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GENERALIZED INVERSES OF A BORDERED MATRIX
OF OPERATORS*

FRANK J. HALL

Abstract. The results of Hall and Meyer in [2] are extended to (1)-inverses of a matrix of bounded
linear operators. The blocks of (1,3)- and (1,4)-inverses of the matrix are completely characterized
and are shown to be independent of each other. A form for the Moore-Penrose inverse of the matrix
and related results are also obtained.

1. Introduction. In [-2] Hall and Meyer considered the bordered matrix

and completely characterized the blocks of( 1)-inverses for this matrix. Furthermore,
it was shown that these blocks are entirely independent of each other.

In this paper the blocks of the above matrix are replaced by bounded linear
operators on Hilbert spaces and the results in [2 are extended to the infinite
dimensional setting. The (1, 3)- and (1, 4)-inverses of the matrix are considered
in detail, and the operators which are blocks in these inverses are characterized.
Various conditions and forms for these operators are obtained, and it is shown
that these operators are also independent of each other.

A form of the Moore-Penrose inverse of the matrix is obtained, and the
connection between this inverse and the restricted pseudoinverse defined by
Minamide and Nakamura in [3 is indicated. The results in this paper and the
results in [2 point to some interesting relationships between (1)-, (1, 3)-, and (1, 4)-
inverses of the matrix. Some related results are also given.

2. Notation and preliminaries. For a bounded linear operator A from a
Hilbert space HI into a Hilbert space H2, A*, N(A), and R(A) denote the adjoint,
null space, and range of A, respectively; PRtA) denotes the orthogonal projection
on R(A). If A has closed range, A* denotes the unique bounded linear operator X
from H2 into H1 which satisfies

and

(ii)

(iii)

AXA A,

XAX X,

(AX)* AX,

(iv) (XA)* XA.

More generally, if a bounded linear operator X satisfies conditions (i), (j), and (k),
X is called an (i, j, k) inverse of A. For a given (1)-inverse A- of A, Fa denotes
I A-A and EA denotes I AA-.
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Another characterization [1] of A is the following: A is the unique bounded
linear operator X which satisfies

(i) XAv v for all v e R(A*),

and

(ii) Xw 0 for all w e N(A*).

For properties of A* see 1] or [5].
In this paper, B always denotes the matrix

B=
C*

where T A’A, A is a bounded linear operator from Hilbert space H1 to Hilbert
space H2, and C* is a bounded linear operator from H1 to Hilbert space H3.

It is easy to check that B defines a bounded linear operator from H (R) H3 into

H1 @ H3, where H1 (R) H3 denotes the direct sum of H1 and H3 and is equipped
with the usual inner product. It will be assumed that A(N(C*)) is closed and that
C has closed range (except in 6).

Generalizing the definitions given in [2], we have the following definitions.
Every bounded linear operator which appears as an upper left block in some
(1)-inverse for B will be called a C-operator. Similarly, every bounded linear
operator which appears as an upper left block in some (1, 3)-inverse ((1, 4)-inverse)
for B will be called a C3-operator (C4-operator). Likewise, those bounded
linear operators which appear as upper right blocks in (1, 3)-inverses ((1, 4)-inverses)
for B will be called C32-operators (C42-operators). The C.1-, C-, C322-, and
C2-0perators are defined analogously. For example if Q, U, L, and R are bounded
linear operators and

is a (1, 4)-inverse for B, then Q, U, L, and R are C1, -, C412 -, C241 -, and C2-operators,
respectively. By a matrix inverse for B, we will mean an inverse which can be
expressed as a matrix of bounded linear operators (for example, the (1, 4)-inverse
above). Thus, the operators defined in the above classes are blocks in matrix
inverses for B.

3. (1)-inverses of B. Our first objective is to show that (1)-inverses of B exist
in this infinite-dimensional setting. Equivalently, we are showing that B has closed
range. We first establish the following lemma.

LEMMA 3.1. The bounded linear operator

EcTFc,
has closed range.
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Proof. Since R(Fc,) N(C*),

(3.1) R(AFc,) A(N(C*)).

Now R((EcA*)*)= R(AE). But C-* is a (1)-inverse of C* and so R(E)
N(C*). Hence

(3.2) R((EcA*)*) (A(N(C*)).

Thus, from (3.1)-(3.2), since A(N(C*)) is closed we have

(3.3) R(EcTFc,) R(EcA*AFc,)= R(EcA*).

But since R((EcA*)*) is closed, so is R(EcA*). Thus from (3.3), R(EcTFc,)
is closed.

