Jorge Nocedal Stephen J. Wright

Numerical Optimization

Second Edition

@ Springer

Jorge Nocedal

EECS Department
Northwestern University
Evanston, IL 60208-3118

USA
nocedal@eecs.northwestern.edu

Series Editors:

Thomas V. Mikosch

University of Copenhagen
Laboratory of Actuarial Mathematics
DK-1017 Copenhagen

Denmark

mikosch@act.ku.dk

Sidney I. Resnick

Cornell University

School of Operations Research and
Industrial Engineering

Ithaca, NY 14853

USA

sirl@cornell.edu

Stephen J. Wright

Computer Sciences Department
University of Wisconsin

1210 West Dayton Street
Madison, WI 53706-1613

USA

swright@cs.wisc.edu

Stephen M. Robinson

Department of Industrial and Systems
Engineering

University of Wisconsin

1513 University Avenue

Madison, WI 537061539

USA

smrobins@facstaff.wise.edu

Mathematics Subject Classification (2000): 90B30, 90C11, 90-01, 90-02

Library of Congress Control Number: 2006923897

ISBN-10: 0-387-30303-0

Printed on acid-free paper.

© 2006 Springer Science+Business Media, LLC.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission
of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for
brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now

known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary

rights.
Printed in the United States of America.
987654321

springer.com

ISBN-13: 978-0387-30303-1

To Sue, Isabel and Martin
and
To Mum and Dad

Contents

Preface xvii
Preface to the Second Edition xxi

1 Introduction
Mathematical Formulation
Example: A Transportation Problem
Continuous versus Discrete Optimization
Constrained and Unconstrained Optimization
Global and Local Optimization
Stochastic and Deterministic Optimization
Convexity e
Optimization Algorithms
Notesand References

O 00 N N NN U N -

2 Fundamentals of Unconstrained Optimization 10
2.1 WhatIsaSolution? 12

viii

CONTENTS

Recognizing a Local Minimum
Nonsmooth Problems
2.2 Overview of Algorithms
Two Strategies: Line Search and Trust Region
Search Directions for Line Search Methods
Models for Trust-Region Methods
Scaling

Exercises e e e e e

3 Line Search Methods
31 StepLength
The Wolfe Conditions
The Goldstein Conditions
Sufficient Decrease and Backtracking
3.2 Convergence of Line Search Methods
33 RateofConvergence
Convergence Rate of Steepest Descent
Newton’s Method
Quasi-NewtonMethods
3.4 Newton’s Method with Hessian Modification
Eigenvalue Modification
Adding a Multiple of the Identity
Modified Cholesky Factorization
Modified Symmetric Indefinite Factorization
3.5 Step-Length Selection Algorithms
Interpolation
Initial StepLength L
A Line Search Algorithm for the Wolfe Conditions
Notes and References
EXercises e

4 Trust-Region Methods
Outline of the Trust-Region Approach
4.1 Algorithms Based on the Cauchy Point
The CauchyPoint
Improving on the CauchyPoint
The DoglegMethod
Two-Dimensional Subspace Minimization
42 Global Convergence
Reduction Obtained by the Cauchy Point
Convergence to Stationary Points
4.3 Tterative Solution of the Subproblem

14
17
18
19
20
25
26
27

30
31
33
36
37
37
41
42
44
46
48
49
51
52
54
56
57
59
60
62
63

66
68
71
71
73
73
76
77
77
79
83

CONTENTS

TheHardCase 87
Proofof Theorem 4.1 89
Convergence of Algorithms Based on Nearly Exact Solutions 91

4.4 Local Convergence of Trust-Region Newton Methods 92
4.5 Other Enhancements 95
Scaling e 95

Trust Regionsin Other Norms 97
Notesand References 98
Exercises e 98
Conjugate Gradient Methods 101
5.1 The Linear Conjugate Gradient Method 102
Conjugate Direction Methods 102

Basic Properties of the Conjugate Gradient Method 107

A Practical Form of the Conjugate Gradient Method 111
Rateof Convergenceo it 112
Preconditioning 118
Practical Preconditioners 120

5.2 Nonlinear Conjugate Gradient Methods 121
The Fletcher—Reeves Method 121

The Polak—Ribi¢re Method and Variants 122
Quadratic Terminationand Restarts 124
Behavior of the Fletcher—Reeves Method 125
Global Convergence 127
Numerical Performance 131
Notesand References 132
EXercises e e 133
Quasi-Newton Methods 135
6.1 The BFGSMethod 136
Properties of the BFGS Method 141
Implementation 142

62 TheSR1Method 144
Properties of SR1 Updating 147

6.3 TheBroydenClass e 149
6.4 Convergence Analysis 153
Global Convergence of the BEGSMethod 153
Superlinear Convergence of the BEGS Method 156
Convergence Analysis of the SRI Method 160
Notesand References 161
Exercises e 162

X CONTENTS

7 Large-Scale Unconstrained Optimization

7.1

7.2

7.3
7.4
7.5

Inexact Newton Methods
Local Convergence of Inexact Newton Methods
Line Search Newton—-CG Method
Trust-Region Newton-CG Method
Preconditioning the Trust-Region Newton-CG Method
Trust-Region Newton-Lanczos Method
Limited-Memory Quasi-Newton Methods
Limited-Memory BEGS
Relationship with Conjugate Gradient Methods
General Limited-Memory Updating
Compact Representation of BFGS Updating
Unrollingthe Update
Sparse Quasi-Newton Updates
Algorithms for Partially Separable Functions
Perspectives and Software

Notesand References o v i i i i i e e
Exercises e e e e e

8 Calculating Derivatives

8.1

8.2

Finite-Difference Derivative Approximations
Approximating the Gradient
Approximating a Sparse Jacobian Lo
Approximatingthe Hessian
Approximatinga Sparse Hessian
Automatic Differentiationo L.
AnExample
TheForwardMode
TheReverse Mode
Vector Functions and Partial Separability
Calculating Jacobians of Vector Functions
Calculating Hessians: Forward Mode
Calculating Hessians: Reverse Mode
Current Limitations o L

Notesand References i i

Exercises e e e e e e e e e

9 Derivative-Free Optimization

9.1
9.2

Finite Differencesand Noise
Model-Based Methods
Interpolation and Polynomial Bases
Updating the Interpolation Set

164
165
166
168
170
174
175
176
177
180
181
181
184
185
186
189
190
191

193
194
195
197
201
202
204
205
206
207
210
212
213
215
216
217
217

10

11

12 Theory of Constrained Optimization
Local and Global Solutions

A Method Based on Minimum-Change Updating
Coordinate and Pattern-Search Methods
Coordinate Search Method
Pattern-Search Methods
A Conjugate-Direction Method
Nelder—-Mead Method
Implicit Filtering
Notes and References

