
Generalized Inverses of Partitioned Matrices
Author(s): Charles A. Rohde
Reviewed work(s):
Source: Journal of the Society for Industrial and Applied Mathematics, Vol. 13, No. 4 (Dec.,
1965), pp. 1033-1035
Published by: Society for Industrial and Applied Mathematics
Stable URL: http://www.jstor.org/stable/2946422 .
Accessed: 07/05/2012 12:58

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize, preserve and extend
access to Journal of the Society for Industrial and Applied Mathematics.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=siam
http://www.jstor.org/stable/2946422?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp


J. SOC. INDUST. APPL. MATH. 
Vol. 13, No. 4, December, 1965 

Printed in U.S.A. 

GENERALIZED INVERSES OF PARTITIONED MATRICES* 

CHARLES A. ROHDEt 

1. Summary. The well known formula for expressing the inverse of a 
partitioned matrix in terms of inverses of matrices of lower order is ex- 
tended to generalized inverses of partitioned matrices. 

2. Results. We define a generalized inverse of a matrix X to be a matrix 
X(2) such that 

XX(X = X. 

It has been shown [5] that the general solution to the equations Xx = y, 
if consistent, is given by 

x = X(g)y + (I - X(g)X)z 

where z is an arbitrary vector. 
Recent interest has focused on other variants of generalized inverses. 

We shall denote by X(r) a generalized inverse which also obeys the relation 
X(r)XX(r) = X(r). (X(r) is called a reflexive generalized inverse [6] or a 
semiinverse [3].) X(N) will denote a generalized inverse which obeys the 
relations X(N)XX(N) = X(N) and XX(N) = [XX(N)]H. (X(N) is called a 
normalized generalized inverse [6] or a weak generalized inverse 
[7].) Xt will denote a generalized inverse which obeys the relations 
XtXxt = X', XXt = (XXt)H and (XtX) = (XtX)H. (Xt is called a 
pseudoinverse and is uniquely determined by X.) If X is square and non- 
singular all the above types of generalized inverse reduce to X-'. The 
names given here to the various types of generalized inverses are by no 
means standard. Penrose [5] calls the pseudoinverse the generalized in- 
verse. An alternative nomenclature suggested by a referee would call 
X(2) a semiinverse, x (r) a reflexive semiinverse, X(N) a weak generalized 
inverse and Xt the generalized inverse. 

Fundamental results in the theory of generalized inverses are the identity 

(1) X =X(X X)gXX 

and the conjugate transpose 

(2) XH = (XxX) (XHX) (g)XH. 

Proofs of these results can be found in [1], [4], [6]. 
* Received by the editors January 8, 1965, and in final revised form April 21, 1965 
t Department of Biostatistics, The Johns Hopkins University, Baltimore, Mary- 

land. 
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If M is a nonnegative Hermitian matrix then we can write 

M = [X1 I X2] [X1 I X2] = [CH I B]' 

where A = X1HX1 ,C = X1HX2 ,B = X2HX2 . Define 

(3) M(2) [A(2) + A(g)CQ(g)CHA(g) 1-A(g)CQ(g)- 
- Q(9) CHA(9) j Q(u) j' 

where Q = B -CHA(g)C. 
Using the identities (1) and (2) we find 

(4) = [[I(g - AA~g 1 (4) MM 2 = [[I--QQ(9)] CHA(9) IQQ(9) 

(5) = [A(QA | Qu)Q Q(u)Q]] 

(6) mm CH B 

and 

(7) ~M()MM(g) = [A ()[A + CQ(g)QQ(g)CH] A() j-A()CQ(g)QQ(g L7) -Q(g)QQ(u)CHA(g) Q(g)QQ(g) j 

It is clear that M(2) given by (3) is a generalized inverse of M. Inspection 
of (7) also shows that replacing A(') and Q(g) by A(r) and Q(r) yields M(r), 
a reflexive generalized inverse of M. 

In order for (3) to yield an expression for a normalized generalized inverse 
[pseudoinverse] of M, (4) [(4) and (5)] must be Hermitian. A simple 
sufficient condition for this is nonsingularity of Q. A condition under 
which Q is nonsingular is given in the following lemma. 

LEMMA. If the nonnegative p X p Hermitian matrix M is partitioned as 

M = CH [B] 

where A is (p - q) X (p - q) of rank r, B is q X q of rank q, and M is of 
rank r + q, then 

Q = B -CHA()C 

is nonsingular. 
Proof. It suffices to show that Q is of rank q. The rank of M is the same 

as the rank of Z = P1MP2, where 

= r I l oI = -A(g)C] 
- LCHA (9) I-I -L I - 
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Using (1) and (2) it is easily seen that 

- [A 0 ] 

Hence rank M = rank Z = r + q = rank A + rank Q, or rank Q = q 
since rank A = r by assumption. 

We may summarize the above results in the following theorem. 
THEOREM. If a nonnegative Hermitian matrix M is partitioned in the form 

then 
(a) a generalized inverse of M is given by (3), 
(b) a reflexive generalized inverse of M is given by (3) with A (a) and Q(u) 

replaced by A (r) and Q(r). 

Further if rank M = rank A + rank B, where B is nonsingular, then 
(c) a normalized generalized inverse of M is given by (3) with A(a) and Q(9) 

replaced by A(N) and Q(N), 

(d) a pseudoinverse of M is given by (3) with A () and Q(u) replaced by 
A' and Qt. 

Expressions for pseudoinverses of partitioned matrices have recently 
been obtained in [2]. 

3. Remarks. Generalized inverses of the various types indicated above 
for an arbitrary matrix X can be computed in partitioned form by noting 
that 

X(g)= (yXxXy) (g)XH 

is a generalized inverse of X. 
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