In view of the lemma there are (1)-inverses for EcTFc,((EcTFc,)* is a (1)-
inverse). It is then easy to see that the proofs of the theorems in [2] are valid for
infinite-dimensional analogs. From [2], therefore, (1)-inverses of B do exist and
we have a complete characterization of all matrix (1)-inverses for B. In particular
the following theorem gives a (1)-inverse for B.

THEOREM 3.1. Let C-, C*-, and (EcTFc,)- be any (1)-inverses for C, C*,
and EcTFc, respectively. Then, the matrix of bounded linear operators

[ Q C*--QTC*-]C- C- TQ C- TC*- + C- TQTC*-

where Q Fc,(EcTFc,)-Ec is a (1)-inverse for B.
Proof. The proof of this theorem follows from Theorem 3.1 of [2]. Note

that the above matrix defines a continuous transformation since the individual
blocks are continuous.

4. B* and particular (1, 3)-, (1, 4)-inverses of B. Letting F I- CC*,
F* F and F is the orthogonal projection onto N(C*). Thus, since A(N(C*))
is closed, (AF)* is a well-defined bounded linear operator. Also, since R(FA*AF)
is closed by Lemma 3.1, (FA*AF) is well-defined. Now observe that

F(FA*AF)tF F[(AF)*(AF)]*F F(AF)*(AF)**F
F(AF)*]F(AF)*]* (AF)*(AF)**

since R((AF)) R((AF)*)
_

R(F) and F is a projection. Hence

(4.)

Similarly,

(4.2)

Also, from (4.1),

(4.3)

F(FA*AF)*F -(FA*AF)*.

(FA*AF)*F (FA*AF) F(FA*AF).
A(FA,AF)*A, AF(FA,AF)*FA, ---(AF)(AF)*(AF)**(AF)*

(AF)(AF)*(AF)(AF) (AF)(AF) PR(AF)"
These observations will be useful in the following theorem.
THEORFM 4.1. Let C- and C*- be any (1, 3)-inverses of C and C* respectively.
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Then, if Q (FTF), where F I CC, the matrix of bounded linear operators

y= [ Q C* QTC* 1C- C- TQ C- TC*- + C- TQTC*-

is a (1, 3)-inverse of B.
Proof. Since C- is a (1, 3)-inverse of C,

Ec I CC- I -(CC-)* I C-*C*.

But C-* is a (1)-inverse of C* and so R(Ec) N(C*). Thus, Ec is the orthogonal
projection onto N(C*)and hence

(4.4) Ec F.

By direct multiplication,

[CC- + EcTQ EcTC*- EcTQTC*-.IBY
0 C*C*-

and hence from (4.4),

BY= ICC- + FTQ FTC*- FTQTC*-]o
Now from (4.2),

FTQ FTF(FTF)*,
and since C- is a (1, 3)-inverse of C,

(4.5) (CC- + FTQ)* CC- + FTQ.

Also, from (4.3),

and so

(FTQT)*= TQTF A*PR(AF)AF,

(FTQT)* A*AF TF,

and hence FTQT FT. Thus

(4.6) FTC*- FTQTC*- =0.

Finally, since C*- is a (1, 3)-inverse of C*,

(4.7) (C’C*-)* C’C*-

and thus (4.5)-(4.7) imply that (B Y)* B Y.
That Y is a (1)-inverse of B follows from Theorems 3.1, 4.1, and 4.2 of [2]

(the continuity of is clear).
In a similar manner one can prove an analogous theorem for (1, 4)-inverses.
THEOREM 4.2. Let C- and C*- be any (1, 4)-inverses of C and C* respectively.

Then, the matrix Y given in the previous theorem is a (1, 4)-inverse of B.
The following form for B is almost a direct consequence of the previous

two theorems.
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THEOREM 4.3. For the matrix

B=LC,
of bounded linear operators,

I Q C*-QTC* I(4.8) B* IC C*TQ -C*TC*; - ---TC**
where T A’A, Q (FTF )* and F I CC*.

Proof. It can be verified directly that the given matrix is a (2)-inverse of B.
The result then follows from the previous two theorems.

In [33 Minamide and Nakamura define the restricted pseudoinverse Arc, of A
with respect to N(C*) and show that it has the constrained best approximate
solution property. It is straightforward to verify that

(4.9) (FA*AF)*A* (AF)* Arc,.
Now using (4.8)-(4.9) we obtain

L f J *************
or

But, from [33, A*c,b + C**f- A*c,AC**f is the constrained best approximate
solution of the system Av b, subject to C*v f. Thus, we obtain this particular
solution by using B*.