Least-Squares Problems
Background
10.2 Linear Least-Squares Problems
10.3 Algorithms for Nonlinear Least-Squares Problems
The Gauss—Newton Method
Convergence of the Gauss—Newton Method
The Levenberg—Marquardt Method
Implementation of the Levenberg—Marquardt Method
Convergence of the Levenberg—Marquardt Method
Methods for Large-Residual Problems
10.4 Orthogonal Distance Regression
Notes and References

Nonlinear Equations

Local Algorithms
Newton’s Method for Nonlinear Equations
Inexact Newton Methods
Broyden’s Method
Tensor Methods

Practical Methods
Merit Functions

Line Search Methods
Trust-Region Methods
Continuation/Homotopy Methods

Practical Continuation Methods
Notes and References

CONTENTS

Xi

Xii CONTENTS

13

Smoothness Lo
121 Examples e e
A Single Equality Constraint
A Single Inequality Constraint
Two Inequality Constraints
12.2 Tangent Cone and Constraint Qualifications
12.3 First-Order Optimality Conditions
12.4 First-Order Optimality Conditions: Proof
Relating the Tangent Cone and the First-Order Feasible Direction Set . .
A Fundamental Necessary Condition
Farkas’ Lemma
Proofof Theorem 12.1
12.5 Second-Order Conditions
Second-Order Conditions and Projected Hessians
12.6 Other Constraint Qualifications
12.7 A Geometric Viewpointo oo
12.8 Lagrange Multipliers and Sensitivity
129 Duality o e
Notesand References
Exercises e

Linear Programming: The Simplex Method
Linear Programming,
13.1 Optimalityand Duality
Optimality Conditions
The Dual Problem,
13.2 Geometryofthe FeasibleSet
Bases and Basic Feasible Points
Vertices of the Feasible Polytope
13.3 TheSimplexMethod Lo L
Outline e
A Single Step of the Method L.
13.4 Linear Algebra in the Simplex Method
13.5 OtherImportantDetails
Pricing and Selection of the EnteringIndex
Starting the Simplex Method
Degenerate Stepsand Cycling
13.6 The Dual SimplexMethod
13.7 Presolving e
13.8 Where Does the Simplex Method Fit?
Notesand References
Exercises e

14

15

16

CONTENTS

Linear Programming: Interior-Point Methods 392
14.1 Primal-DualMethods 393
Outline e 393
TheCentralPath 397
Central Path Neighborhoods and Path-Following Methods 399

14.2 Practical Primal-Dual Algorithms 407
Corrector and Centering Steps 407
StepLengths L 409
StartingPoint L 410

A Practical Algorithm L 411
Solving the Linear Systems 411

14.3 Other Primal-Dual Algorithms and Extensions 413
Other Path-Following Methods 413
Potential-Reduction Methods 414
Extensions 415

14.4 Perspectivesand Software 416
Notesand References 417
Exercises e 418
Fundamentals of Algorithms for Nonlinear Constrained Optimization 421
15.1 Categorizing Optimization Algorithms 422
15.2 The Combinatorial Difficulty of Inequality-Constrained Problems 424
15.3 Eliminationof Variables, 426
Simple Elimination using Linear Constraints 428
General Reduction Strategies for Linear Constraints 431

Effect of Inequality Constraints 434

154 Merit Functionsand Filters 435
Merit Functions L 435

Filters e 437

155 TheMaratosEffecto L. 440
15.6 Second-Order Correction and Nonmonotone Techniques 443
Nonmonotone (Watchdog) Strategy 444
Notesand References 446
Exercises e 446
Quadratic Programming 448
16.1 Equality-Constrained Quadratic Programs 451
Properties of Equality-Constrained QPs 451

16.2 Direct Solution of the KKT System 454
Factoring the Full KKT System 454
Schur-Complement Method 455
Null-Space Method 457

xiii

xiv CONTENTS

17

16.3 Iterative Solution of the KKT System 459
CG Applied to the Reduced System 459
The Projected CGMethod 461
16.4 Inequality-Constrained Problems 463
Optimality Conditions for Inequality-Constrained Problems 464
Degeneracy o 465
16.5 Active-Set Methodsfor ConvexQPs 467
Specification of the Active-Set Method for Convex QP 472
Further Remarks on the Active-Set Method 476
Finite Termination of Active-Set Algorithm on Strictly Convex QPs . . . 477
Updating Factorizations 478
16.6 Interior-Point Methods 480
Solving the Primal-Dual System 482
Step Length Selection 483
A Practical Primal-Dual Method 484
16.7 The Gradient Projection Method 485
Cauchy Point Computation 486
Subspace Minimization 488
16.8 Perspectivesand Software L. 490
Notesand References 492
EXercises o o e e 492
Penalty and Augmented Lagrangian Methods 497
17.1 The Quadratic Penalty Method 498
Motivation o o e 498
Algorithmic Framework Lo L. 501
Convergence of the Quadratic Penalty Method 502
Il Conditioning and Reformulations 505
17.2 Nonsmooth Penalty Functions 507
A Practical £; Penalty Method, 511
A General Class of Nonsmooth Penalty Methods 513
17.3 Augmented Lagrangian Method: Equality Constraints 514
Motivation and Algorithmic Framework 514
Properties of the Augmented Lagrangian 517
17.4 Practical Augmented Lagrangian Methods 519
Bound-Constrained Formulation 519
Linearly Constrained Formulation 522
Unconstrained Formulation 523
17.5 Perspectivesand Software 525
Notesand References 526

Exercises e e e e e e e e e 527

CONTENTS XV

18 Sequential Quadratic Programming 529
18.1 Local SQPMethod 530
SQP Framework 531
Inequality Constraints L 532

18.2 Preview of Practical SQP Methods 533
IQPandEQP 533
Enforcing Convergence 534

18.3 Algorithmic Development 535
Handling Inconsistent Linearizations 535

Full Quasi-Newton Approximations 536
Reduced-Hessian Quasi-Newton Approximations 538

Merit Functions oo 540
Second-Order Correction 543

18.4 A Practical Line Search SQP Method 545
18.5 Trust-Region SQP Methods 546
A Relaxation Method for Equality-Constrained Optimization 547
S€;QP (Sequential £; Quadratic Programming) 549
Sequential Linear-Quadratic Programming (SLQP) 551

A Technique for Updating the Penalty Parameter 553

18.6 Nonlinear Gradient Projection 554
18.7 Convergence Analysiso i i e e e 556
Rateof Convergenceo ii i 557

18.8 Perspectivesand Software L. 560
Notesand References 561
Exercises 561
19 Interior-Point Methods for Nonlinear Programming 563
19.1 Two Interpretations 564
19.2 A Basic Interior-Point Algorithm 566
19.3 Algorithmic Development 569
Primal vs. Primal-Dual System 570
Solving the Primal-Dual System 570
Updating the Barrier Parameter 572
Handling Nonconvexity and Singularity 573

