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UNIQUENESS OF GAUSS-BIRKHOFF QUADRATURE FORMULAS* 

KURT JETTERt 

Dedicated to Professor George G. Lorentz 
on the occasion of his 75th birthday. 

Abstract. We show that the Gauss-Birkhoff quadrature formulas introduced in [4] are uniquely deter- 
mined. This will be verified using techniques of continuous deformation. The methods of proof also yield 
an interlacing condition for the knots as the number of them increases. 

Key words. Birkhoff interpolation, Birkhoff quadrature, Gaussian quadrature 
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1. Introduction. This is a continuation of the discussion on Gauss-Birkhoff quad- 
rature formulas which was started in [4]. There we have shown the existence of formulas 
of double precision 

rl ~~m 
(1.1) 1 f(x) dg(x) = E aif(ki)(xi), fE P2m-lI 

O i=l 

if g is absolutely continuous and strictly increasing (see also [4, Remark V.2]) and 
(k1, , km) is pyramidal. The latter means that the natural numbers ki satisfy 

ki + 1 '-~ ki-I ki, i =2, . . ., I, 

(1.2) ki = 0, . i ,J, 

ki + 1ki +I ki i =J, .. * *, m-19 

for some indices I and J. 1 ?_ I J _ m. We always assume that the knots of the formula 
are ordered according to 

(1.3) 0 < xI < x2 < . . . < Xm < 1, 

and Pk denotes polynomials of degree k or less. 
In this paper we shall show that there is one and only one formula of type (1.1), 

for each pyramidal set (k1, * * , km). The methods of proof are based on techniques 
of continuous deformation (elements of Brouwer's degree theory) via the implicit 
function theorem, combined with an induction argument. So the methods of proof are 
related to the methods of Bojanov et al. [2], who have extended the basic idea in 
Barrow's paper [1]. 

It is of interest that our methods of proof also yield an interlacing result for the 
knots of formulas (1.1) as m increases. This might be helpful for the computation of 
the knots and the weights of this class of formulas. 

Although our methods used here could be extended to the multipoint Gaussian- 
Birkhoff formulas (see [4, Thm. 5.1]), we have decided to treat formulas with simple 
knots only. This is a compromise in order to keep the technical details at a low level. 
We may also note that the error constants for the multipoint formulas are always worse 
than the error constants of the simple point formulas having the same degree of 
exactness. This is an easy consequence of the method of proof in [4]; see also [5]. 
Anyway, amongst all formulas (1.1) with m fixed, the classical Gaussian formula 
(which is characterized by ki = 0, i = 1, ... , m) always has the smallest error constant. 
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2. Preliminaries. In order to prove the uniqueness of formula (1.1), we have to 
extend the main result of [4] slightly. Given the pyramidal sequence (kl, . *, km), we 
call (k- "+1r I * *, km+ml)g mO'O, ml?O an extension of (k1, , km), provided that 
the natural numbers kj satisfy 

ki-l_ ki, i=-mO+2, ., 1, and 
(2.1) 

ki+l i_>ki, i=~m, . ,m +ml - . 

According to this, we shall deal with formulas 
r 1 m+ml 

f(x) dg(x) = E [aif( ki)(xi) + bif(k+l)(xi)], fE P2M-1, 
O i=-mo+l 

(2.2) x-mo+ I < ..< xO< xlI< ... < xm < xm+l < ... < xm+ml , 

M:= MO+m+ml. 
Later on, knots x- ,mo *... , xo and xm+l, ... * xm+m, will be located outside the open 
interval (0, 1) while the knots x, ... , Xem will satisfy 0 < xl < ... < Xm < 1. But for the 
moment let us deal with the general case. 