Now consider the class of (1, 4)-inverses of B. In general, if M is a bounded
linear operator and ifM- is a (1, 4)-inverse of M, then M-y is the unique minimum
norm solution of Mx y for each y e R(M) (the proof on p. 44 of [6] holds in

the infinite-dimensional case). But, B* is a (1 4)-inverse of B and is in R(B)
kfJ

if f R(C*). Thus, if B- is any (1, 4)-inverse for B and if f R(C*), and

then fi is also the constrained best approximate solution of the system Av.= b.
Hence, we also obtain this best solution by using only (1, 4)-inverses of B. We
should remark, however, that using inverses of B might involve conditioning
problems in numerical computations.

5. Characterization of the blocks of (1, 3)-, (1, 4)-inverses of B. In this section
the matrix (1, 3)- and (1, 4)-inverses of B are completely characterized through a
characterization of the blocks of these inverses. In the following we again let
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F I CC*, the orthogonal projection onto N(C*). Our discussion will focus
on (1, 4)-inverses of B, but the development for (1, 3)-inverses is similar.

Recall that the bounded linear operator X is a (1, 4)-inverse for B if and only if
XB B*B. Now, it is easy to see that any bounded linear operator of the form

(5.1) B* + M(I BB*),
where M is a bounded linear operator, is a (1, 4)-inverse for B, as

B + M(I BB*)]B B*B + M(B- BB*B)= B*B.

Conversely, if B- is any (1, 4)-inverse for B,
B* + B-(I- BB*)= B + B- B-BB B + B- B B-,

and hence we can choose M B- in (5.1) to obtain B-. As M ranges over all
possible matrices of bounded linear operators, the form (5.1) gives all matrix
(1, 4)-inverses for B.

Now it is clear from the proof of Theorem 4.1 that

(5.2) BB* [CC + FTF(FTF)* 0 10 c c
Hence, with the above observations we can exhibit the following forms for the
blocks of (1, 4)-inverses of B.

THEOREM 5.1. Let

Then,

G1 F (FTF)*(FTF) and

(i) If Q is a Ca-operator, then

G2 I CtC.

(5.3) Q (FTF)* + ZG

for some bounded linear operator Z. In fact, we can choose Z Q. Conversely,
every operator of theform (5.3)is a Cl-operator.

(ii) If U is a C42-operator, then

(5.4) U C**-(FTF)*TC** + ZG2

for some bounded linear operator Z. In fact, we can choose Z U. Conversely,
every operator of the form (5.4)is a C42-operator.

(iii) If L is a C-operator, then

L C* C*T(FTF)* + ZG

for some bounded linear operator Z. In fact, we can choose Z L. Conversely,
every operator of the form (5.5) is a C-operator.

(iv) If R is a Ce-operator, then

(5.6) R -C*TC** + C*T(FTF)*TC** + ZG2

for some bounded linear operator Z. In fact, we can choose Z R. Conversely,
every operator of the form (5.6) is a C’2-operator.
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Moreover, if Q, U, L, and R are any C1-, C412 -, CI-, and C22-0perators,
respectively, then Q, U, L, and R are independent in the sense that the composite matrix

is a (1,4)-inverse Jbr B.
Proof The results (i)-(iv) follow from the above observations by using (5.1)-

(5.2). Now, if Q, U, L, and R are any C-, Cz-, C1-, and C2-operators respec-
tively, then (5.3)-(5.6) hold, where the variable operator Z is Q, u, L, and R,
respectively. Hence, with M H, the matrix (5.1) becomes H, and thus H is a
(1, 4)-inverse for B.

The above theorem shows that the blocks of (1, 4)-inverses of B are inde-
pendent of each other. It should be emphasized that even though Q, U, L and R
may possibly come from four different (1,4)-inverses of B, Theorem 5.1 asserts
that the new composite matrix H is a (1, 4)-inverse for B. Needless to say, this
independence does not generally occur for an arbitrary bordered matrix. It does
occur, however, whenever BB* is of the general form (5.2) with a 0 for the (1, 2)-
and (2, 1)-blocks.

It is easy to verify that for T A’A,

(5.7) (FTF)t(FTF) (AF)t(AF) (FTF)(FTF),
so that any of these three expressions can be used in G in the above theorem.

In [2] it was shown that the product TQT is invariant for all C11-matrices Q.
For (1, 4)-inverses of B we have the following invariance.

COROLLARY 5.1. The product QT is invariant for all C-operators Q. In fact,
for T A’A,

QT (FTF)*T (AF)tA

for all CI -operators Q.
Proof From (5.7), we have

(FTF)*(FTF)T (AF)*(AF)T (AF)t(AF)(A*A)
and since (AF)*(AF) PR(AV)* we obtain

(5.8) (FTF)*(FTF)T FA*A FT.