Step Acceptance: Merit Functionsand Filters 575
Quasi-Newton Approximations 575
Feasible Interior-Point Methods 576

19.4 A Line Search Interior-Point Method 577
19.5 A Trust-Region Interior-Point Method 578
An Algorithm for Solving the Barrier Problem 578

Step Computation oL 580

Lagrange Multipliers Estimates and Step Acceptance 581

xvi

CONTENTS

A2

Description of a Trust-Region Interior-Point Method

19.6 The Primal Log-Barrier Method
19.7 Global Convergence Properties
Failure of the Line Search Approach
Modified Line Search Methods
Global Convergence of the Trust-Region Approach
19.8 Superlinear Convergence
19.9 Perspectivesand Software L.
Notesand References
EXercises o o e e
A Background Material
A1l Elementsof Linear Algebra
Vectorsand Matriceso
NOrms e
Subspaces

Eigenvalues, Figenvectors, and the Singular-Value Decomposition
Determinantand Trace
Matrix Factorizations: Cholesky, LU,QR
Symmetric Indefinite Factorization
Sherman—Morrison-Woodbury Formula
Interlacing Eigenvalue Theorem
Error Analysis and Floating-Point Arithmetic
Conditioningand Stability 00 L.
Elements of Analysis, Geometry, Topology
Sequences
Ratesof Convergence,
Topology of the Euclidean Space R"
Convex SetsinR"
Continuityand Limits
Derivatives o e
Directional Derivatives
Mean Value Theorem
Implicit Function Theorem
Order Notation,
Root-Finding for Scalar Equations

B A Regularization Procedure
References

Index

598
598
598
600
602
603
605
606
610
612
613
613
616
617
617
619
620
621
623
625
628
629
630
631
633

635

637

653

Preface

This is a book for people interested in solving optimization problems. Because of the wide
(and growing) use of optimization in science, engineering, economics, and industry, it is
essential for students and practitioners alike to develop an understanding of optimization
algorithms. Knowledge of the capabilities and limitations of these algorithms leads to a better
understanding of their impact on various applications, and points the way to future research
on improving and extending optimization algorithms and software. Our goal in this book
is to give a comprehensive description of the most powerful, state-of-the-art, techniques
for solving continuous optimization problems. By presenting the motivating ideas for each
algorithm, we try to stimulate the reader’s intuition and make the technical details easier to
follow. Formal mathematical requirements are kept to a minimum.

Because of our focus on continuous problems, we have omitted discussion of impor-
tant optimization topics such as discrete and stochastic optimization. However, there are a
great many applications that can be formulated as continuous optimization problems; for
instance,

finding the optimal trajectory for an aircraft or a robot arm;

identifying the seismic properties of a piece of the earth’s crust by fitting a model of
the region under study to a set of readings from a network of recording stations;

3

-

-

PREFACE

designing a portfolio of investments to maximize expected return while maintaining
an acceptable level of risk;

controlling a chemical process or a mechanical device to optimize performance or
meet standards of robustness;

computing the optimal shape of an automobile or aircraft component.

Every year optimization algorithms are being called on to handle problems that
are much larger and complex than in the past. Accordingly, the book emphasizes large-
scale optimization techniques, such as interior-point methods, inexact Newton methods,
limited-memory methods, and the role of partially separable functions and automatic
differentiation. It treats important topics such as trust-region methods and sequential
quadratic programming more thoroughly than existing texts, and includes comprehensive
discussion of such “core curriculum” topics as constrained optimization theory, Newton
and quasi-Newton methods, nonlinear least squares and nonlinear equations, the simplex
method, and penalty and barrier methods for nonlinear programming.

The Audience

We intend that this book will be used in graduate-level courses in optimization, as of-
fered in engineering, operations research, computer science, and mathematics departments.
There is enough material here for a two-semester (or three-quarter) sequence of courses.
We hope, too, that this book will be used by practitioners in engineering, basic science, and
industry, and our presentation style is intended to facilitate self-study. Since the book treats
anumber of new algorithms and ideas that have not been described in earlier textbooks, we
hope that this book will also be a useful reference for optimization researchers.

Prerequisites for this book include some knowledge of linear algebra (including nu-
merical linear algebra) and the standard sequence of calculus courses. To make the book as
self-contained as possible, we have summarized much of the relevant material from these ar-
eas in the Appendix. Our experience in teaching engineering students has shown us that the
material is best assimilated when combined with computer programming projects in which
the student gains a good feeling for the algorithms—their complexity, memory demands,
and elegance—and for the applications. In most chapters we provide simple computer
exercises that require only minimal programming proficiency.

Emphasis and Writing Style

We have used a conversational style to motivate the ideas and present the numerical
algorithms. Rather than being as concise as possible, our aim is to make the discussion flow
in a natural way. As a result, the book is comparatively long, but we believe that it can be
read relatively rapidly. The instructor can assign substantial reading assignments from the
text and focus in class only on the main ideas.

A typical chapter begins with a nonrigorous discussion of the topic at hand, including
figures and diagrams and excluding technical details as far as possible. In subsequent sections,

PREFACE

the algorithms are motivated and discussed, and then stated explicitly. The major theoretical
results are stated, and in many cases proved, in a rigorous fashion. These proofs can be
skipped by readers who wish to avoid technical details.

The practice of optimization depends not only on efficient and robust algorithms,
but also on good modeling techniques, careful interpretation of results, and user-friendly
software. In this book we discuss the various aspects of the optimization process—modeling,
optimality conditions, algorithms, implementation, and interpretation of results—but not
with equal weight. Examples throughout the book show how practical problems are formu-
lated as optimization problems, but our treatment of modeling is light and serves mainly
to set the stage for algorithmic developments. We refer the reader to Dantzig [86] and
Fourer, Gay, and Kernighan [112] for more comprehensive discussion of this issue. Our
treatment of optimality conditions is thorough but not exhaustive; some concepts are dis-
cussed more extensively in Mangasarian [198] and Clarke [62]. As mentioned above, we are
quite comprehensive in discussing optimization algorithms.

Topics Not Covered

We omit some important topics, such as network optimization, integer programming,
stochastic programming, nonsmooth optimization, and global optimization. Network and
integer optimization are described in some excellent texts: for instance, Ahuja, Magnanti, and
Orlin [1] in the case of network optimization and Nemhauser and Wolsey [224], Papadim-
itriou and Steiglitz [235], and Wolsey [312] in the case of integer programming. Books on
stochastic optimization are only now appearing; we mention those of Kall and Wallace [174],
Birge and Louveaux [22]. Nonsmooth optimization comes in many flavors. The relatively
simple structures that arise in robust data fitting (which is sometimes based on the £, norm)
are treated by Osborne [232] and Fletcher [101]. The latter book also discusses algorithms
for nonsmooth penalty functions that arise in constrained optimization; we discuss these
briefly, too, in Chapter 18. A more analytical treatment of nonsmooth optimization is given
by Hiriart-Urruty and Lemaréchal [170]. We omit detailed treatment of some important
topics that are the focus of intense current research, including interior-point methods for
nonlinear programming and algorithms for complementarity problems.

