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FURTHER RESULTS ON GENERALIZED
INVERSES OF PARTITIONED MATRICES*

FRANK J. HALL AND ROBERT E. HARTWIG$

Abstract. Necessary and sufficient conditions are given for the blocks in generalized inverses of

the partitioned matrices [A B]and[;] to be independent of each other. Some of these conditions

are then incorporated into conditions suitable for finding the Moore-Penrose inverse of a particular
bordered matrix.

1. Introduction. In [5], the general bordered matrix

(1.1) M [AC DB ]
was considered, and necessary and sufficient conditions for the blocks in the (1)-,
(1, 3)-, and (1, 4)-inverses of M to be independent of each other were given. The
present paper is divided into two parts. In the first part, independence of blocks of
generalized inverses of the partitioned matrices

(1.2) [A B] and []
is considered. We first give conditions analogous to the ones given in [5] for the
matrix in (1.1). Then we take one of these conditions and find equivalent
conditions concerning the individual blocks of the matrices in (1.2). These latter
results have partly been given by Cline [3] and Ben-Israel and Greville [2, p. 210].

In the second part of the paper, we incorporate the conditions on the
individual blocks of the matrices given in (1.2) into conditions suitable for finding
the Moore-Penrose inverse of the special bordered matrix

We make use of the results in [2] on intersections of manifolds in finding this
inverse under these conditions. The particular method used is also applicable for
finding the Moore-Penrose inverse of the matrix given in (1.1) when A, B, or C is
zero (under the corresponding assumptions). It is generally desirable to find
expressions for the Moore-Penrose inverse of the matrix (1.1) or at least for
special cases such as (1.3); these expressions may reduce the sizes of the matrices
involved in numerical work, dealing with differential equations and eigenvalue
computation [2, p. 228].

All matrices of this paper are over the complex field. If A is a complex matrix,
R(A) denotes the range of A, A* the conjugate transpose of A, N(A) the
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nullspace of A, and PNA) the. orthogonal projection onto N(A). The Moore-
Penrose inverse A* of A is the unique matrix X which satisfies the equations:

(1) AXA A, (2) XAX= X, (3) (AX)* AX, (4) (XA)* XA.

In general, if a matrix X satisfies equations (i), (j), and (k), then X is called an
(i, j, k)-inverse of A. For properties of these various inverses, the reader is
referred to [2].

What is meant by independence of blocks of generalized inverses of the
matrix in (1.1) was given in [5]. We shall give here the corresponding definitions
for the partitioned matrices (1.2). Let

GI=[O1] and G2--[Q2]L1 L2
be two, possibly different (1)-inverses of M=[A B]. Then the blocks of all
(1)-inverses of M are said to be independent whenever

L
is a (1)-inverse of M for every possible choice of G1 and G. Independence of

blocks of (1, 3)- and (1 4)-inverses of [A B] and of generalized inverses of
C

is defined similarly.. llesls ideledeee. The first theorem gives results similar to the
ones obtained in [5] for the matrix (1.1). The proof of the theorem follows along
the same lines as the proofs of the theorems in [5] and hence is omitted.

THEOREM 2.1. For the partitioned matrix

M=[A B],

the following statements are equivalent:
(i) There exists a (1)-inverse M- for M such that

[*** 0]M-M
0 ***

(ii) The blocks in the (1)-inverses [or M are independent o[ each other.
(iii) I[ M- is a (1)-inverse ]’or M and we let

then

[ 02]M-M=
Q1
Q3 04’

Q3Q2 0 or

(The "or" can be replaced by "and".)

Q2Q3 0.

[*** 0 ](iv) M*M
l 0 ***
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(v) The blocks in the (1, 3)-inverses for M are independent of each other.

(vi) If a R(M) and M*a then Ilxoll--< Ilxll and Ilyoll =< Ilyll for all x, y
Yo

such that4X] =a.Y

Thereisan analogous set of conditions for the partitioned matrix []
(excluding the extra equivalent statement (vi) of Theorem 2.1).

The above results are mainly in terms of the forms of M-M and MM-. We
now give conditions which involve the individual blocks of the partitioned
matrices.

THEOREM 2.2. For the partitioned matrix

M=[A B],

the following statements are equivalent:

[*** 0](i) M’M=
0 ***

(ii) R (A) f’l R (B) {0}.
(iii) R (B*) R(B*(I-AA)).
(iv) B[(I-AA*)B]*B B.
(v) BB*(AA + BB*)*B B.

(vi) IfM*= [ O. ], AQA A.