Thus, from (5.3),

QT (FTF)*T (FTF)*FA*A [(AF)*(AF)J*(AF)*A (AF)*A.

Note that if we use the invariance of the above corollary for a C1-operator (2,

TQT T(AF)*A A*AF(AF)*A A*Pc(Av)A,

which is the invariant term mentioned above (see Theorem 4.1 in [2).
In the next theorem we will use the forms of Theorem 5..1 to give general

conditions which characterize the blocks of (1, 4)-inverses of B. This theorem also
exhibits some more invariant expressions. In the theorem it is assumed that Q, U,
L, and R are all bounded linear operators.
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THEOREM 5.2. Let D be the invariant expression T- TQT, where Q is any
C a-operator. Each of the following statements is true"

(5.9) Q is a C’l-operator iff QC 0 and Q(FTF) (FTF)f(FTF).

(5.10) U is a C412-operator iff UC* I (FTF)*T]CC.
(5.1 1) L is a Ca-operator iff LT C*D and LC C C.

(5.12) R is a Cz-operator iff RC* -CD.

Proofi We will first prove (5.9). If Q is a C-operator, then Q is of the form
(5.3). It is then trivial that QC 0 and Q(FTF) (FTF)f(FTF). Conversely,
if we assume Q satisfies the equations of (5.9) and let Z Q in (5.3) we have

(FTF) + ZF Z(FTF)*(FTF) (FTF) + QF Q(FTF)*(FTF)

(FTF)* + Q QCC Q(FTF)(FTF)*

(FTF)* + Q (FTF)f(FTF)(FTF)

--Q,
so that Q is a Ca-operator.

The proofs of (5.10) and (5.12) are also straightforward. To finish the proof
of the theorem, we prove (5.1 1). First, if L is a Ca-operator, then L is of the form
(5.5), and so it is easily seen that LT C*D and LC CfC. Conversely, if we
assume L satisfies the equations in (5.11) and we let Z L in (5.5) we have

C CfT(FTF) + ZF- Z(FTF)*(FTF)
C C*T(FTF) + L LCC L(FTF)(FTF)

C C*T(FTF) + L C*CC LTF(FTF) + LCC*TF(FTF)

-C*T(FTF) + L- CfDF(FTF) + CfcCfTF(FTF)
L CfDF(FTF),

and since DF 0 from (5.8), this last expression is L. Thus, L is a C241-operator,
and the proof of (5.11) is complete.

Note that (5.9) and (5.1 1) say that Q and L are (1, 4)-inverses of FTF and C,
respectively.

It is interesting to compare (5.10)-(5.12) with (4.5)-(4.7) (conditions which
claracterize the blocks of (1)-inverses of B) of I2]. Since DF 0 it follows that

CCfD D and DCC D.

Using these two equations, it is immediate that (5.10)-(5.12) imply (4.5)-(4.7),
respectively, of 2].

For each of the preceding statements on (1, 4)-inverses, there is an analogous
statement for (1, 3)-inverses. Since

W is a (1, 4)-inverse for B > WB B*B

BW* B*B BB :> W* is a (1, 3)-inverse for B,

these analogies are easy to find.
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The blocks of (1, 3)-inverses of B are also independent of each other. For
(1, 3)-inverses, the forms (5.3)-(5.6) are replaced by

(i) Q (FTF)* + G Z,

(ii) U C* -(FTF)*TC* + GZ,

(iii) L C C*T(FTF) + GzZ
and

(iv) R -C*TC** + C*T(FTF)*TC** + G2Z.
In this case the invariance QT is replaced by the invariance

TQ T(FTF)*= A*[(AF)*]*.
For (1, 3)-inverses of B, the conditions (5.9)-(5.12) are replaced by

(i) Q is a C-operator iff C*Q 0 and (FTF)Q (FTF)(FTF)*,

(ii) U is a Cl2-operator iff TU DC** and C*U C’C,

(iii) L is a C-operator iff CL CC*[I T(FTF)*],

and

(iv) R is a C22-operator iff CR -DC**.

6. Results using nonclosed ranges. In the previous sections it has been assumed
that A(N(C*)) and R(C) are closed. We now consider the possibilities when these
conditions are relaxed. In doing so we recall (see [4]) the definition of S* if S is a
bounded linear operator with a possibly nonclosed range. The domain of S* is
R(S) N(S*) and S* is characterized as the unique linear transformation X such
that

X(Sv + w)= v

for all v R(S*) and w N(S*). Here it is the case that S*S P RtS*).