In the following we shall often refer to notions introduced in [4]; these we do 
not repeat here in order to keep the paper condensed (see also [3]). Formula (2.2) 
will not necessarily exist, but it does exist for Polya extensions: 

DEFINITION. (k-mo+l ,... 9 km+m,) is called a P6lya extension of the pyramidal 
sequence (k, *, km) if the incidence matrix E = (eik) i=+-mm+l 2kM=Ol with eik = 1 for 
k = ki and k = ki + 1, and eik = 0 otherwise, satisfies the Polya condition [3, ? 1.4] 

m+ml r 
E eik-r+1, r=O, , 2M-1. 

i=-mo+l k=O 

Henceforth, let us assume that (k_mO+l , ... , km+mi) is a Polya extension. Then 
the weights ai, bi of formula (2.2) are functions of X = (x_ O+ I , xm+m,), given 
implicitly by the solution of the linear system of equations 

I' v +1 -k v-k -I1 J )! dg(x) = . [ai(X)- + bi(X) 
(2.3) I 

v =, 2M-1; 

here, 1/r!:= 0 for r = -1, -2, XX Since the matrix of the system (2.3) is the (transpose 
of the) matrix of the Birkhoff interpolation problem (E, X), it turns out that the weights 
are continuously differentiable functions on R = {(, ... , ( ); (l < (2 < ... < tM} 

Using the continuity of interpolation for the conservative matrix E [3, ? 5.6], we 
can extend formula (2.2) to the boundary of R M by applying the method of coalescence. 
If El = (elk)j 2gM-1 is an incidence matrix gained from E by coalescence of subsequent 
rows, and if YI < Y2 < ... < yj, then we still have a unique formula 

1 

(2.3 ) J f(x) dg(x) =Y 1 aik( Y)Pk (yi), f E P2M-1 (2.3') J':f(x 
eik=l 

This formula is the limit of (2.3) in the following sense. If X -> (Yi, * * *, Y 
Y2, ... * Y2 * ... * yj, * * * yj) and the knots xi1, ... * x2 are converging to yi, then 
Yi2 [ai(X)f(k(X_) + bi(X)f(ki+l)(xi)] converges to eli =ajo,k( y)f(k) (yi) for any 
polynomial f E P2M-l 

Now let us assume that 
(2.4) x-,o+I < ... < xO_ O and 1 _ Xm+i < ... < xm+m 

are fixed knots while 
(2.5) vab< Xe k s W <exmh< 1 
are- variabh-le nots. We then have 
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THEOREM 2.1. Given the P6lya extension (k_mo+i ... , km+ml) of the pyramidal 
sequence (kl, - , km) and the fixed knots (2.4), then the minimization problem 

min i Qx(t) dg(t), O<Xl< .. xm<l JO 
t2M 

(2.6) flx(t) = +a2M-lt + +- O, 

f1k4)(xi) =f 1(k1(xi) = 0, i = -mO+ 1, * * *, m + ml, 

has a solution O < x* < ... < x* < 1. Corresponding to this, formula (2.3) is of Gaussian 
type, 

(2.7) bi(X*) = ( , i = l, , x, 
X* (X-ft+l , oXo Xi,**Xm Xm+1 I I Xm+ml) 

The proof of this theorem is just a copy of the proof of Theorem 4.1 in [4] (which 
deals with the case mo = ml = 0), and we omit the details. 

3. Uniqueness. We shall now verify the following: 
THEOREM 3.1. Given the P6lya extension (k-r+o, *l, km+ml) of the pyramidal 

sequence (kl, . * * , km), and the fixed knots (2.4), then there is one and only one set of 
knots 0< x1 <... <xm < 1 such that X = (x_mO+l. ,xm+m,) solves the system of 
equations 
(3.1) bi(X)=0, i= 1, * ,m. 

Equivalently, we may say that the extremal problem (2.6) has a unique solution 
and, equivalently, for given knots (2.4), there is a unique formula (2.2) of Gaussian 
type. In particular, specializing for mo = ml = 0, the Gaussian formula of [4] is unique. 

Our proof of Theorem 3.1 uses induction with respect to m, the number of knots 
interior to the interval (0, 1). Thus there will be some natural analogies to methods 
used in [2]. 