Additional Resource

The material in the book is complemented by an online resource called the NEOS
Guide, which can be found on the World-Wide Web at

http://www.mcs.anl.gov/otc/Guide/

The Guide contains information about most areas of optimization, and presents a number
of case studies that describe applications of various optimization algorithms to real-world
problems such as portfolio optimization and optimal dieting. Some of this material is
interactive in nature and has been used extensively for class exercises.

XX

PREFACE

For the most part, we have omitted detailed discussions of specific software packages,
and refer the reader to Moré and Wright [217] or to the Software Guide section of the NEOS
Guide, which can be found at

http://www.mcs.anl.gov/otc/Guide/SoftwareGuide/

Users of optimization software refer in great numbers to this web site, which is being
constantly updated to reflect new packages and changes to existing software.

Acknowledgments

We are most grateful to the following colleagues for their input and feedback on various
sections of this work: Chris Bischof, Richard Byrd, George Corliss, Bob Fourer, David Gay,
Jean-Charles Gilbert, Phillip Gill, Jean-Pierre Goux, Don Goldfarb, Nick Gould, Andreas
Griewank, Matthias Heinkenschloss, Marcelo Marazzi, Hans Mittelmann, Jorge Moré, Will
Naylor, Michael Overton, Bob Plemmons, Hugo Scolnik, David Stewart, Philippe Toint,
Luis Vicente, Andreas Wichter, and Ya-xiang Yuan. We thank Guanghui Liu, who provided
help with many of the exercises, and Jill Lavelle who assisted us in preparing the figures. We
also express our gratitude to our sponsors at the Department of Energy and the National
Science Foundation, who have strongly supported our research efforts in optimization over
the years.

One of us (JN) would like to express his deep gratitude to Richard Byrd, who has taught
him so much about optimization and who has helped him in very many ways throughout
the course of his career.

Final Remark

In the preface to his 1987 book [101], Roger Fletcher described the field of optimization
as a “fascinating blend of theory and computation, heuristics and rigor.” The ever-growing
realm of applications and the explosion in computing power is driving optimization research
in new and exciting directions, and the ingredients identified by Fletcher will continue to
play important roles for many years to come.

Jorge Nocedal Stephen J. Wright
Evanston, IL Argonne, IL

Preface to the
Second Edition

During the six years since the first edition of this book appeared, the field of continuous
optimization has continued to grow and evolve. This new edition reflects a better under-
standing of constrained optimization at both the algorithmic and theoretical levels, and of
the demands imposed by practical applications. Perhaps most notably, new chapters have
been added on two important topics: derivative-free optimization (Chapter 9) and interior-
point methods for nonlinear programming (Chapter 19). The former topic has proved to
be of great interest in applications, while the latter topic has come into its own in recent
years and now forms the basis of successful codes for nonlinear programming.

Apart from the new chapters, we have revised and updated throughout the book,
de-emphasizing or omitting less important topics, enhancing the treatment of subjects of
evident interest, and adding new material in many places. The first part (unconstrained opti-
mization) has been comprehensively reorganized to improve clarity. Discussion of Newton’s
method—the touchstone method for unconstrained problems—is distributed more nat-
urally throughout this part rather than being isolated in a single chapter. An expanded
discussion of large-scale problems appears in Chapter 7.

Some reorganization has taken place also in the second part (constrained optimiza-
tion), with material common to sequential quadratic programming and interior-point
methods now appearing in the chapter on fundamentals of nonlinear programming

-

PREFACE TO THE SECOND EDITION

algorithms (Chapter 15) and the discussion of primal barrier methods moved to the new
interior-point chapter. There is much new material in this part, including a treatment of
nonlinear programming duality, an expanded discussion of algorithms for inequality con-
strained quadratic programming, a discussion of dual simplex and presolving in linear
programming, a summary of practical issues in the implementation of interior-point linear
programming algorithms, a description of conjugate-gradient methods for quadratic pro-
gramming, and a discussion of filter methods and nonsmooth penalty methods in nonlinear
programming algorithms.

In many chapters we have added a Perspectives and Software section near the end, to
place the preceding discussion in context and discuss the state of the art in software. The
appendix has been rearranged with some additional topics added, so that it can be used
in a more stand-alone fashion to cover some of the mathematical background required
for the rest of the book. The exercises have been revised in most chapters. After these
many additions, deletions, and changes, the second edition is only slightly longer than the
first, reflecting our belief that careful selection of the material to include and exclude is an
important responsibility for authors of books of this type.

A manual containing solutions for selected problems will be available to bona fide
instructors through the publisher. A list of typos will be maintained on the book’s web site,
which is accessible from the web pages of both authors.

We acknowledge with gratitude the comments and suggestions of many readers of the
first edition, who sent corrections to many errors and provided valuable perspectives on the
material, which led often to substantial changes. We mention in particular Frank Curtis,
Michael Ferris, Andreas Griewank, Jacek Gondzio, Sven Leyffer, Philip Loewen, Rembert
Reemtsen, and David Stewart.

Our special thanks goes to Michael Overton, who taught from a draft of the second
edition and sent many detailed and excellent suggestions. We also thank colleagues who
read various chapters of the new edition carefully during development, including Richard
Byrd, Nick Gould, Paul Hovland, Gabo Lopéz-Calva, Long Hei, Katya Scheinberg, Andreas
Waichter, and Richard Waltz. We thank Jill Wright for improving some of the figures and for
the new cover graphic.

We mentioned in the original preface several areas of optimization that are not
covered in this book. During the past six years, this list has only grown longer, as the field
has continued to expand in new directions. In this regard, the following areas are particularly
noteworthy: optimization problems with complementarity constraints, second-order cone
and semidefinite programming, simulation-based optimization, robust optimization, and
mixed-integer nonlinear programming. All these areas have seen theoretical and algorithmic
advances in recent years, and in many cases developments are being driven by new classes
of applications. Although this book does not cover any of these areas directly, it provides a
foundation from which they can be studied.

Jorge Nocedal Stephen J. Wright
Evanston, IL Madison, WI

CHAPTER

Introduction

People optimize. Investors seek to create portfolios that avoid excessive risk while achieving a
high rate of return. Manufacturers aim for maximum efficiency in the design and operation
of their production processes. Engineers adjust parameters to optimize the performance of
their designs.

Nature optimizes. Physical systems tend to a state of minimum energy. The molecules
in an isolated chemical system react with each other until the total potential energy of their
electrons is minimized. Rays of light follow paths that minimize their travel time.

