
Journal of Computational and Applied Mathematics 244 (2013) 1–9

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Dissecting the FEAST algorithm for generalized eigenproblems
Lukas Krämer a, Edoardo Di Napoli c,∗, Martin Galgon a, Bruno Lang a, Paolo Bientinesi b
a Bergische Universität Wuppertal, Fachbereich C – Mathematik und Naturwissenschaften, Gaußstr. 20, 42119 Wuppertal, Germany
b RWTH Aachen, AICES, Schinkelstr. 2, 52062 Aachen, Germany
c Forschungszentrum Jülich, Institute for Advanced Simulation, Jülich Supercomputing Centre, 52425 Jülich, Germany

a r t i c l e i n f o

Article history:
Received 30 March 2012

Keywords:
Generalized eigenvalue problem
FEAST algorithm
Rayleigh–Ritz method
Contour integration

a b s t r a c t

We analyze the FEAST method for computing selected eigenvalues and eigenvectors of
large sparse matrix pencils. After establishing the close connection between FEAST and
the well-known Rayleigh–Ritz method, we identify several critical issues that influence
convergence and accuracy of the solver: the choice of the starting vector space, the stopping
criterion, how the inner linear systems impact the quality of the solution, and the use
of FEAST for computing eigenpairs from multiple intervals. We complement the study
with numerical examples, and hint at possible improvements to overcome the existing
problems.
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1. Introduction

In 2009, Polizzi introduced the FEAST solver for generalized Hermitian definite eigenproblems [1]. FEAST was conceived
as an algorithm for electronic structure calculations, and then evolved into a general purpose solver. In this paperwedescribe
the mathematical structure of the algorithm and conduct an investigation of its robustness and accuracy.

FEAST belongs to a family of iterative solvers based on the contour integration of a density-matrix representation of
quantummechanics; the result of the integration is a subspace projector that plays a central role in a Rayleigh–Ritz method.
The prominentmember in this familywas developed by Sakurai and Sugiura in 2003 [2]; thiswork, which inspired a number
of generalizations and high-performance implementations [3,4], targets non-Hermitian eigenproblems. By contrast, FEAST
promises to deliver performance on sparse Hermitian problems. Such problems can be solved by a number of alternative
packages like ARPACK [5] and TRLan [6] and the solver implemented in PARSEC [7,8].

Since in ab initio electronic structure calculations typically one is interested in the lowest part of the eigenspectrum, we
investigate FEAST’s behavior for the computation of a subset of eigenpairs lying inside a given interval. Additionally, we
study its strengths and weaknesses when a large portion or all of the spectrum is sought after. In our analysis, we use a
number of matrices from practical applications. From our experiments, we found that while for specific scenarios FEAST is
accurate and reliable, in general it lacks robustness.

Our analysis touches upon three main features of the solver: (1) critical input parameters, (2) the stopping criterion, and
(3) the quality of the results.

(1) In addition to a search interval, FEAST’s interface requires the user to specify the number of eigenvalues present within
the interval. Although in some ab initio simulations this number can be accurately estimated, in general it is not possible
to obtain it cheaply; since the completeness of the computed eigenpairs greatly depends on it, this initial guess is critical.
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The user can also specify a starting vector base which FEAST uses to initialize the solver: while by default FEAST uses
a random set of vectors, the convergence rate of the solver greatly depends on the actual choice. We elaborate on how
different starting bases affect convergence speed and robustness.

(2) The original implementation of FEAST employs a stopping criterion based on monitoring relative changes in the sum of
all computed Ritz values. We identify cases where this criterion does not reflect the actual convergence and propose an
alternative criterion based on per-eigenpair residuals.

(3) We analyze the quality of the solution computed by FEAST by means of residuals and orthogonality. On the one hand
we found that the achievable residuals are affected by the accuracy of the linear solver used within the algorithm. On
the other hand, we distinguish between local and global orthogonality, i.e., orthogonality among eigenvectors that were
computed with a single interval, and among vectors from separate intervals, respectively. While the local orthogonality
is guaranteed by the Rayleigh–Ritz method, depending on the spectrum of the eigenproblem the global orthogonality
might suffer.

