is ILU(0), which is known as “nofill” MATLAB. It does not have a drop tolerance and
it is the easiest ILU version to call and use, as long as zero entries in the diagonals are avoided.

2

Figure 1: Conjugate gradient method algorithm [3]

Figure 2: Biconjugate gradient method algorithm [4]

3

Figure 3: GMRES method algorithm [5]

The last form of ILU includes pivoting and threshold, which is known as “ilutp” in MATLAB. It is not a desired
ILU version for preconditioners due to its pivoting. However it is the most accurate version and therefore it is going
to be used for comparison purposes in this paper.

3.0 Testing & Results

3.1 ILU speeds on varying size and density matrices

To better understand to workings of the ILU function in MATLAB, some initial examinations of the timings and
the various options of the ILU function were examined.

In the first case, the density of the matrix was held fixed at 10−5, where the density is defined as the ratio of
nonzero elements to the total number of elements in the matrix. The matrix size was then varied from n = 1 to
n = 105. Each matrix was a randomly generated n× n symmetric positive definite matrix. In Figure 4 it is shown
that the number of nonzeros in L and U remain the same as in the original matrix S. Next, the timings for the ILU
factorization in Figure 4 were recorded and shown in Figure 5. The time to compute the decomposition is initially
minimal, but grows very quickly as it appear quadratic in a log-log plot.

Figure 4: The number of nonzero terms in matrix. S is the original matrix, and L and U are the upper and
triangular matrices returned by ILU.

For the next set of tests, the matrix size was held fixed at n = 1000 and the density varied from 10−5 to 10−3.
This range was chosen as it covers the typical range of sparse matrices and even into the density that would no

4

Figure 5: Run times for the default ILU with varying matrix size.

longer be considered sparse. Figure 6 depicts the ratio of nonzeros in L + U to original matrix S. In the case
of small densities (10−4), the diagonal values dominate and the ratio approaches 2. As the density increases, the
weight of the diagonal becomes less significant and the ratio approaches 1.

Figure 6: Ratio of number of nonzero entries in L and U to the number of nonzeros in the original matrix S

In the final set of tests, the matrix size is again constant and the density and drop tolerance is varied. The time
to compute the decomposition for varied density is shown in Figure 7 and the timing for varied drop tolerance is
shown in Figure 8. It is observed that the speed decreases as the drop tolerance increases as shown in Figure 9. As
the drop tolerance deceases, the ILU factorization approaches the complete LU factorization.

5

Figure 7: ILU decomposition timing for a 1000× 1000 matrix with varying density.

Figure 8: ILU decomposition timing for a 1000× 1000 matrix with drop tolerance.

3.2 ILU Residual Testing

The three types of ILU all produce different decompositions. Testing was done by decomposing matrices of varying
size and density and then comparing two important residuals. The first residual examined was the relative residual
computed using ||S − LU ||/||S||. Figure 9 shows the residuals for each type of ilu for a varying sized symmetric
positive definite matrix with density 10−2. The most accurate is the ilutp version followed by crout and then nofill.

The same test was also run on non-symmetric matrices, the results can be seen in Figure 10. The residuals
prove to exhibit the same behavior: ilutp is the best, then crout, then no fill.

One more method was used to compare the residuals of ilu, finding the eigenvalues of the resultant matrix of
SU−1L−1. The resulant matrix should be the identity matrix and its eigen values should be all ones. Figures
11, 12, 13 show a histogram of the eigenvalues plotted on a log scale fpr a sparse matrix with density 10−2. The
values should all be near zero in the log scale. Again, ilutp shows the best performance, with crout and no fill not
performing as well.

3.3 Preconditioning Results

To test the effect of using L and U as preconditioners, five real world symmetric positive definite matrices of varying
size were obtained from matrix market [6]. The solution, x, was set as a vector of ones and used to determine the b
vector. Each of the three iterative solvers attempted to find x using no preconditioners and using the ILU solution

6

Figure 9: Relative residuals for varying sized symmetric positive definite matrix with density of 10−2.

Figure 10: Relative residuals for varying sized non-symmetric matrix with density of 10−2.

as preconditioners, and timings were recorded for each matrix. Results of the timings are shown in Figure 14. For
all three solvers, the time to compute was improved with GMRES experiencing the biggest improvement. The time
to compute was improved because the solver was able to reach its specified tolerance in less iterations. The number
of iterations is shown in Figure 15.

MATLAB only has one option that can be changed which is milu, or modified incomplete LU decomposition.
Specifying either row or column for milu compensates the diagonal of U in such a way that the row or column sum
is conserved. Further testing was done to examine how changing milu would affect the computation. Initial results
showed the using either the row or column option greatly improved the results of the preconditioned computation.
However, further testing showed that by using an x vector with all ones could be a special case that allowed for the
computation to be very easy. Another test resulted in decreased performance from the solvers. Therefore, at this
time the effect of using the modified LU decomposition is unknown.

4.0 Conclusions & Future Work

We have found that using ILU(0) as a preconditioner for an iterative solver is a very effective strategy for producing
faster results to a set of linear equations. Other versions of the incomplete LU decomposition do produce better
results for the decomposition, but they will not work as preconditioners for all matrices. ILU(0) will work for all
matrices and will compute fast for even very large systems which makes it ideal for real world large problems.

For the purpose in this report, only symmetric positive definite matrices were fully studied the conjugate gradient
method only works for that type. A continuation of this work would include a study of the matrices that are not
positive definite or symmetric. In order to solve these systems, the biconjugate gradient stabilized method will need
to be used. An additional point of interest is to also study the hyperpower method to perhaps compute an even
better preconditioner.

7

Figure 11: Eigenvalues of SU−1L−1 on a log scale for ilutp.

Figure 12: Eigenvalues of SU−1L−1 on a log scale for crout.

References

[1] ”Preconditioner.” Wikipedia. Wikimedia Foundation, 04 Dec. 2012. Web. 22 Apr. 2012.
http://en.wikipedia.org/wiki/Preconditioner.
[2] Watkins, David S. Fundamentals of Matrix Computations. Hoboken, NJ: Wiley, 2010. Print.
[3] ”Conjugate Gradient Method.” Wikipedia. Wikimedia Foundation, 18 Apr. 2012. Web. 22 Apr. 2012.
http://en.wikipedia.org/wiki/Conjugate gradient method.
[4] ”Biconjugate Gradient Stabilized Method.” Wikipedia. Wikimedia Foundation, 04 Dec. 2012. Web. 22 Apr.
2012.
http://en.wikipedia.org/wiki/Biconjugate gradient stabilized method.
[5] Saad, Youcef, and Martin H. Schultz. ”GMRES: A Generalized Minimal Residual Algorithm for Solving Non-
symmetric Linear Systems.” SIAM Publications Online. SIAM J. on Scientific Computing, 29 Nov. 1983. Web. 22
Apr. 2012.
http://epubs.siam.org/sisc/resource/1/sjoce3/v7/i3/p856 s1.

8

Figure 13: Eigenvalues of SU−1L−1 on a log scale for nofill.

Figure 14: Log-log plot of timing of the iterative solvers with and without preconditioning.

9

Figure 15: Log-log plot of the iteration counts for the iterative solvers with and witout preconditioning.

10