CHAPTER 1. I[INTRODUCTION

Optimization is an important tool in decision science and in the analysis of physical
systems. To make use of this tool, we must first identify some objective, a quantitative measure
of the performance of the system under study. This objective could be profit, time, potential
energy, or any quantity or combination of quantities that can be represented by a single
number. The objective depends on certain characteristics of the system, called variables or
unknowns. Our goal is to find values of the variables that optimize the objective. Often the
variables are restricted, or constrained, in some way. For instance, quantities such as electron
density in a molecule and the interest rate on a loan cannot be negative.

The process of identifying objective, variables, and constraints for a given problem is
known as modeling. Construction of an appropriate model is the first step—sometimes the
most important step—in the optimization process. If the model is too simplistic, it will not
give useful insights into the practical problem. If it is too complex, it may be too difficult to
solve.

Once the model has been formulated, an optimization algorithm can be used to
find its solution, usually with the help of a computer. There is no universal optimization
algorithm but rather a collection of algorithms, each of which is tailored to a particular type
of optimization problem. The responsibility of choosing the algorithm that is appropriate
for a specific application often falls on the user. This choice is an important one, as it may
determine whether the problem is solved rapidly or slowly and, indeed, whether the solution
is found at all.

After an optimization algorithm has been applied to the model, we must be able to
recognize whether it has succeeded in its task of finding a solution. In many cases, there
are elegant mathematical expressions known as optimality conditions for checking that the
current set of variables is indeed the solution of the problem. If the optimality conditions are
not satisfied, they may give useful information on how the current estimate of the solution
can be improved. The model may be improved by applying techniques such as sensitivity
analysis, which reveals the sensitivity of the solution to changes in the model and data.
Interpretation of the solution in terms of the application may also suggest ways in which the
model can be refined or improved (or corrected). If any changes are made to the model, the
optimization problem is solved anew, and the process repeats.

MATHEMATICAL FORMULATION

Mathematically speaking, optimization is the minimization or maximization of a
function subject to constraints on its variables. We use the following notation:

- x is the vector of variables, also called unknowns or parameters;

- f is the objective function, a (scalar) function of x that we want to maximize or
minimize;

- ¢; are constraint functions, which are scalar functions of x that define certain equations
and inequalities that the unknown vector x must satisfy.

CHAPTER 1. [INTRODUCTION 3

X
c
¥ " AR _ contours of f
feasible
region , 4
e

;xg

Figure 1.1 Geometrical representation of the problem (1.2).

Using this notation, the optimization problem can be written as follows:

. . c(x)=0, ie€é&,
min f(x) subject to (1.1)
xeR” ci(x)>0, iel

Here 7 and & are sets of indices for equality and inequality constraints, respectively.
As a simple example, consider the problem

. 2 2 . .Xf — X2 = 0,
min (x; —2)°+ (xp — 1) subject to (1.2)
X1 +x, <2.

We can write this problem in the form (1.1) by defining

fx) = (x1 —2)" + (x; — 1), x=|:X1i|,

X2

42
c(x)=|:q(X):|=|: e } I={L2), £=0.

c(x) —x1—x+2

Figure 1.1 shows the contours of the objective function, that is, the set of points for which
f(x) has a constant value. It also illustrates the feasible region, which is the set of points
satisfying all the constraints (the area between the two constraint boundaries), and the point

Pencil

CHAPTER 1. I[INTRODUCTION

x*, which is the solution of the problem. Note that the “infeasible side” of the inequality
constraints is shaded.

The example above illustrates, too, that transformations are often necessary to express
an optimization problem in the particular form (1.1). Often it is more natural or convenient
to label the unknowns with two or three subscripts, or to refer to different variables by
completely different names, so that relabeling is necessary to pose the problem in the form
(1.1). Another common difference is that we are required to maximize rather than minimize
/> but we can accommodate this change easily by minimizing — f in the formulation (1.1).
Good modeling systems perform the conversion to standardized formulations such as (1.1)
transparently to the user.

EXAMPLE: A TRANSPORTATION PROBLEM

We begin with a much simplified example of a problem that might arise in manufac-
turing and transportation. A chemical company has 2 factories F; and F, and a dozen retail
outlets Ry, Ry, ..., Ryi;. Each factory F; can produce g; tons of a certain chemical product
each week; a; is called the capacity of the plant. Each retail outlet R; has a known weekly
demand of b; tons of the product. The cost of shipping one ton of the product from factory
F; to retail outlet R; is ¢;;.

The problem is to determine how much of the product to ship from each factory
to each outlet so as to satisfy all the requirements and minimize cost. The variables of the
problem are x;;, i = 1,2, j = 1, ..., 12, where x;; is the number of tons of the product
shipped from factory F; to retail outlet R;; see Figure 1.2. We can write the problem as

mianijxij (133)
ij
12
subject ton,-j <a, =12, (1.3b)
j=1
2
Y oxiyzby j=1.....12, (1.3¢)
i=1
x>0, i=12 j=1,...,12 (1.3d)

This type of problem is known as a linear programming problem, since the objective function
and the constraints are all linear functions. In a more practical model, we would also include
costs associated with manufacturing and storing the product. There may be volume discounts
in practice for shipping the product; for example the cost (1.3a) could be represented by
Zi ; Cij \/W , where § > 0 is a small subscription fee. In this case, the problem is a
nonlinear program because the objective function is nonlinear.

CHAPTER 1. [INTRODUCTION

® R

® R
X, 2

Ny

® R

oy

® R,

Figure 1.2 A transportation problem.

CONTINUOUS VERSUS DISCRETE OPTIMIZATION

In some optimization problems the variables make sense only if they take on integer
values. For example, a variable x; could represent the number of power plants of type i
that should be constructed by an electicity provider during the next 5 years, or it could
indicate whether or not a particular factory should be located in a particular city. The
mathematical formulation of such problems includes integrality constraints, which have
the form x; € Z, where Z is the set of integers, or binary constraints, which have the form
x; € {0, 1}, in addition to algebraic constraints like those appearing in (1.1). Problems of
this type are called integer programming problems. If some of the variables in the problem
are not restricted to be integer or binary variables, they are sometimes called mixed integer
programming problems, or MIPs for short.

Integer programming problems are a type of discrete optimization problem. Generally,
discrete optimization problems may contain not only integers and binary variables, but also
more abstract variable objects such as permutations of an ordered set. The defining feature
of a discrete optimization problem is that the unknown x is drawn from a a finite (but often
very large) set. By contrast, the feasible set for continuous optimization problems—the class
of problems studied in this book—is usually uncountably infinite, as when the components
of x are allowed to be real numbers. Continuous optimization problems are normally easier
to solve because the smoothness of the functions makes it possible to use objective and
constraint information at a particular point x to deduce information about the function’s
behavior at all points close to x. In discrete problems, by constrast, the behavior of the
objective and constraints may change significantly as we move from one feasible point to
another, even if the two points are “close” by some measure. The feasible sets for discrete
optimization problems can be thought of as exhibiting an extreme form of nonconvexity, as
a convex combination of two feasible points is in general not feasible.