(vii) IM* BUB B.U’

Proof. Assuming R(A), R(B)c_C’, we have R(A)R(B)={O}:
JR(A) CI R(B)] -a- C R(A) + R(B)-t- C <) N(A*) + N(B*) C" :ff
R(B*) B*(N(A*)) R(B*B) B*(N(A*)) =: R(B) N(A*) + N(B*)
N(A*)+ N(B*)= C"n, and hence (ii)<=>(iii).

Now, following Cline [3], let C (I-AA*)B and ,observe that C*C C*B.
We then have

BC*B B:BC*C B:C*CB* B*caR C*) R (B*),

and hence (iii)a(iv).
We next show that (ii)<=>(v). From Anderson and Duffin [1], P(A)a(s)=

2AA*(AA + BB*)*BB*, and so

R(A) KI R(B) {0}aAA*(AA* + BB*)*BB* O.

Now, R(AA + BB*) R(AA *) + R(BB*), and hence

(AA + BB*)(AA * + BB*)*BB*
or

AA*(AA + BB*)*BB* + BB*(AA + BB*)*BB* BB*.
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Thus

R(A) f’) R(B) {O}BB*(AA + BB*)*BB* BB*BB*(AA + BB*)*B B,

and hence (ii)(v).
To finish the proof of the theorem, we show that (i):: (ii) (vi)=> (i). That

(i) => (ii)=> (vii) (i) follows similarly. Letting M* [ QJU we have

M*M QA

UA UB

Now assuming (i) is true, UA 0 and OB 0. Hence, if x R (A) R (B), there
exist v, w such that x Av Bw, and so Qx 0 and Ux 0. Hence x N(M*)
N(M*)=N(A)f3N(B*), and since R(A)f3N(A*)={O}, x =0. Thus, (i) => (ii).

Since MM*M M,

AQA +BUA A or BUA A -AQA.

Assuming (ii) holds, A -AQA 0, and thus (ii)z (vi). On the other hand, if we
assume (vi), then BUA =0. But (M’M)* =M*M implies UA =B’Q* and so
BB*Q* =0. Thus, B’Q*=0 and hence (vi)=>(i) follows. The proof of the
theorem is now complete.

It should be clear that (iii) is equivalent to rank B* rank(B*(/-AA*)) and
that because of condition (ii), conditions (iii-v) are equivalent to

R(A*) R(A*(I-BB*)),
A[(I-BB*)A]*A A,

.AA*(AA + BB*)*A A,

respectively. We can also observe that

rank M-rank A +rank BCe;R(A)OR(B)={O}

u e N(A), v e N(B)

We should point out that (i): (iv) also follows from Corollaries 3.2 and 3.2(a)
of Cline [3]. Moreover, forms for M are given in [3] and in [2] under conditions
(iv) and (ii), respectively. It also follows from the proofs in [2] and [3] that

M*M=[A B*BO]
under these conditions.

There is an analogous set of conditions for the partitioned matrix M
C

In particular, MM* is block-diagonal if and only if R(A*) R(C*)= {0}.
If we consider the bordered matrix

M-
C
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then from Theorem 2.2 and Theorem 3 in [5] we have

(2.1) R([]) CI R([DB])= {0}:>M*M is block-diagonal

:> the blocks in the (1, 3)-inverses ofM are independent of each other. Similarly,

* C*R([AB* ]) CIR([D*]) ={O}c:>MM* is blck-diagnal

<=> the blocks in the (1, 4)-inverses of M are independent of each other.
These results, however, do not fully answer the questions raised in [5] for this

general bordered matrix. But, one consequence of these results is the following. It
is known from [4] that for the bordered matrix

C*

M*M is block-diagonal. Thus

This fact can also be proved directly.

3. e Moore-Pentose inverse of a bordered matrix. We now consider the
particular bordered matrix in (1.3) and find its Moore-Penrose inverse under
certain conditions. We explore the "intersection of manifolds" idea given in
[2, p. 201] and used to find the Moore-Penrose inverse of the partitioned matrices
given in (1.2).

THEOREM 3.1. Let

M=
C 0"

Then, i[ R (A (I- C*C)) CI R (B) {O}, the matrix

Q(P+Q)*[(I-BB*)A]*
Y= B*-B*AQ(P+Q)*[(I-BB*)A]*

C*-Q(P+Q)*C* ]-B*AC* +B*AQ(P+Q)*C*

is a (1, 2, 4)-inverse ]’or M, where P PN((I--BB*)A) and O PN(C). If we further
assume that R(A*(I-BB*)) f3 R(C*) {0}, then Y= M*.

