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A NOTE ON PSEUDOINVERSES

C. A. DESOER AND B. H. WHALEN

1. Introduction. When an operator, A, is invertible it is possible to solve
the equation Ax y by operating on both sides with the inverse of A.
Moore [1, 2] introduced the concept (for matrices) of the pseudoinverse in
order to extend this technique to situations in which A has no inverse but
Ax y has a solution. Moore’s definition was based on the row and column
spaces of A and was sufficient to make the pseudoinverse, A*, unique and
to give it useful symmetry properties, notably (At) A, A** A*t.

Penrose [3, 4] introduced independently, and much later, the identical
operator, but in a different manner. Penrose’s approach was axiomatic and
algebraic. Kahnan [7, 8] using Penrose’s approach has applied the pseudo-
inverse to the theories of filtering and control. Greville [5, 6] has brought
Moore’s definition to the fore and has contributed (as did Penrose) to the
computational aspects of pseudoinverses.
Because of the projection theorem for inner product spaces, (see [12,

p. 51]) the pseudoinverse is very useful in least square curve-fitting and
estimation problems. Penrose, Greville, Kalman and others have demon-
strated and applied this fact.
The purpose of this paper is to introduce the pseudoinverse from a range-

null-space point of view. The authors feel that this approach is beneficial in
that i. the definition has a strong motivation, ii. the concepts are illumi-
nated geometrically, iii. the proofs are quite simple, iv. the basis is elimi-
nated, and v. the extension to bounded linear mappings with closed range
between Hilbert spaces is immediate. In fact, this paper will deal exclu-
sively with such mappings since all of the proofs follow easily the elementary
properties of Hilbert spaces. Since every finite dimensional inner product
space is a Hilbert space, the results will be valid for such spaces [9, p. 243].

2. Assumptions and basic facts. Let A be a bounded linear transforma-
tion of a Hilbert space into a Hilbert space . The Hilbert space adjoint
of A, which will be denoted by A* is defined by

(a) (Ax, y) (x, A’y) for all x in and all y in )
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where (.,-) denotes the inner product in both and . The fact that (a)
defines a unique bounded linear transformation of into is demonstrated
in [11, p. 249].

Denote by (A) the set of x in such that

and by fit(A) the set of y in such that

Ax y for some x in .
Denote by (A)" the set of x in such that

(x, xo) 0 for every x0 in (A).
The following facts are easily deduced and may be found in [11, p. 250].

(1) ) ((A) @ fit(A); fit(A)-+/- (A*).
(2) (A) (R) (A)’;(A) fit(A*).
(3) A**= A.

Combining (3) with Theorem VI, 6.4 of [9, p. 488], we get
(4) fit(A) (A) f and only if fit(A*) fit(A*).

From (4), (1) and (2) it is apparent that
(5) If fit(A) fit(A), then A is a one-to-one map of fit(A*) onto

fit(A) and A* s a one-to-one map of fit(A) onto fit(A*).
Since a closed subspace of a Hilbert space s a Hilbert space, one can

consider the restriction of A to fit(A*) as a bounded linear transformation
onto a Hilbert space fit(A) if fit(A) fit(A). Denote this transformation
by B. It follows that

(6) If fit(A) fit(A), the bounded linear transformation, B, defined
above has a bounded linear inverse, B-1. (See [9, p. 513].)
The following facts will be used in proofs of the theorems.

(7) A bounded linear operator E is an orthogonal projection of /
oto fit(E) if and only if E E and E E*. (See [ll, pp. 241-333].)

(8) Let x, x belong to . Then x x if and only if (x, x) (x, x)
for every x in . (This result follows directly from the axioms of the
inner product [11, p. 1.06].)

(9) Every nonnegative self adjoint bounded liaear operator on a
Hilbert space , has a unique nonnegative self adjoint square root
which is also a bounded linear operator on . (See [10, p. 265].)
The following fact is presented only as an illustration of a class of opera-

tors to which the results of this paper apply.
(10) Let A and G be bounded linear transformations of into .

Let the range of A be closed and the range of G finite dimensioal.
Then the range of A - G is closed.
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The proof is obtained by combining (4), Theorem 1A.II of [12,
p. 53] and the fact that an operator with finite dimensional range
can be written as a finite sum of dyads [12, pp. 26-27].
From (10) it is clear, since En (the Euclidean n-space) is complete and

therefore a Hilbert space, that every matrix is a bounded linear trans-
formation from a Hilbert space into a Hilbert space and has a closed
range. The pseudoinverse defined below is therefore an extension of the
pseudoinverse of Moore and Penrose.

3. Definition of pseudoinverse. DEFINITION. Let A be a bounded linear
operator of a Hilbert space into a Hilbert space such that 6(A is closed.
A is said to be the pseudoinverse of A if

i. A Ax x for all x (A)" 6(A*),
ii. A y O for all y 6(A)" (A*),

iii. if yl 6(A) and y. (A*) thenAt(y W y2) At y At y2.