5

CHAPTER 1. I[INTRODUCTION

Discrete optimization problems are not addressed directly in this book; we refer the
reader to the texts by Papadimitriou and Steiglitz [235], Nemhauser and Wolsey [224], Cook
etal. [77],and Wolsey [312] for comprehensive treatments of this subject. We note, however,
that continuous optimization techniques often play an important role in solving discrete
optimization problems. For instance, the branch-and-bound method for integer linear
programming problems requires the repeated solution of linear programming “relaxations,”
in which some of the integer variables are fixed at integer values, while for other integer
variables the integrality constraints are temporarily ignored. These subproblems are usually
solved by the simplex method, which is discussed in Chapter 13 of this book.

CONSTRAINED AND UNCONSTRAINED OPTIMIZATION

Problems with the general form (1.1) can be classified according to the nature of the
objective function and constraints (linear, nonlinear, convex), the number of variables (large
or small), the smoothness of the functions (differentiable or nondifferentiable), and so on.
An important distinction is between problems that have constraints on the variables and
those that do not. This book is divided into two parts according to this classification.

Unconstrained optimization problems, for which we have £ = Z = @ in (1.1), arise
directly in many practical applications. Even for some problems with natural constraints
on the variables, it may be safe to disregard them as they do not affect on the solution and
do not interfere with algorithms. Unconstrained problems arise also as reformulations of
constrained optimization problems, in which the constraints are replaced by penalization
terms added to objective function that have the effect of discouraging constraint violations.

Constrained optimization problems arise from models in which constraints play an
essential role, for example in imposing budgetary constraints in an economic problem or
shape constraints in a design problem. These constraints may be simple bounds such as
0 < x; < 100, more general linear constraints such as Zi x; < 1, or nonlinear inequalities
that represent complex relationships among the variables.

When the objective function and all the constraints are linear functions of x, the
problem is a linear programming problem. Problems of this type are probably the most
widely formulated and solved of all optimization problems, particularly in management,
financial, and economic applications. Nonlinear programming problems, in which at least
some of the constraints or the objective are nonlinear functions, tend to arise naturally in
the physical sciences and engineering, and are becoming more widely used in management
and economic sciences as well.

GLOBAL AND LOCAL OPTIMIZATION

Many algorithms for nonlinear optimization problems seek only a local solution, a
point at which the objective function is smaller than at all other feasible nearby points. They
do not always find the global solution, which is the point with lowest function value among all
feasible points. Global solutions are needed in some applications, but for many problems they

CHAPTER 1. INTRODUCTION

are difficult to recognize and even more difficult to locate. For convex programmingproblems,
and more particularly for linear programs, local solutions are also global solutions. General
nonlinear problems, both constrained and unconstrained, may possess local solutions that
are not global solutions.

In this book we treat global optimization only in passing and focus instead on the
computation and characterization oflocal solutions. We note, however, that many successful
global optimization algorithms require the solution of many local optimization problems,
to which the algorithms described in this book can be applied.

Research papers on global optimization can be found in Floudas and Pardalos [109]
and in the Journal of Global Optimization.

STOCHASTIC AND DETERMINISTIC OPTIMIZATION

In some optimization problems, the model cannot be fully specified because it depends
on quantities that are unknown at the time of formulation. This characteristic is shared by
many economic and financial planning models, which may depend for example on future
interest rates, future demands for a product, or future commodity prices, but uncertainty
can arise naturally in almost any type of application.

Rather than just use a “best guess” for the uncertain quantities, modelers may obtain
more useful solutions by incorporating additional knowledge about these quantities into
the model. For example, they may know a number of possible scenarios for the uncertain
demand, along with estimates of the probabilities of each scenario. Stochastic optimization
algorithms use these quantifications of the uncertainty to produce solutions that optimize
the expected performance of the model.

Related paradigms for dealing with uncertain data in the model include chance-
constrained optimization, in which we ensure that the variables x satisfy the given constraints
to some specified probability, and robust optimization, in which certain constraints are
required to hold for all possible values of the uncertain data.

We do not consider stochastic optimization problems further in this book, focusing
instead on deterministic optimization problems, in which the model is completely known.
Many algorithms for stochastic optimization do, however, proceed by formulating one or
more deterministic subproblems, each of which can be solved by the techniques outlined
here.

Stochastic and robust optimization have seen a great deal of recent research activity.
For further information on stochastic optimization, consult the books of Birge and
Louveaux [22] and Kall and Wallace [174]. Robust optimization is discussed in Ben-Tal
and Nemirovski [15].

CONVEXITY

The concept of convexity is fundamental in optimization. Many practical problems
possess this property, which generally makes them easier to solve both in theory and practice.

CHAPTER 1. I[INTRODUCTION

The term “convex” can be applied both to sets and to functions. A set § € R" is a
convex set if the straight line segment connecting any two points in S lies entirely inside S.
Formally, for any two points x € Sandy € S, wehaveax + (1 —«a)y € Sforalla € [0, 1].
The function f is a convex function if its domain § is a convex set and if for any two points
x and y in S, the following property is satisfied:

flax+ (1 —a)y) <af(x)+ (1 —a)f(y), forala e [0,1]. (1.4)

Simple instances of convex sets include the unit ball {y € R" | ||y||, < 1}; and any

polyhedron, which is a set defined by linear equalities and inequalities, that is,
{xeR"|Ax =b, Cx <d},

where A and C are matrices of appropriate dimension, and b and d are vectors. Simple
instances of convex functions include the linear function f(x) = ¢’ x + «, for any constant
vector ¢ € R" and scalar o; and the convex quadratic function f(x) = x Hx, where H is
a symmetric positive semidefinite matrix.

We say that f is strictly convex if the inequality in (1.4) is strict whenever x # y and
« is in the open interval (0, 1). A function f is said to be concave if — f is convex.

If the objective function in the optimization problem (1.1) and the feasible region are
both convex, then any local solution of the problem is in fact a global solution.

The term convex programming is used to describe a special case of the general
constrained optimization problem (1.1) in which

o the objective function is convex,
o the equality constraint functions ¢;(-), i € &, are linear, and

e the inequality constraint functions ¢;(-), i € Z, are concave.

OPTIMIZATION ALGORITHMS

Optimization algorithms are iterative. They begin with an initial guess of the variable
x and generate a sequence of improved estimates (called “iterates”) until they terminate,
hopefully at a solution. The strategy used to move from one iterate to the next distinguishes
one algorithm from another. Most strategies make use of the values of the objective function
/> the constraint functions ¢;, and possibly the first and second derivatives of these functions.
Some algorithms accumulate information gathered at previous iterations, while others use
only local information obtained at the current point. Regardless of these specifics (which
will receive plenty of attention in the rest of the book), good algorithms should possess the
following properties:

e Robustness. They should perform well on a wide variety of problems in their class,
for all reasonable values of the starting point.