The paper is organized as follows. In Section 2 we illustrate the underlying mathematical structure of the algorithm.
Section 3 contains experiments and analysis concerning the different aspects of the solver. Section 4 examines the suitability
of FEAST as a building-block for a general purpose solver, working on multiple intervals to compute a larger portion of the
spectrum. We conclude in Section 5 suggesting improvements to broaden FEAST’s applicability.

2. FEAST and the Rayleigh–Ritz method

Let us consider the generalized eigenproblem Ax = λBx, with Hermitianmatrix A ∈ Cn×n and Hermitian positive definite
B ∈ Cn×n. The objective is to compute the eigenpairs whose eigenvalues lie in a given interval Iλ = [λ, λ]. Since FEAST is an
instantiation of the Rayleigh–Ritz method, we start with a short review.

In the following, in order to denote an eigenpair (λ, x) with λ ∈ Iλ, we will sloppily say that the eigenpair is in the
interval Iλ.

2.1. Rayleigh–Ritz theorem

We present the Rayleigh–Ritz method in its orthonormal version, which ensures a minimal residual. The method relies
on the following theorem.

Theorem 2.1 (Rayleigh–Ritz, [9]). Let U be a subspace containing an eigenspace X ⊂ U of the generalized eigenproblem
Ax = λBx. Let U be a basis of vectors for U = span(U),U I a left inverse of U, and AU = U IAU, BU = U IBU the so-called
Rayleigh quotients for A and B. There are (Λ,W ) (Λ = diag(λ1, λ2, . . .)) primitive Ritz pairs of the reduced problem, i.e.,
AUW = BUWΛ, such that (Λ, X) are Ritz pairs for the original eigenproblem with X = UW and span(X) = X.

In a neighborhood of the exact solutions for the primitive Ritz pair, we expect that the Rayleigh–Ritz theorem also applies
approximately, leading to the following strategy.

1. Find a suitable basis U for U.
2. Compute the Rayleigh quotients AU = U IAU, BU = U IBU .
3. Compute the primitive Ritz pairs (Λ, W ) of AUW = BUWΛ.
4. Return the approximate Ritz pairs (Λ,U W ) of AX = BXΛ.
5. Check convergence criterion; if not satisfied, go back to Step 1.

Let us point out that obtaining an accurate approximation of (Λ, X) is not an obvious consequence of computing primitive
Ritz pairs. One must ensure that both Ritz values and the corresponding Ritz vectors converge to the desired eigenpairs.
Conversely, it must hold that each eigenpair in Iλ corresponds to a primitive Ritz pair in the same interval; see [9].

2.2. The algorithm

The FEAST algorithm implements the above Rayleigh–Ritz method, with a particular choice for computing U:

U :=
1

2π i


C

dz(zB − A)−1BY , (1)

where C is a curve in the complex plane enclosing the selected interval Iλ. The expression (zB − A)−1B is normally referred
to as the eigenproblem’s resolvent; formula (1) can be interpreted as the projection of the set of vectors Y onto a subspace
U containing the eigenspace. Pseudo-code for FEAST is provided in Algorithm 1.

Having established the close connection between FEAST and the Rayleigh–Ritz method, the next section is devoted to
the theoretical framework for the resolvent and the contour integration (1).



L. Krämer et al. / Journal of Computational and Applied Mathematics 244 (2013) 1–9 3

Algorithm 1 Skeleton of the FEAST algorithm

Input: An interval Iλ =

λ, λ


and an estimate M of the number of eigenvalues in Iλ.

Output: M̂ ≤ M eigenpairs in Iλ.
1: Choose Y ∈ Cn×M of rank M and compute U :=

1
2π i


C
dz (zB − A)−1B Y ;

2: Form the Rayleigh quotients AU := UHAU, BU := UHBU;
3: Solve the size-M generalized eigenproblem AU W = BU WΛ;
4: Compute the approximate Ritz pairs (Λ,X := U · W );
5: If convergence is not reached then go to Step 1, with Y := X .
2.3. Integrating the resolvent

In this section we define the concept of resolvent and illustrate its functionality within the Rayleigh–Ritz method. The
objective is to show that the subspace U is approximated by the integral operator in Eq. (1). We recall that a generalized
Hermitian definite eigenproblem has n real eigenvalues λ1, . . . , λn and B-orthonormal eigenvectors x1, . . . , xn.