In order to start the induction, let m = 1 and k, = 0 the corresponding pyramidal 
"sequence." For mo, ml arbitrary, the existence of formula (2.3) with bl(X) =0 is 
equivalent to the existence of a one-point Gaussian formula for the system 

T = {P E P2M-1; p(k)(x) = P(k)i (xi) =0,i#1}. 

Now T is a two-dimensional Chebyshev space on the open interval (0, 1) and Krein's 
theorem [6] yields the unique one-point Gaussian formula. 

In the induction step, let m ?-2. We may assume that (kl, k m, ) is pyramidal 
(since otherwise the sequence (k2, * * *, km) is pyramidal and we can apply an apparent 
substitution). We fix the knots x-mo+1 <.. <xo <0 and 1< xm+I< <... xm+ml, and 
start with some Gaussian knots 0 < x* < ... < x* < 1 according to Theorem 2.1. 

We let 4 = xm take on values in an interval ]x* - E, 1+4. This will let us define 
curves 0 < xl( < x2(f) < . < xm_l(e) < 6 withxi(4)=x*, i= 1, , m- 1,inthe 
way that 
(3.2) X(W) = (x-mo+i, x, xl(0x ) * , xm-1(), ), x( Xm+i, ,m) 

solves the (reduced) system of equations 

(3.3) bi (X (6)) = O, i =1, * ,m-1 

For > 1, (3.3) has a unique solution, due to the induction hypothesis. Assuming that 
there are two different Gaussian formulas with m Gaussian points means that the 
curves have points of bifurcation, a contradiction as we shall see later. 

At the solutions X(f) of (3.3) where 
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and 1 we shall apply the implicit function theorem. According to (2.3), we have 
forj= 1, m: 

(3.5) 
m+m1 a(X ' k r b(X -kiv-ks -2 

o = E aa (x) xV + [ai(X) b(X) ] X' + bi(X) a 

=0, 2M-1. 
At the solutions of (3.3) this yields for j= 1 , m - 1: 

mlml { a' (X ( x) )____b__ X )!+ ()+( k, 
m+m k,)!~~~~a(X~)45+ ab(() 0 ) 

(3.6) 0=0,*,2M-1. 

The matrix of this linear system is identical with the matrix of (2.3); thus at the solution 
X(WX 

(3 7) ai (X (0) )6 +abi(X(6)) = 01 i j = 1, m-1 
a&x dJ 

This shows that the Jacobian J(X) of (b1(X), *, bm_l(X)) at X(f) with respect to 
xl, I * M * IX is a diagonal matrix with ith diagonal entry 

(3.8) ab,(X())= -a1(X(e)), i = 1, , m-1. 
axi 

Now sign (ai(X(f))) = (-1)k if ki is in the descending part of the pyramidal sequence 
(kl, * * *, km-i) and sign (ai(X(6))) = + 1 otherwise (see the argument in [4], in par- 
ticular formula (5.1) therein). So the determinant of the Jacobian has a constant sign, 
at every solution X((). 

In this way we find an open interval ]a, 83[ with a < x* <,3 and the continuously 
differentiable functions (3.4) defined on this interval via the solutions of (3.3) with 
xi(x*m) =4, i = 1,* , m -1. We may assume that ]a, ,31[ is chosen to be maximal, 
and we next show that 3 > 1. 

Let us assume on the contrary that ,3? -1. This implies that in the limit as ( -*, 
either the Jacobian J(X(e)) becomes singular, or 

(3.9) lim (xi(6) - xi+,(0)) = 0 

for some j = 0, * - *, m - 1 (with x0(4) 0, xm(4) = g). It is sufficient to prove that (3.9) 
cannot hold, for then limX, X(f) = X(pB) is of type (3.4), and X(,3) is a solution of 
(3.3), to which we may apply our arguments. Thus J(X(,3)) is regular, and /8 is not 
maximal. 