CHAPTER 1. INTRODUCTION

e Efficiency. They should not require excessive computer time or storage.

e Accuracy. They should be able to identify a solution with precision, without being
overly sensitive to errors in the data or to the arithmetic rounding errors that occur
when the algorithm is implemented on a computer.

These goals may conflict. For example, a rapidly convergent method for a large uncon-
strained nonlinear problem may require too much computer storage. On the other hand,
a robust method may also be the slowest. Tradeoffs between convergence rate and storage
requirements, and between robustness and speed, and so on, are central issues in numerical
optimization. They receive careful consideration in this book.

The mathematical theory of optimization is used both to characterize optimal points
and to provide the basis for most algorithms. It is not possible to have a good understanding
of numerical optimization without a firm grasp of the supporting theory. Accordingly,
this book gives a solid (though not comprehensive) treatment of optimality conditions, as
well as convergence analysis that reveals the strengths and weaknesses of some of the most
important algorithms.

NOTES AND REFERENCES

Optimization traces its roots to the calculus of variations and the work of Euler and
Lagrange. The development of linear programming n the 1940s broadened the field and
stimulated much of the progress in modern optimization theory and practice during the
past 60 years.

Optimization is often called mathematical programming, a somewhat confusing term
coined in the 1940s, before the word “programming” became inextricably linked with
computer software. The original meaning of this word (and the intended one in this context)
was more inclusive, with connotations of algorithm design and analysis.

Modeling will not be treated extensively in the book. It is an essential subject in its
own right, as it makes the connection between optimization algorithms and software on
the one hand, and applications on the other hand. Information about modeling techniques
for various application areas can be found in Dantzig [86], Ahuja, Magnanti, and Orlin [1],
Fourer, Gay, and Kernighan [112], Winston [308], and Rardin [262].

Junda

\/

Optimizat

In unconstrained optimization, we minimize an objective function that depends on real
variables, with no restrictions at all on the values of these variables. The mathematical

CHAPTER

mner

NCOI

formulation is

where x € R” is a real vector with n > 1 components and f : R* — R is a smooth

function.

stra

*

tals of
nead

*

On

min fx),

CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION 11

y
y3 L]
[]
yz """"""" A d
yl 777777 hd L]
\ L L \ !
ot t

Figure 2.1 Least squares data fitting problem.

Usually, we lack a global perspective on the function f. All we know are the values
of f and maybe some of its derivatives at a set of points xg, X1, X2, Fortunately, our
algorithms get to choose these points, and they try to do so in a way that identifies a solution
reliably and without using too much computer time or storage. Often, the information
about f does not come cheaply, so we usually prefer algorithms that do not call for this
information unnecessarily.

(d EXAMPLE 2.1

Suppose that we are trying to find a curve that fits some experimental data. Figure 2.1
plots measurements y1, ¥, . . . , ¥, Of a signal taken at times#,, 5, . . ., ;. From the data and
our knowledge of the application, we deduce that the signal has exponential and oscillatory
behavior of certain types, and we choose to model it by the function

o(t;x) =x1 + xze’("r’)z/)‘4 + x5 cos(xgt).
The real numbers x;,i = 1,2, ..., 6, are the parameters of the model; we would like to
choose them to make the model values ¢(¢;; x) fit the observed data y; as closely as possible.

To state our objective as an optimization problem, we group the parameters x; into a vector
of unknowns x = (x1, xa, ..., x¢)7, and define the residuals

ri(x) =y; — ¢(tj; x), j=12,...,m, (2.2)

which measure the discrepancy between the model and the observed data. Our estimate of

12

CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

x will be obtained by solving the problem
min f(x) = rE(x) () 4 (X). (2.3)
xXe

This is a nonlinear least-squares problem, a special case of unconstrained optimization.

It illustrates that some objective functions can be expensive to evaluate even when the

number of variables is small. Here we have n = 6, but if the number of measurements

m is large (10°, say), evaluation of f(x) for a given parameter vector x is a significant
computation.

O

Suppose that for the data given in Figure 2.1 the optimal solution of (2.3) is ap-
proximately x* = (1.1,0.01, 1.2, 1.5,2.0,1.5) and the corresponding function value is
f(x*) = 0.34. Because the optimal objective is nonzero, there must be discrepancies be-
tween the observed measurements y; and the model predictions ¢(¢;, x*) for some (usually
most) values of j—the model has not reproduced all the data points exactly. How, then,
can we verify that x* is indeed a minimizer of f? To answer this question, we need to
define the term “solution” and explain how to recognize solutions. Only then can we discuss
algorithms for unconstrained optimization problems.

2.1 WHAT IS A SOLUTION?

Generally, we would be happiest if we found a global minimizer of f, a point where the
function attains its least value. A formal definition is

A point x* is a global minimizer if f(x*) < f(x) for all x,

where x ranges over all of R" (or at least over the domain of interest to the modeler). The
global minimizer can be difficult to find, because our knowledge of f is usually only local.
Since our algorithm does not visit many points (we hope!), we usually do not have a good
picture of the overall shape of f, and we can never be sure that the function does not take a
sharp dip in some region that has not been sampled by the algorithm. Most algorithms are
able to find only a local minimizer, which is a point that achieves the smallest value of f in
its neighborhood. Formally, we say:

A point x* is a local minimizer if there is a neighborhood A of x* such that f(x*) <
f(x)forallx e NV.

(Recall thata neighborhood of x* is simply an open set that contains x*.) A point that satisfies
this definition is sometimes called a weak local minimizer. This terminology distinguishes

2.1. WHAT IS A SOLUTION?

it from a strict local minimizer, which is the outright winner in its neighborhood.
Formally,

A point x* is a strict local minimizer (also called a strong local minimizer) if there is a
neighborhood N of x* such that f(x*) < f(x) forallx € A with x # x*.

For the constant function f(x) = 2, every point x is a weak local minimizer, while the
function f(x) = (x — 2)* has a strict local minimizer at x = 2.
A slightly more exotic type of local minimizer is defined as follows.

A point x* is an isolated local minimizer if there is a neighborhood A/ of x* such that
x* is the only local minimizer in \V.

Some strict local minimizers are not isolated, as illustrated by the function
f(x) =x*cos(1/x)+2x*, f(0) =0,

which is twice continuously differentiable and has a strict local minimizer at x* = 0.
However, there are strict local minimizers at many nearby points x;, and we can label these
points so that x; — 0as j — oo.

While strict local minimizers are not always isolated, it is true that all isolated local
minimizers are strict.

Figure 2.2 illustrates a function with many local minimizers. It is usually difficult
to find the global minimizer for such functions, because algorithms tend to be “trapped”
at local minimizers. This example is by no means pathological. In optimization problems
associated with the determination of molecular conformation, the potential function to be
minimized may have millions of local minima.

Figure 2.2 A difficult case for global minimization.