Let us consider a single eigenpair (λk, xk), and let z ∈ C. For z ≠ λi, i ∈ {1, . . . , n},

B−1(zB − A)xk = (z − λk)xk,

and

(zB − A)−1Bxk = (B−1(zB − A))−1xk = (z − λk)
−1xk. (2)

Define the resolvent operator G(z) as

G(z) := (zB − A)−1B

and let Ck be a closed curve in the complex plane enclosing only the eigenvalue λk. Thus, the integral
1

2π i


Ck

dz G(z)xk

equals the residue of G(z)xk localized at the pole in λk. Using Eq. (2), we obtain

1
2π i


Ck

dz (zB − A)−1Bxk =
1

2π i


Ck

dz
z − λk

xk =
1

2π i
2π ixk = xk. (3)

By contrast, the residue around any other pole returns 0.
Now let C be a curve enclosing a subset {λk : k ∈ I} of the eigenvalues. Combining Eqs. (3) for k ∈ I and splitting the

path integral over C into a sum of integrals over closed curves Ck containing just one eigenvalue λk each, one obtains

1
2π i


C

dz G(z)xj =


k∈I

1
2π i


Ck

dz G(z)xj =


k∈I

δk,jxj =


xj, if j ∈ I
0, otherwise.

(4)

So far we have shown how the projection operator acts on the full space of eigenvectors. This is a well known property
of the resolvent of an eigenproblem [10, Chapter 3]. This property can also be visualized by combining the B-orthogonal
eigenvectors xk, k ∈ I , into an n-by-|I| matrix X , and by comparing (4) with the application of the projector

Q = XXH B =


k∈I

xkxHk B with Q 2
= Q

to an eigenvector xj,

Qxj =


k∈I

(xkxHk )Bxj =


k∈I

xkδk,j =


xj, if j ∈ I
0, otherwise.

One then concludes that the operators 1
2π i


C
dz G(z) and Q , when applied to a set of eigenvectors, produce the same results.

Let Y = {y1, y2, . . . , yM}, then
1

2π i


C

dz (zB − A)−1 BY = QY = XXHBY

projects each yj onto the eigenspace X = span(X).1 In this sense, the matrix U computed in Algorithm 1 is a reasonable
attempt to fulfill the requirements of the Rayleigh–Ritz theorem. In practice, the integral (1) must be evaluated numerically,

1 In Polizzi’s original paper, U equals XXHY instead of XXHBY . This is correct only when Y is chosen to be a random set of vectors, since BY does not alter
the random nature of Y . Thus, this equality is only valid in the first iteration of the solver.
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using a scheme such as Gauß–Legendre; for details we refer to the original publication [1] and to the literature on numerical
integration, e.g., [11].

A numerical integration scheme leads to an approximation

Û ≈
1

2π i

m
k=1

wk(zkB − A)−1 BY

where the points zk lie on the curve C. The accuracy of the approximation, as well as the computational complexity, are
determined by the number of integration points. In practice, Gaussian rules with 7–10 nodes already achieve satisfactory
results. For each integration point, a linear system (zkB − A)Ûk = BY of size N with M right-hand sides must be solved.

If the curve C is chosen to be symmetric with respect to the real axis (e.g., a circle or ellipse), then considerable
computational savings are possible. In this case the numerical integration must cover only the half-curve in the upper
complex half-plane due to the symmetry G(z̄) = GH(z) [1].

3. Analysis and experiments for the FEAST algorithm

In this section we discuss the issues arising when employing FEAST to compute the eigenpairs in a single interval: size
and choice of the search space, stopping criteria and impact of the linear solver on the accuracy of the solution.

3.1. Size of the search space U

Section 2.3 shows that the size of the eigenspace X is determined by the number M of columns of U which in
turn corresponds to the number of columns of Y . This number is equivalent to the number M of eigenvalues (counting
multiplicities) lying in the given interval Iλ. In practice, M is not known a priori, and an estimate M has to be used instead.
In the following, we discuss the consequences of the cases M > M and M < M .