For a < 6 < /3 and the set X(g) of knots, we have the Gaussian type quadrature 
formula 

f(x)dg(x) = E ai (X ())f1kj)(Xi(6)) 
O i=l 

+ am(X(W))f(km)(() + bm(X(())f+ m(f) 

+ E [ai(X(6))Jf( k)(xi) + bi(X(e))f(kji)(xi)] 
iv I 

for allfeP2M_l with I:={-mO+1, *,0,m+1, *, m+ml}. 

In the limit as 6 o-, if 

(xI(f), x2(f, ,xm l(f), f, f) _ (Yl, ,YI1, , Yg,, Yu) 
VI V 
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with 0- Yi <Y2... <Yb, =13 we can apply the continuity argument of deriving (2.3') 
from (2.3) in order to get a formula 

Jf(x)dg(x)= . Y aijf`i+j)(y-) 
0 i=1 j=O 

(3.10') + E [ai(X(f3))f k)(xi) + bi(X(f3))f(kj+l)(xX)] 
iEI 

for f E P2M-l with Ki = min {kj; xj(f) ye y}. 

Here we rely on the fact that (ki, , kin) is pyramidal. We then have to show that 
formula (3.10') can be exact forfe P2M-1 only in case t = m and O<Yy < * < ym-l < 
Ym =,3. Then (3.9) will not hold and we are done. 

If (3.9) is true for some j = 0, - * *, m - 2, then we find a polynomial 0 # p E P2M-1 
satisfying 

p(x)O0, xe[0, 1], 

p(k)(Xi) = p(ki+l)(Xi) = 0, i E I, 

P (iYi) =O, i = 1, .. *, , j =Ki, * ,Ki + Pi + Ui-1 

with oi = 1 if Pi is odd, and oi =0, otherwise (and o-, = 0 if Yi = 0). This yields the 
desired contradiction since (3.10') will not hold for f= p. Thus ,u '-m -1, 

<.Y1 < ***< Ym-1-Ym = 

and we have to show that Ym-i </3. If we assume that ym-i =,B we get from the formulas 
(3.10) and (3.10') that 

am-(X(f))f(km_,)(X _(c)) + am(X(4))f (ks,)(e) + bm (X())f( 

a- amiof (km_1 )(13) + am-,,f 
f 
(km-1+1)(3 ) + am-1,2 f(k1+2) (1P) 

as g --,B. So, / will be a Gaussian knot of order 3 in formula (3.10'), and this implies 
that ami1,2 has to be positive. 

Now, we know that 

(3.12) bm (X( )) < 0, xm < f }3 

due to the following argument: If bm(X(6)) = 0 for some a < 6 </3 then, putting j = m 
and X = X(f) in (3.5) we get (3.6) for j = m, and (3.7) for i,j = 1, ... , m. Therefore 

dbm(X(6)) =bm(X(6)) = -am(X(()) <0. 
df (9xm 

Since bm(X(6)) is a continuously differentiable function of s on the interval ]a,,,3[ it 
turns out that bm(X(6)) vanishes at only one point, namely 6 = x4M. 

This is the desired contradiction. In case km-, < km we would have 0< am1,2 - 

lim,o bm(X(6)) ?0. In case km-I = km we have to rewrite (3.11) using divided differen- 
ces in order to find that 

am-1,2 = limp Y(X(g6)) 

with 
y (X(e)) = (X-xm-i(6))bm (X()), 

which again is impossible. 
This proves that 3 > 1 and hence, the curves xi(f) with xi(x*) =x*, i = 

1,.. *, m -1, are locally unique on some interval ]a, /3[ with 

a <x* <I1. 



152 KURT JETTER 

We are now ready to complete the proof of Theorem 3.1 for the fixed knots (2.4) 
satisfying the additional assumption 

(3.13) x0<0 and xm+i>1. 

