GOLUB-REINSCH ALGORITHM $[A]_{m x n} m>n$

- Bidiagonalization of matrix A
$A=Q B P^{T} \quad B \rightarrow$ upper Bidiagonal
- $B=\left[\begin{array}{l}\widetilde{B} \\ 0\end{array}\right]$
- $B=\tilde{B}$
- Diagonalization of $\mathrm{B} \quad B=X \Sigma Y^{T}$
- $U=Q X$
- $V^{T}=(P Y)^{T}$
- $A=U \Sigma V^{T}$ SVD OF A

Implicitly shifted QR algorithm

- Computes a sequence of upper Biadiagonal matrices B_{i}
- Uses the Wilkinson shift μ
- i increaces $B \rightarrow$ Diagonal

4X4 EXAMPLE

$$
B=\left(\begin{array}{llll}
d_{1} & f_{2} & & \\
& d_{2} & f_{3} & \\
& & d_{3} & f_{4} \\
& & & d_{4}
\end{array}\right)
$$

- Determine the Wilkinson shift

$$
\left(\begin{array}{cc}
d^{2}{ }_{3}+f^{2}{ }_{3} & d_{3} f_{4} \\
d_{3} f_{4} & d^{2}{ }_{4}+f^{2}{ }_{4}
\end{array}\right)
$$

- Givens Matrix $G_{1}=G\left(1,2 ; \theta_{1}\right)$

$$
\begin{gathered}
\tan \theta_{1}=\frac{\left(B^{T}{ }_{i} B_{i}\right)_{12}}{\mu-\left(B^{T}{ }_{i} B_{i}\right)_{11}}=\frac{d_{1} f_{2}}{\mu-d^{2}{ }_{1}} \\
\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right) \cdot\binom{d_{1} f_{2}}{\mu-d^{2}{ }_{1}}=\binom{*}{0}
\end{gathered}
$$

- Compute $B G_{1}$

- Zero out * and find P_{1}

$$
P_{1} B G_{1}=\left(\begin{array}{cccc}
* & * & * & \\
& * & * & \\
& & * & * \\
& & & *
\end{array}\right)
$$

- Zero out * and find G_{2}

- Zero out * and find P_{2}
$P_{2} P_{1} B G_{1} G_{2}=\left(\begin{array}{cccc}* & * & & \\ & * & * & * \\ & & * & * \\ & & & *\end{array}\right)$
- Zero out * and find P_{3}

Finally:

- Zero out * and find G_{3}

- Itterate

$$
\begin{aligned}
& f_{i} \rightarrow 0 \\
& d_{i} \rightarrow \text { singular values }
\end{aligned}
$$

Implicit zero shift QR algorithm

- $\mu=0$
- Entry $(1,2)$ will be zero
- This zero will propagate through the rest of the algorithm
- Increase precision

PSEUDO CODE

$$
\begin{aligned}
& \text { oldc }=1 \\
& g=d_{1} \\
& p=f_{1} \\
& \text { for } i=1 \text { to } n-1 \\
& \quad[c, s, r]=\operatorname{ROT}(g, p) \\
& \quad \text { if }(i \neq 1) \text { then } \\
& \quad f_{i-1}=\text { olds } * r \\
& \text { end if } \\
& \quad g=o l d c * r \\
& p=d_{i+1} * s \\
& h=d_{i+1} * c \\
& {[c, s, r]=R O T(g, p)} \\
& d_{i}=r \\
& \text { if }(i \neq n-1) \text { then } \\
& \quad p=f_{i+1}
\end{aligned}
$$

$$
\begin{gathered}
\text { end if } \\
\text { oldc }=c \\
\text { olds }=s \\
\text { end for } \\
f_{n-1}=h * s \\
d_{n-1}=h * c
\end{gathered}
$$