Case M > M . If the estimate is larger than the actual number of eigenvalues in Iλ, then the spectral projector Q has rank
M , and thus the n-by-M matrix U = QY is rank-deficient and does not have a full rank left inverse. As a direct consequence,
BU is rank deficient, and the eigenpairs of the reduced eigenproblemmight be incomplete and not necessarily B-orthogonal.

In the original implementation of FEAST, the rank deficiency is detected by measuring the ‘‘positive definiteness’’ of BU
through a Cholesky decomposition. A drawback of this approach is that it does not indicate which of the columns of U
are linearly independent, forcing one to select a subset arbitrarily. This, in turn, might result in the presence of spurious
eigenpairs. A reliable, but more expensive, approach consists of computing an SVD or a (rank-revealing) QR decomposition
of the matrix U [12]. Since the rank of U equals the number of eigenvalues in Iλ, such a rank-revealing decomposition can
be used to safely restart the process with Y = ŪX , where Ū includes the linearly independent columns of U .

Case M < M . The space spanned by U does not contain the whole eigenspace corresponding to the eigenvalues within
the integration contour, and therefore the vectors generated by integrating the resolvent fail to span X.

The following experiment illustrates the behavior of FEAST for different numbers M .

Experiment 3.1. We consider a size-1059 matrix A = LAP_CIT_1059 from modeling cross-citations in scientific publica-
tions, and B = I . In this test we search for M = 1, . . . , 450 eigenpairs with eigenvalues in an interval Iλ containing the
M = 300 lowest eigenvalues. The maximum number of iterations allowed for FEAST is 20.

The left panel of Fig. 1 shows the number of iterations necessary for FEAST to calculate all eigenpairs within Iλ with suf-
ficiently small residual ∥Ax − λBx∥ ≤ ε · n · max

λ , λ, as a function of M . An iteration count of 20 typically implies
that either none or not all eigenpairs converged within these 20 iterations. The right panel shows the residual span for all
computed eigenpairs with eigenvalues in the interval after the respective number of iterations (20 or fewer, if convergence
was reached beforehand). Again these numbers are given as a function of M . We see that, leaving aside the very small region
around the exact eigenspace size, either all or none of the eigenpairs show a sufficiently small residual. While for M < M no
eigenpairs converge and especially the minimum residuals are large, for M > M also the maximum residuals begin to drop
significantly and typically all eigenpairs may converge if only enough iterations are performed. With M just slightly larger
thanM , all eigenpairs reach convergence within few iterations.

For a better understanding of the evolution of the computed eigenspace, we monitored the largest canonical angle
^


X (i), XIλ


[12, p. 603] between the current approximate eigenspace X (i) and the exact eigenspace XIλ , as well as the an-

gle ^

X (i), X (i−1)


between the current and the previous iterate. Fig. 2 provides these angles for three values of M, M =

250, M = 300 and M = 350. In this last case, after five iterations the computed eigenspace contains the exact one and
does not vary anymore; these two facts imply convergence. By contrast, the curves for M = 250 indicate that while the
computed eigenspace becomes contained in the exact one after more than 20 iterations, it keeps varying, never to reach
convergence. Interestingly, the worst convergence with respect to the exact eigenspace seems to occur for M = 300. This
can be intuitively understood by the fact that two subspaces of the same dimension need to be identical in order to have an
angle of zero between each other.
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Fig. 2. Canonical angles (left: between current iterate X (i) and exact eigenspace XIλ ; right: between current iterate X (i) and previous iterate X (i−1)) in
degrees for M = 250, 300, 350.

3.2. Choice of the starting basis Y

The choice of the starting basis Y ∈ Cn×M in line 1 of Algorithm 1 plays a critical role in the unfolding of the algorithm:
most importantly, Y has to include components along U , so that its projection through Q spans X. Vice versa, if one or more
of the columns of Y are B-orthogonal to the space U, then the corresponding columns of U = QY will be zero. If a good
initial guess for the eigenvectors of (A, B) is available, then it can be used as the starting base Y ; otherwise the typical choice
is a base of random vectors.