The operator A A restricted to (A)" is the identity map. Note that
i. defines A on (A) (this follows by (5)), and ii. defines A on 6(A) ",
hence by (1) and iii. A is uniquely defined. We assert that A is a linear
operator" to see this decompose any y as y y -t- y2 with y 6(A)
and y 6(A)’; by (5) there isa unique vector u T(A)" such that yl

Au, then y Au W y. where u (A)" and y 6(A). With such
decomposition the homogeneity and additivity of A is easily checked.
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The following corollary follows immediately from the definition.
COROLLARY 1. (A*) (A*) (A)’; 9(A*) 9(A*) (A)’.
The relationship implied by the definition and Corollary 1 may be

visualized by Fig. 1. The first two sets on the left of the figure represent
the direct sum (2) and the first two on the right represent the direct sum
(1). By definition, A maps (A) into 0 and A maps ((A)" into 0. Also,
A t restricted to (A) is the inverse map of the one to one linear mapping,
B, which we defined as A restricted to ((A*). From (6), we know that B
has a bounded linear inverse, therefore A is bounded and has a closed
range by Corollary 1. Therefore At is defined.
COaOLLhRY 2. A A is the orthogonal projection of onto (A) 5(A*) ".
Proof. For any x , consider the orthogonal decompositionc xl -t- x,

with xl (A)" and x, 9(A). Now AtAx A tAx1 x from which
the conclusion follows.
COOLLhY 3. (A) A.
This fact is intuitively obvious from the symmetry of Fig. 1. It is easily

checked in detail by referring to the definition and Corollary 1.
COROLLARY 4. A AA A A A * A A.
Proof. The second equality is immediate by (4) and the fact that A A is

an orthogonal projection. For any y ), consider the orthogonal decom-
position y yl W y with yl (A), y. t(A)". By definition of A t,
A ty A ty (A) ". Multiply this equality by A A, then by Corollary 2,
A AA y AtAAty A y A y, and the first equality is established.
COROLLARY 5. AA A A; AA * AA
Proof. Let A B, then by Corollary 3, Bt A. With this substitution

the two equalities to be proven are identical to those of Corollary 4. The
same idea applied to Corollary 2 leads, with the help of Corollary 1, to
COrOLLArY 6. AA is the orthogonal projection of onto 5(A).
NOTE. For the finite dimensional case, Penrose [3] has shown that if the

four equations of Corollaries 4 and 5 are considered as equations for the
unknown matrix A, then these equations have a unique solution which he
defines to be the pseudoinverse.

4. Properties of the pseudoinverse.
THEOREM 1. A* (A’A) A*.
Thus the computation of A requires only that of the pseudoinverse of a

self adjoint operator. It is easy to check that if B is self adjoint and if it
has a spectral rep’esentation of the form

A ’E
(in which the summation is carried over all non-zero eigenvalues of B), then

B [- E,.
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Proof. If y (A*) (R(A)", the theorem is true since for such y,
(A’A) * A*y 0 and, by definition, A*y 0. Thus the conclusion of the
theorem remains to be checked for y 6t(A). To each y (R(A) there is a
unique x in 9(A)" 6t (A*) such that y Ax. On the other hand, from
(5), A*A is a one-to-one map of (R(A *) onto itself and by the defihition of
the pseudoinverse, for any x (R(A*), (A’A) *A*Ax x or (A’A) *A*y

x. Therefore, for all y 6t(A), (A’A) *A*y A*y.
THEOREM 2. (A*) (A*) *.
Proof. By Corollary 5, AA* (AA*)* A**A*. By Corollaries 6 and

2, AA* is the orthogonal projection of ) onto 6t(A) and A**A* is the
orthogonal projection of on 6t(A**) 6(A). Hence A**A* A**A*,
i.e., A **x A*x for all x 6(A*) 9(A) ". But 9(A**) 9(A**)
(A) because, by Corollary 1, (A**) (A**) (A) and (A**)
(A**) 9l(A). HenceA**x A**x O for allx 9(A), and the
theorem follows from (2).
TEOREM 3. (Equivalent definition). Let x, y and x x x., y

y y where Xl, y (A)" and x., y (A). Then B A* if and only
if i. (BAx, y) (x, y), for all x, y in and ii. ?(B) (A*) 6(A)’.

Proof. Necessity. By Corollary 2, for x, y in , (A *Ax, y) (x, y y)

(x, y); ii. follows from the definition of A
Suffwiency. From i., (BAx y) (x, y) (x y) for all x (A)

and all y ; hence from (8), BAx x for all x (A). This fact
together with ii. is the definition of A
THEOREM 4. Let y and x A . Then

(b) IIAx
and [[x[[ -< [lx0]l for all xo satisfying inequality (b).
Note that ifx (A), A (x + x) Axe. Hence Theorem 4 shows that

if Ax y has a solution, all solutions are of the form A y -[- x with
x. (A) and any vector of this form is a solution.

Proof. Let y y - y with y 6t(A) and y 6(A) ". Then

On the other hand, for any x in , let Ax ya 6(A),

and (b) follows. Any vector x satisfying (b) is of the form x + 2 where
(x,, 2) 0. Therefore

Finally, we state a theorem which is a generalization of the polar de-
composition of a matrix [7].
THEOREM 5. Let A be a bounded linear map of one Hilbert space E into
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another, . If the range of A is closed, then A can be factored as

A UH

where U* Ut, H is a nonnegative self adjoint operator in and U maps
onto A

Proof. Since A*A is nonnegative and self adjoint, it has a unique bounded
nonnegative self adjoint square root (see [10, p. 265].) Call this square root
H. Since (H) (H’H) (A’A) (A*), (H) is closed. Thus, H
has a pseudoinverse, Ht. Next define the operator U by U AH. Now,
since H commutes with H

U*U (AH)*(AH) HtA*AH HHHH HH.
By Corollary 2, U*U is an orthogonal projection of onto (H), i.e.,
U*Ux x for all x ((H). However, ((H) (A*) (R(U*), thus
U*Ux x for all x (U*). Finally, for all y (U)" (U*), U*y

0. Hence by definition of U, U* Ut.
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