(Note that this was an assumption in our arguments!) Assume that m -2 and 0< 
x* < ... < < 0< * *... < m < 1 are two different sets such that the correspond- 
ing X* and X* are solutions of (3.1). We find the locally unique curves 

,xi(f with xi (x * ) = x* i .*m- 
xi(f) with xi(4)=x, m1 

which are defined on some intervals ]a, p[ and ]ci, ,8[, respectively. We may assume 
that x*M c x*m. According to the induction hypothesis we have 

xi(f) =.xi(f) for 1 < <amin (X,8,B),i=1,* ,m-, 

and there must be a point of bifurcation in [4*, 1 ], a contradiction. This proves Theorem 
3.1 subject to (3.13). 

It is easy to get rid of the additional assumption (3.13). Namely, if xo< 0 and 
Xm+i = 1 we put ( = xm+i, move 6 to a right neighborhood of 1 and use the previous 
arguments. By symmetry, this also proves the theorem for xo =0 and xm+i > 1, and 
now the third possibility, xo= 0 and xm+i = 1, may be considered by moving =m+ 
away from 1. This concludes the proof of Theorem 3.1 in full generality. 

4. Interlacing property. It is well known that the knots of the classical Gaussian 
formulas interlace as the number of them increases. We have a similar property for 
the Gaussian-Birkhoff formulas. This we shall state for the case mo = ml = 0 only. 

THEOREM 4.1. Let (k, *I* , km_, ) and (kl, - * *, km) be pyramidal and let 

(4.1) f(x) dg(x) = E ajki'd(i), f E P2m-3, 
O i=l 

and 
rl ~~m 

(4.2) f(x) dg(x) = E a J(k)(xi), f CP2m-1, 
0 i=1 

be the corresponding Gaussian-Birkhoff formulas with 0<,< ... < m, < 1 and 
O<xl< .< < 1. Then 

(4.3) xi < 4, i=l, ,m-l 

We call (4.3) the interlacing property of Gaussian-Birkhoff knots. Due to arguments 
of symmetry we also have: If (ko, kl, - - *, km-,) is pyramidal, too, and 

(4.2') f(x) dg(x) = Y. afdk)(xD), f E P2m-1i 
0 i=O 

then 

(4.3) $< xti i=1,***m-l 

Combining both (4.3) and (4.3') in case (ko0,.. , km-1) = (kl, ** , km), i.e., 
(kl,. *, km) = (0,. . *, O), we arrive at the interlacing property for the classical 
Gaussian formulas, namely Xl < 61 < X2 < ~2 < ... < Xm-l < {m-i < Xm. 

Actually we shall prove more than (4.3). We shall find formulas 
rl ~~m 
f(x) dg(x) = E ai(X( 6))fPki)(xi(6)) + bm (X(q))fkm+i)(6) for fE Pm_1 

(4.2") 
with 0 <xI(e) < x2(f)<.. < xm_i(e) < min (1, ), Xm(W = >, 
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where a < <00 for some a <xm (we use the notation of Theorem 4.1). Moreover, 
xi((), i= 1, , m - 1, will be continuously differentiable, 

Xi(Xm) = Xi, 

(4.4) dxi(() >0, Xm< < oo, and 

lim xi(( = 69 i =9 l ,m - 

From this, (4.3) follows immediately. 
In order to prove this, we follow the proof in ? 3, in order to find that the curves 

xi(f), i = 1,... m -1, are defined in some interval ]a, P[ with a <xm < P. If P is 
chosen maximal, then oo =ao and 

(4.5) bm (X (0) < 09 xm < f < oo. 

Now let us differentiate (3.3) with respect to f. This gives, using (3.7), 

(4.6) -ai(X()) d =0, i=l, ,m-1. 

The partial derivative of bi with respect to xm(f) = ( can be taken from (3.5) which 
we may write as 

0= ~aai(X) ( FX)+abi(X 0= E X P ikj (xi) + ai(X) 6im + ds P(ki+ (xi) +bi (X)6imp(ki+2 )(xi)} 
=1IaXm aXm jP 

for all p E P2m-l. 