Experiment 3.2. We used FEAST with M = 450 to compute the M = 300 lowest eigenvalues and corresponding eigen-
vectors of the matrix pencil (A = LAP_CIT_1059, B = I). These eigenvalues are simple and sufficiently far away from the
only multiple eigenvalue, which is zero. With a fixed random starting basis Y , four iterations were sufficient to compute all
wanted eigenpairswith residuals

Axj − λjBxj
 ≤ 5.5×10−15. Thenwe projected out the ten eigenvectors corresponding to

the 10 lowest eigenvalues via Y := (I −X1:10XT
1:10) ·Y . It took seven iterations for the lowest 290 eigenpairs to converge, and

ninemore iterations for other nine eigenpairs. One eigenpair did not converge within the limit of 20 iterations. Convergence
took place ‘‘from top to bottom’’, i.e., the eigenpairs 11, . . . , 300 converged first, then the eigenpairs 2, . . . , 10. The smallest
eigenvalue did not converge within the iteration limit.

In general, thanks to round-off errors, convergence could still be reached in most of our tests. In fact even though some
componentswere zeroedout, the floating point arithmetic causes almost zero entries to growas the computationprogresses.
Convergence is then reached with noticeably more iterations.

3.3. Stopping criteria

Algorithm 1 relies on a stopping criterion to determine whether the eigenpairs are computed to a sufficient degree
of accuracy. Such a criterion must balance cost and effectiveness. In the original implementation [1], FEAST monitors
convergence through the change in the sum of the computed eigenvalues; more precisely, a relative criterion of the form

|tracek − tracek−1|

|tracek|
< TOL (5)
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is used, where tracek denotes the sum of the Ritz values in the kth iteration lying in the search interval and TOL is a user
tolerance. Criterion (5) raises three problems.

First, its denominatormight be zero or close to, causing severe numerical instabilities. Such a scenario arises, for instance,
when all the eigenvalues in the search interval are zero. Second, the number tracek can be (almost) constant for two
consecutive values of k, stopping FEAST even if the residuals are still large. The third problem is of a more general nature:
if the algorithm stagnates before the considered eigenpairs converge, all criteria that are based only on the change in the
eigenvaluesmight still signal convergence. It is not hard to construct examples where this happens [9].

As an alternative criterion we propose a per-eigenpair residual that depends on the search interval: a Ritz pair has
converged if it fulfills the inequality

∥Ax − Bxλ∥ ≤ ε · n · max
λ , λ . (6)

The extra cost of this criterion is one matrix–vector product per vector because Bx is needed anyway to compute Y in the
next iteration, or, if sparsity is not exploited, O(M2n) operations since Ax = (AU)w, with AU reused from Step 2 of the
FEAST algorithm. If max

λ , λ is too small, e.g., when only eigenpairs with zero eigenvalues are sought after, one may
replace this quantity by an estimate for

B−1A
, which is the magnitude of the largest eigenvalue of the problem and might

be obtained by some auxiliary routine (e.g., by some steps of a Lanczos method, see [13]).
Let us consider a matrix with spectrum symmetric with respect to zero, and choose the search interval to be symmetric

around zero. If summed, the computed Ritz values cancel themselves pairwise, thus tracek is approximately zero. When
FEAST is applied to such a matrix, the trace criterion signals convergence when the difference in (5) comes close enough to
zero; in this case, the ratio (5) holds no information about convergence. From multiple tests with random starting bases,
we experienced that it took between 7 and 100 iterations for criterion (5) to signal convergence. By contrast, criterion (6)
always dropped below 10−15 after 6 iterations.

In an additional test, we ran FEAST on a symmetric matrix of size 470, seeking the known 57-fold eigenvalue 1. Here we
chose the search interval symmetrically around 1, and M = 120 > M . After five iterations, (5) was 1.2 × 10−16, effectively
halting the computation, although the residuals (6) were still of order 10−9–10−12. The right hand side of (6) was about
10−13 in this example, meaning that none of the residuals was satisfactorily small.

