

Generalized Inverses of Partitioned Matrices Author(s): Charles A. Rohde Reviewed work(s): Source: Journal of the Society for Industrial and Applied Mathematics, Vol. 13, No. 4 (Dec., 1965), pp. 1033-1035 Published by: Society for Industrial and Applied Mathematics Stable URL: <u>http://www.jstor.org/stable/2946422</u> Accessed: 07/05/2012 12:58

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize, preserve and extend access to Journal of the Society for Industrial and Applied Mathematics.

GENERALIZED INVERSES OF PARTITIONED MATRICES*

CHARLES A. ROHDE[†]

1. Summary. The well known formula for expressing the inverse of a partitioned matrix in terms of inverses of matrices of lower order is extended to generalized inverses of partitioned matrices.

2. Results. We define a generalized inverse of a matrix X to be a matrix $X^{(g)}$ such that

$$XX^{(g)}X = X.$$

It has been shown [5] that the general solution to the equations $X\mathbf{x} = \mathbf{y}$, if consistent, is given by

$$\mathbf{x} = X^{(g)}\mathbf{y} + (I - X^{(g)}X)\mathbf{z}$$

where \mathbf{z} is an arbitrary vector.

Recent interest has focused on other variants of generalized inverses. We shall denote by $X^{(r)}$ a generalized inverse which also obeys the relation $X^{(r)}XX^{(r)} = X^{(r)}$. $(X^{(r)}$ is called a reflexive generalized inverse [6] or a semiinverse [3].) $X^{(N)}$ will denote a generalized inverse which obeys the relations $X^{(N)}XX^{(N)} = X^{(N)}$ and $XX^{(N)} = [XX^{(N)}]^{H}$. $(X^{(N)})$ is called a normalized generalized inverse [6] or a weak generalized inverse [7].) X^{\dagger} will denote a generalized inverse which obeys the relations $X^{\dagger}XX^{\dagger} = X^{\dagger}$, $XX^{\dagger} = (XX^{\dagger})^{H}$ and $(X^{\dagger}X) = (X^{\dagger}X)^{H}$. $(X^{\dagger})^{I}$ is called a pseudoinverse and is uniquely determined by X.) If X is square and non-singular all the above types of generalized inverse reduce to X^{-1} . The names given here to the various types of generalized inverses are by no means standard. Penrose [5] calls the pseudoinverse the generalized inverse $X^{(q)}$ a semiinverse, $X^{(r)}$ a reflexive semiinverse, $X^{(N)}$ a weak generalized inverse for a sum of the generalized inverse.

Fundamental results in the theory of generalized inverses are the identity

(1)
$$X = X(X^H X)^{(g)} X^H X$$

and the conjugate transpose

(2)
$$X^{H} = (X^{H}X)(X^{H}X)^{(g)}X^{H}.$$

Proofs of these results can be found in [1], [4], [6].

^{*} Received by the editors January 8, 1965, and in final revised form April 21, 1965 † Department of Biostatistics, The Johns Hopkins University, Baltimore, Maryland.

If M is a nonnegative Hermitian matrix then we can write

$$M = [X_1 | X_2]^{H} [X_1 | X_2] = \left[\frac{A | C}{C^{H} | B}\right],$$

where $A = X_1^{H} X_1$, $C = X_1^{H} X_2$, $B = X_2^{H} X_2$. Define

(3)
$$M^{(g)} = \left[\frac{A^{(g)} + A^{(g)}CQ^{(g)}C^{H}A^{(g)} | -A^{(g)}CQ^{(g)}}{-Q^{(g)}C^{H}A^{(g)} | Q^{(g)}}\right],$$

where $Q = B - C^{H} A^{(g)} C$.