First let us assume only that A(N(C*)) is closed and let F I C**C*. In
this general situation we still have

R(F)=N(C*) and F=

We also observe that the definition of Ac, requires only that A(N(C*)) be closed.
Now

R(FA*AF) R[(AF)*(AF)]- R((AF)*)

and thus R(FA*AF) is closed since R(AF) is closed by assumption. It is then easy
to see that

(FA*AF)*A* (AF)* A*C*

is still true in this situation. Moreover, the expression given in 4 for the con-
strained best approximate solution is still valid if we stipulate that

f R(C*) N(C). The proof of Theorem 3.1 in [3 holds in this case also.
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What can be said when A(N(C*)) is also not necessarily closed’?. In this case
the domain of (FA*AF)* is

R(FA*AF) N(FA*AF)

and hence (FA*AF) FA* is defined on

R(AF) N(FA*).

Now observe that

R(FA*AF) RI(AF)*(AF)J R((AF)*)

and suppose AFx R(AF), where x R((AF)*). Then, since x R(FA*AF),

(FA*AF) FA*AFx x.

But because

(FA*)(R(AF)\R(AF))
_
R(FA*AF)\R(FA*AF,,

(FA*AF) FA* is not defined on R(AF)\R(AF). Thus

(FA*AF)o FA* (AF)

even in this most general situation. Also notice that

R((AF)*) R(FA*)_ R(F)= R(F)= N(C*)

and so R((AF)) N(C*).
Now if b R(AF) N(FA*), then (AF)tb is the constrained best approximate

solution of Av b, subject to v N(C*). This follows from a modified proof of
Theorem 3.1 of [3]. But from Theorem 2.2 of 4, it follows that R(AF) N(FA*)
is precisely the set of vectors b for which the system A b possesses a constrained
approximate solution. Thus (AF) serves as a "restricted pseudoinverse" even
when A(N(C*))is not closed.

Unfortunately, obtaining B and matrix (1, 3)- and (1, 4)-inverses of B when-
ever A(N(C*)) and R(C) are possibly nonclosed presents a more difficult task.
This is a possible place for future research.

7. Some related results. The following theorem gives equivalent conditions
in order that B* be of the same form as B. It also generalizes Theorem 4.3 of [21.

THEOREM 7.1. Thefollowing are equivalent
(i) If

is a (1)-inverse of B, then TQT T.
(ii) There exists a matrix of bounded linear operators of the form

which is a (1)-inverse of B.
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(iii) R(T)= R(TFc,).
(iv) B* is of the form

Proof The first three statements are equivalent by Theorem 4.3 in [2. Now,
if (4) holds, (2) clearly holds. Conversely, if(l) holds,

-C*TC** + C*TQTC** O,

and hence B* is of the desired form.
The final results that we now present give further relationships between B

and B*. These results may possibly be an aid in the computation of the invariant
term D T- TQT discussed in [2].

THEOREM 7.2. Assume

Then

(i) (TM)e TM

and thus I TM is also a projection.

(ii) C* L(I TM)*
and

(iii) L C .*, TPc PcT’" U C*

Proof In the proof we again let F I CC*. To prove (i) observe that from
(4.2) and (4.8), M F(FA*AF)*, and so TM A*(AF)(FA*AF)*. Thus

TMTM A*(AF)(FA*AF)tFA*(AF)(FA*AF)*= A*(AF)(AF)t(AF)(FA*AF)*
A*(AF)(FA*AF)*= TM.

Clearly this equality implies that I- TM is a projection (and thus has closed
range).

To show that (ii) holds we observe from (4.8) that L C*(I- TM) and
hence

C*(I- TM)(1- TM)*= L(I- TM)*

(7.1) (I- TM)(I- TM)*C**= [L(I- TM)*I*.

Now, if v N(I MT) and x H3,

(Cx, v) (Cx,MTv)= (x, C*MTv)= (x, C*F(FTF)tTv)= 0

since R(F)= N(C*). Thus

R(C**) R(C)+/-N(1 Mr)= N(( TM)*)

and so

(7.2) R(C**)
_

R(l TM).

or
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The result (ii) now follows from (7.1)-(7.2).
To verify (iii),

L C* , C*TM 0, C*A*(AF)(FA*AF) 0,, C*A*(AF)*] 0

, C*A*(AF) 0,, CC*TF 0, PcT(I Pc)= 0

.OcT ’cTPc ...%T T’c.
That PcT TPc " U C** follows in a similar manner.
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