3.4. The impact of the linear solver on residuals and orthogonality

As seen in Section 2.3, the computation of the basis according to (1) involves solving several linear systems of the form

(zB − A)V = BY (7)

for V . The particular values of the integration points z depend on the method chosen for numerical integration, which is
not discussed here. Typically, z will be a complex number near the spectrum of (A, B). Recall that (7) is a linear system
with M right hand sides. In principle, any linear solver can be used. Direct solvers, e.g., Gaussian elimination based, can be
prohibitively expensive because for each value of z we need to factorize zB − A, which may be an O(n3) process.

The methods of choice for solving large sparse linear systems without further knowledge about the underlying problem
are Krylov subspace methods; for a review see, e.g., [10]. Here we cannot give a detailed discussion, but let us remark that
the convergence of Krylov subspace methods depends on several parameters. First, the best convergence results can be
expected for Hermitian matrices since this property can be exploited. Unfortunately, (7) typically has a non-real diagonal
and therefore is not a Hermitian problem. (However, if B = I then the matrix zI − A is shifted Hermitian, so methods for
shifted systems may be applicable [14].) Second, the convergence for a fixed method typically depends on the structure of
the spectrum of the matrix. The eigenvalues of zB − A are scattered over the complex plane so that no good convergence
results can be inferred. Third, the condition number

(zB − A)−1
 · ∥zB − A∥ of the system plays an important role and is

often large for (7), since z can be very close to the spectrum of (A, B). For these reasons, standard Krylov subspace solvers
may need a large number of iterations to converge. This expectation was confirmed by our experiments. The need for an
effective preconditioner is apparent, and its development is part of further research.

Another way to speed up the linear solvers is to terminate them before full convergence is reached. Thus the question
arises how accurately the systems (7) need to be solved in order to obtain eigenpairs of sufficient quality in a reasonable
number of FEAST iterations. We therefore investigated the effect of the accuracy in the solution of linear systems on the
ultimately achievable per-eigenpair residuals and the orthogonality of the eigenvectors, as well as on the number of FEAST
iterations.

Experiment 3.3. We applied Algorithm 1 to the matrix pair (A, B), where A = LAP_CIT_395 arises in the modeling of
cross-citations in scientific publications, and B was chosen to be a diagonal matrix with random entries. We calculated
the eigenpairs corresponding to the 10 largest eigenvalues. The linear systems were solved column-by-column by running
GMRES [10] until

(zB − A)vj − Byj
 /

r0j  ≤ εlin, where r0j is the starting residual. Fig. 3 reveals that the residual bounds
that were required in the solution of the inner linear systems translated almost one-to-one into the residuals of the Ritz
pairs. Even for a rather large bound such as εlin = 10−6, the FEAST algorithm still converged (even though to a quite large
residual). For the orthogonality of the computed eigenvectors xj, the situation was different. After 20 FEAST iterations, an
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orthogonality level maxi≠j
xHi Bxj of order 10−15 could be reached for each of the bounds εlin = 10−6, 10−8, 10−10, 10−12

in the solution of the linear systems. Thus the achievable orthogonality does not seem to be very sensitive to the accuracy
of the linear solves. It also did not deteriorate significantly for a larger number of desired eigenpairs.

4. FEAST for multiple intervals

Using FEAST for computing a large number M of eigenpairs is not recommended since the complexity grows at least as
O(nM2) due to the matrix–matrix products in Steps 2 and 4 of Algorithm 1, or O(n2M) if sparsity is not exploited, because
O(M) matrix–vector products must be computed. (In fact, if M approaches n then just Step 3 of Algorithm 1 has roughly
the same complexity as the computation of the full eigensystem of the original problem.) However, as already hinted at
in [1], FEAST’s ability to determine the eigenpairs in a specified interval makes it an attractive building block to compute
the eigenpairs by subdividing the search interval Iλ into K subintervals I(1)λ , . . . , I(K)

λ and applying the algorithm – possibly
in parallel – to each one of them.

In the following we report on issues concerning the orthogonality of eigenvectors coming from different subintervals.
It is well known that eigenvectors computed independently from each other tend to have worse orthogonality than those
obtained in a block-wise manner. Furthermore, the quality of the results depends on the internal structure of the spectrum,
namely the relative distances between the eigenvalues. For more details, see, e.g., [13].