Specializing to the fundamental polynomials p = p, with 

(4.7) p(kI)(xi) = ,0 

it turns out that 
ab,(X) (X)p(k_+2)(Xm) l 

axm 

and (4.6) now reads (since xm() =) 

dxl (km) 
(4.8) aj(X(()) d'=_ bm (X (Opi ( 1 , , m-1. 

According to the arguments used in [4], we already know that (with I and J as 
in (1.2)) 

sign a,(X(k)) = for 
I= 

1, ..., I- << 

Let us verify that 

(4.9) a (X(f))p (km+2) W) > 09 xm < ( <oo0 

for I = 1, .. , m -1. First let I = 1, *, I-1 (i.e. k, is from the "descending" part of 
the sequence k, * ..., 1km). Since p(kl)(xl) -0 and p(kl+l)(x,) = 1 we have 

(4.10) p(kl)(X + E) > 0. 

Now p(kl) cannot have a zero in the open interval ]xI, xl+1[ and p(k1+d) has a zero of 
exact multiplicity 2 at x1+1; for otherwise, using the Rolle type argument as in [4], all 
derivatives of p, would have a zero and p, would be the zero function, which is 
apparently impossible. We find in case k,+1= kl: 

sign p(kl)(xl + E) = sign p(kl)(x-+lE) = sign p(kl+l)(x - 

= sign p +l)(xI+, + E), 
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and in case k, = ki - 1: 

sign p?kI)(xi + s) = sign p (k)(x - s) =-sign p(k+l)(xk+ - 

= -sign p +l)(xk+i + e). 
Repeating the argument yields 

(4.11) (_l)kl sign p(k)(X + E)= sign pl(x- ?). 
Since forj = I, * , m all zeros of p(k?) on [xj, co[ appear in the equations (4.7), we have 

sign p,(x -e) =signp,(xl+e)= =signpl(xj+e) 
= sign p km)(Xm + ?) = sign p (km+2)(Xm + e). 

Finally, p(km+2) cannot have a zero on [xm, oo[ and 

(4.12) sign p1(x1 - E) = sign pikm?2)(f) Xm <4 <(. 

Combining (4.10)-(4.12) proves (4.9) for 1= 1, ,I-i. Similarlymifl=I,** ,rn-i 
we directly conclude that 

1 = sign p( ki)(x + ?) = sign p(k+l) (x+ + s) 

sign p( k)(xm + e) = sign p(km+2)(e) 

for xm < ( < co. Now (4.5) and (4.9) yield the second statement of (4.4). 
Let us look at formula (4.2") as { oo. It is easy to see that 

lim am(X( ))lim bm(X(f)) =0. 

For example, am(X()) = JO p~(x) dg(x) for the fundamental polynomial pt E P2m- 
satisfying p(kj)(xi(i)) = p(ki+l)(xj(e)) = 0, i = 1, , m - 1, and p(km)(f) - 1 p(km+l)(t) = 
0. If we put 

- 
(t)= pj(t), we have 

e-k - ( t) >p( t) =_( m I1 km )! tm-2(m_ - )t-(m- ) 
,"Pe -P 

- 
(r-kM)0! m((m-2-k.)t-(m -1)) 

as e ->co (using the continuity of Birkhoff interpolation, [3, ? 5.6]). From this we find 
that 

max{|pe(x)1;0 c x?c 1}- l O as (e-oo. 
Finally, the space 

T( ) {f e 2m-_; ffk)(6) =fkm+l)(() = 0} 

will be P2m-3 in the limit. In order to see this for km = 0, we map P2m-3 onto T(e) by 
f -*fe with fe(x) =f(x)((x _ e)/f)2, whence lim,c,,f =f; for km > 0 we may consider 
f/km) in place off Therefore, formula (4.2") forf E T(f) will be formula (4.1) in the limit. 
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