Pro@ First observe that

and hence from (2.1),

(3.2) M*M is block-diagonal e;,R(A(I-C*C))f’IR(B)={O}.
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Now suppose
b

R(M). Then it is straightforward that

MIx]=[a] forsomey
y b

{Ax + BB*(a- Ax) a}z
Cx b

:> { (I- BB*)Ax (I- BB*)a}Cx b

{x =[(I-BB*)A]*(I-BB*)o + z, z N((I-BB*)A)}: C*x= b+w, weN(C)

{x =[(I-BB*)A]*a + z, z N((I-BB*)A)}x C*b + w, w N(C)

as

(3.3) [(I-BB*)A]*(I-BB*) =[(I-BB*)A]*.
Thus, using (a’) of Corollary 3 in i-2, Chap. 5], we then have

MIx] =[a] forsomeyCr>x=C*b-O(P+O)*(C*b-[(I-BB*)A]*a)+z,
y b

z6 N((I-BB*)A CI N(C).

Moreover, from [2],

C*b O(P + O)*(C*b -[(I- BB*)A]*a)
is the vector of minimum norm in this set.

Next, we consider the vectors y. We have

b
=By a -AC:y B*(a -A)+ z, z N(B),

and

B*a-B*AY

is the vector of minimum norm in this set.
We now assume that R(A(I- C*C)) f’l R(B) {0}. Then it follows from (3.2)

and Theorem 2.1 (or Theorem 3 in [5])that from (3.1),

Y[]=[$] and hence Y is a (14)-inverseforM.,

To verify that Y is a (2)-inverse of M, observe that [(I-BB*)A]*B 0 from
(3.3) and hence

yM=[O(P+O)*[(I-BB*)A]*A +C*C-O(P+O)*C*C 0 ]0 B*B
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NOW,

Q(P+Q)*[(I-BB*)A]*A +C*C-Q(P+Q)*C*C
Q(P+ Q)*[(I- BB*)A]*(I- BB*)A + C*C
-Q(P+Q)*C*C

C*C+ Q(P+ Q)*( C*C+ [(I BB*)A]*(I BB*)A),
and the proof that Y is a (2)-inverse of M then follows as in the proof of
Theorem 6 in I-2, Chap. 5]. The reader can see [2] for the details.

By direct multiplication,

MY= [AO(P+O)*[(I-BB*)A]* +BB*-BB*AO(P+O)*[(I-BB*)A]*0

AC*-AQ(P+Q)*C*-BB*AC* +BB*AQ(P+Q)*C*]CC*
or

MY= [BB* +(I-BB*)AO(P+ O)*[(I-BB*)A]*
0

(I- BB*)AC*-(I- BB*)AO(P+ 0)*C*]CC*

We now make the further assumption that R(A*(I-BB*))CIR(C*)={O} (or
equivalently that MM* is block-diagonal) and so from [2] again, (P+Q)
P+ Q)* L Hence

(I- BB*)AO(P+ 0)* (I- BB*)A (- P+P+ O)(P + 0)* (I- BB*)A,
and we have

MY= [BB* +(I-BB*)A[(I-BB*)A]*o
Thus (MY)* MY, and the theorem is now proved.

Using Theorem 2.2 we can give other conditions equivalent to R(A(I-
CtC))f"IR(B)={O} and R(A*(I-BB*))f’IR(C*)={O}. Moreover, it is easy to
verify that

and thus

R(A (I- C*C)) R (B) {0}N(A) N(C) N((I- BB*)A) N(C).

Similarly,

R(A *(I- BB*)) R (C*) {0}N(A *) N(B*) N((I- C*C)A *) N(B*).



624 FRANK J. HALL AND ROBERT E. HARTWIG

If we use forms (a) and (b) of Corollary 3 of [2, Chap. 5] in the proof of
Theorem 3.1, we obtain two other expressions for . These are

[(I- BB*)A]a + P(P+ Q)*(C*b -[(I- BB*)A]*a)
and

=([(I-BB*)A](I-BB*)A + ctc)t([(I-BBt)A]ta + Ctb),
respectively. From these expressions, two other forms for Y can directly be
written down.

The fact that the lower-right block of M is zero plays no special role. If
instead, A, B or C is zero, then M can be derived under corresponding
conditions, either by using the above method or by "flipping" the blocks in M,

[0 I] The method given in [2] to obtain generalizedusing the unitary matrix
I 0

inverses of bordered matrices has also been used by L. Mihalyffy [6].
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