Using the identities (1) and (2) we find

(4)
$$MM^{(g)} = \left[\frac{AA^{(g)}}{[I - QQ^{(g)}]} \frac{0}{C^{H}A^{(g)}} \frac{1}{QQ^{(g)}}\right],$$

(5)
$$M^{(g)}M = \left[\frac{A^{(g)}A \mid A^{(g)}C \left[I - Q^{(g)}Q\right]}{0 \mid Q^{(g)}Q}\right],$$

(6)
$$MM^{(q)}M = \left[\frac{A \mid C}{C^{H} \mid B}\right],$$

and

(7)
$$M^{(g)}MM^{(g)} = \left[\frac{A^{(g)}[A + CQ^{(g)}QQ^{(g)}C^{H}]A^{(g)} | -A^{(g)}CQ^{(g)}QQ^{(g)}}{-Q^{(g)}QQ^{(g)}C^{H}A^{(g)} | Q^{(g)}QQ^{(g)}}\right].$$

It is clear that $M^{(g)}$ given by (3) is a generalized inverse of M. Inspection of (7) also shows that replacing $A^{(g)}$ and $Q^{(g)}$ by $A^{(r)}$ and $Q^{(r)}$ yields $M^{(r)}$, a reflexive generalized inverse of M.

In order for (3) to yield an expression for a normalized generalized inverse [pseudoinverse] of M, (4) [(4) and (5)] must be Hermitian. A simple sufficient condition for this is nonsingularity of Q. A condition under which Q is nonsingular is given in the following lemma.

LEMMA. If the nonnegative $p \times p$ Hermitian matrix M is partitioned as

$$M = \left[\frac{A \mid C}{C^{H} \mid B} \right],$$

where A is $(p - q) \times (p - q)$ of rank r, B is $q \times q$ of rank q, and M is of rank r + q, then

$$Q = B - C^{H} A^{(g)} C$$

is nonsingular.

Proof. It suffices to show that Q is of rank q. The rank of M is the same as the rank of $Z = P_1MP_2$, where

$$P_1 = \begin{bmatrix} I & 0 \\ -C^H A^{(g)} & I \end{bmatrix}, \qquad P_2 = \begin{bmatrix} I & -A^{(g)} C \\ 0 & I \end{bmatrix}.$$

Using (1) and (2) it is easily seen that

$$Z = \left[\frac{A \mid 0}{0 \mid Q} \right].$$

Hence rank M = rank Z = r + q = rank A + rank Q, or rank Q = q since rank A = r by assumption.

We may summarize the above results in the following theorem. THEOREM. If a nonnegative Hermitian matrix M is partitioned in the form

$$M = \left[\frac{A \mid C}{C^{H} \mid B}\right],$$

then

(a) a generalized inverse of M is given by (3),

(b) a reflexive generalized inverse of M is given by (3) with $A^{(g)}$ and $Q^{(g)}$ replaced by $A^{(r)}$ and $Q^{(r)}$.

Further if rank $M = \operatorname{rank} A + \operatorname{rank} B$, where B is nonsingular, then

(c) a normalized generalized inverse of M is given by (3) with $A^{(g)}$ and $Q^{(g)}$ replaced by $A^{(N)}$ and $Q^{(N)}$,

(d) a pseudoinverse of M is given by (3) with $A^{(g)}$ and $Q^{(g)}$ replaced by A^{\dagger} and Q^{\dagger} .

Expressions for pseudoinverses of partitioned matrices have recently been obtained in [2].

3. Remarks. Generalized inverses of the various types indicated above for an arbitrary matrix X can be computed in partitioned form by noting that

$$X^{(g)} = (X^{H}X)^{(g)}X^{H}$$

is a generalized inverse of X.

REFERENCES

- [1] R. C. BOSE, Analysis of Variance, Unpublished lecture notes, University of North Carolina, Chapel Hill, 1959.
- [2] R. E. CLINE, Representations for the generalized inverse of a partitioned matrix, this Journal, 12 (1964), pp. 588-601.
- [3] J. S. FRAME, Matrix operations and generalized inverses, IEEE Spectrum, (1964), pp. 209-220.
- [4] R. E. KALMAN, New methods in Wiener filtering, Proceedings of the First Symposium on Engineering Applications of Random Function Theory and Probability, John Wiley, New York, 1963.
- [5] R. PENROSE, A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51(1955), pp. 406-413.
- [6] C. A. ROHDE, Contributions to the Theory, Computation, and Applications of Generalized Inverses, Ph.D. thesis, University of North Carolina at Raleigh, 1964.
- [7] M. ZELEN AND A. J. GOLDMAN, Weak generalized inverses and minimum variance linear unbiased estimation, Tech. Rep. 314, Mathematics Research Center, U. S. Army, Madison, Wisconsin, 1963.