In the following we distinguish between global and local orthogonality, according to the definitions

orthglobal = max
i≠j, λi,λj∈Iλ

xHi Bxj and orthk = max
i≠j, λi,λj∈I(k)λ

xHi Bxj .
Note that orthglobal denotes the worst orthogonality among all computed eigenvectors, while orthk describes the orthogo-
nality achieved locally for the kth subinterval I(k)λ . The next two experiments reveal quite different behavior, depending on
the presence of clusters and on the choice of subintervals.

Experiment 4.1. In this experiment we calculate the 800 lowest eigenpairs of the size-1473 matrix pair (bcsstk11,
bcsstm11) from the Matrix Market (http://math.nist.gov/MatrixMarket/). The corresponding eigenvalues range from 10.5
to 3.8 × 107 and are not clustered. We utilize different numbers of subintervals, K = 1, . . . , 5, and K = 10. Fig. 4 shows
that while the local orthogonality is high and maintained as the number of intervals increases, the global one degrades by
two or more orders of magnitude.

Experiment 4.2. In this test we consider a real unreduced tridiagonal matrix A of size 2003. Its eigenvalues are simple, even
though some are tightly clustered; see the top plots in Fig. 5. The objective is to compute the 300 largest eigenpairs. To
this end we initially split the interval Iλ = [λ1704, λ2003] into I(1)λ = [λ1704, µ] and I(2)λ = [µ, λ2003], with µ = λ1825 ≈

0.448 × 10−3 chosen within a cluster of 99 eigenvalues. The relative gap between eigenvalue λ1825 and its neighbors is of
order 10−12 (i.e., agreement to roughly eleven leading decimal digits). A sketch of the eigenspectrum with µ is given in the
top left of Fig. 5.

While FEAST attains very good local orthogonality for both subintervals (orth1 = 4.4 × 10−15 and orth2 = 5.7 × 10−14),
it fails to deliver global orthogonality (4.7 × 10−4). In the bottom left plot of Fig. 5 we provide a pictorial description ofxHi Bxj , λi, λj ∈ Iλ. The dark colored regions indicate that the loss of orthogonality emerges exclusively from eigenvectors
belonging to the 99-fold cluster. Next we divide the interval into 3 segments making sure not to break existing clusters

http://math.nist.gov/MatrixMarket/
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Fig. 4. Global orthogonality and range of local orthogonality orthj for K = 1, . . . , 5 and K = 10.
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Fig. 5. Computation of the eigenpairs corresponding to the 300 largest eigenvalues λ1704, . . . , λ2003 with the subdivision point µ = λ1825 taken from a
group of very close eigenvalues. The top plots show the eigenvalues and the subdivision points (vertical lines), the bottomplots give a pictorial visualization
of the orthogonality

xHi Bxl , i ≠ l.

(see top right of Fig. 5). As illustrated in the bottom right plot, both the local and global orthogonality are satisfactory
(10−13 or better).

5. Conclusions

We expounded the close connection between the FEAST algorithm and the well-established Rayleigh–Ritz method for
computing selected eigenpairs of a generalized eigenproblem. Starting from themathematical foundation of this connection,
we identified aspects of the solver that might play a critical role for its accuracy and reliability. Specifically, we discussed the
choice of starting basis and stopping criterion, and the relation between the accuracy of the solutions of the linear systems
internal to FEAST and the resulting eigenpairs; we also investigated the use of FEAST for computing a large portion or even
the entire eigenspectrum. Through numerical exampleswe illustrated how each of these aspectsmight affect the robustness
of the algorithm or diminish the quality of the computed eigensystem.

While we hinted at possible improvements for several of the existing issues, some questions remain open and are the
subject of further research. For instance, a mechanism is needed to overcome the problem of having to specify both the
boundaries of the search interval and the number of eigenvalues expected. Additionally, it would be desirable to have a flag
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assessing whether all the eigenpairs in the search interval have been found. Finally, orthogonality across multiple intervals
should be guaranteed.

In summary, our findings suggest that at the moment FEAST is a promising eigensolver for a certain class of problems,
i.e., when a small portion of the spectrum is sought and knowledge of the eigenvalue distribution is available. On the other
hand, we believe it is still not yet competitive as a robust ‘‘black box’’, general-purpose solver.2
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