13

14 CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

Sometimes we have additional “global” knowledge about f that may help in identi-
fying global minima. An important special case is that of convex functions, for which every
local minimizer is also a global minimizer.

RECOGNIZING A LOCAL MINIMUM

From the definitions given above, it might seem that the only way to find out whether
a point x* is a local minimum is to examine all the points in its immediate vicinity, to
make sure that none of them has a smaller function value. When the function f is smooth,
however, there are more efficient and practical ways to identify local minima. In particular, if
f is twice continuously differentiable, we may be able to tell that x* is a local minimizer (and
possibly a strict local minimizer) by examining just the gradient V f(x*) and the Hessian
V2 f(x*).

The mathematical tool used to study minimizers of smooth functions is Taylor’s
theorem. Because this theorem is central to our analysis throughout the book, we state it
now. Its proof can be found in any calculus textbook.

Theorem 2.1 (Taylor's Theorem).
Suppose that f : R" — R is continuously differentiable and that p € R". Then we have
that

fx+p)=fx)+Vfx+1p)p, (2.4)

for somet € (0, 1). Moreover, if f is twice continuously differentiable, we have that

Vilx+p)=Vflx)+ /01 V2 f(x +tp)pdt, (2.5)
and that
fa+p)= @)+ V) p+ip"VEF(x +1p)p, (2.6)
for somet € (0, 1).

Necessary conditions for optimality are derived by assuming that x* is a local minimizer
and then proving facts about V f (x*) and V2 f (x*).

Theorem 2.2 (First-Order Necessary Conditions).

If x* is a local minimizer and f is continuously differentiable in an open neighborhood
ofx*, then V f (x*) = 0.

2.1. WHAT Is A SoLuTiON? 15

PROOF. Suppose for contradiction that V f(x*) # 0. Define the vector p = —V f(x*) and
note that p”V f(x*) = —||[Vf(x*)]|> < 0. Because V f is continuous near x*, there is a
scalar T > 0 such that

pIVF(x*+1tp) <0, forallr € [0, T].
For any 7 € (0, T'], we have by Taylor’s theorem that
fx*+ip) = f(x*) +ip" Vf(x* +1p), for some t € (0, 7).

Therefore, f(x* + fp) < f(x*) for all € (0, T]. We have found a direction leading
away from x* along which f decreases, so x* is not a local minimizer, and we have a
contradiction. d

We call x* a stationary point if V f(x*) = 0. According to Theorem 2.2, any local
minimizer must be a stationary point.

For the next result we recall that a matrix B is positive definite if p” Bp > 0 for all
p # 0, and positive semidefinite if p” Bp > 0 for all p (see the Appendix).

Theorem 2.3 (Second-Order Necessary Conditions).
Ifx* is a local minimizer of f and V* f exists and is continuous in an open neighborhood
of x*, then V f (x*) = 0 and V2 f (x*) is positive semidefinite.

PrOOF. We know from Theorem 2.2 that V f(x*) = 0. For contradiction, assume
that V2 f(x*) is not positive semidefinite. Then we can choose a vector p such that
pIV2f(x*)p < 0, and because V?f is continuous near x*, there is a scalar T > 0
such that pT V2 f(x* +tp)p < Oforallt € [0, T].

By doing a Taylor series expansion around x*, we have for all 7 € (0, T'] and some
t € (0, 1) that

f*+ip) = fO*) +ip" V(&™) +30p" V2 f (" +1p)p < fx¥).

As in Theorem 2.2, we have found a direction from x* along which f is decreasing, and so
again, x* is not a local minimizer. O

We now describe sufficient conditions, which are conditions on the derivatives of f at
the point z* that guarantee that x* is a local minimizer.

16 CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

Theorem 2.4 (Second-Order Sufficient Conditions).
Suppose that V2 f is continuous in an open neighborhood of x* and that V f (x*) = 0
and V? f (x*) is positive definite. Then x* is a strict local minimizer of f.

PROOF. Because the Hessian is continuous and positive definite at x*, we can choose a radius
r > 0so that V2 f(x) remains positive definite for all x in the open ball D = {z | |z —x*| <
r}. Taking any nonzero vector p with || p|| < r, we have x* 4+ p € D and so

FO&F+p)=f&)+p' V) +1p Vi F(2)p
= f(x*)+1ip"V?f(@)p.

where z = x* +1p forsomet € (0, 1). Since z € D, we have p” V2 f(z)p > 0,and therefore
f(x* 4+ p) > f(x*), giving the result. 0

Note that the second-order sufficient conditions of Theorem 2.4 guarantee something
stronger than the necessary conditions discussed earlier; namely, that the minimizer is a strict
local minimizer. Note too that the second-order sufficient conditions are not necessary: A
point x* may be a strict local minimizer, and yet may fail to satisfy the sufficient conditions.
A simple example is given by the function f(x) = x*, for which the point x* = 0 is a
strict local minimizer at which the Hessian matrix vanishes (and is therefore not positive
definite).

When the objective function is convex, local and global minimizers are simple to
characterize.

Theorem 2.5.
When f is convex, any local minimizer x* is a global minimizer of f. If in addition f is
differentiable, then any stationary point x* is a global minimizer of f .

PROOF. Suppose that x* is a local but not a global minimizer. Then we can find a point
z € R" with f(z) < f(x*). Consider the line segment that joins x* to z, that is,

x =Az+ (1 —2r)x", for some A € (0, 1]. (2.7)
By the convexity property for f, we have
J) =A@ +A =1 f(") < f(x). (2.8)

Any neighborhood AV of x* contains a piece of the line segment (2.7), so there will always
be points x € N at which (2.8) is satisfied. Hence, x* is not a local minimizer.

2.1. WHAT IS A SOLUTION?

For the second part of the theorem, suppose that x* is not a global minimizer and
choose z as above. Then, from convexity, we have

Vi) (z —x*) = %f(x* + Az —x")) |p=0 (see the Appendix)
S+ Az —x") = f(x")

= lim

240 A
<1 A (2)+ (1= 2) f(x*) = f(x*)
< lim

140 A

= f(z) = f(x") <0.
Therefore, V f(x*) # 0, and so x* is not a stationary point. O

These results, which are based on elementary calculus, provide the foundations for
unconstrained optimization algorithms. In one way or another, all algorithms seek a point
where V f () vanishes.

NONSMOOTH PROBLEMS

This book focuses on smooth functions, by which we generally mean functions whose
second derivatives exist and are continuous. We note, however, that there are interesting
problems in which the functions involved may be nonsmooth and even discontinuous. It is
not possible in general to identify a minimizer of a general discontinuous function. If, how-
ever, the function consists of a few smooth pieces, with discontinuities between the pieces,
it may be possible to find the minimizer by minimizing each smooth piece individually.

If the function is continuous everywhere but nondifferentiable at certain points,
as in Figure 2.3, we can identify a solution by examing the subgradient or generalized

x* X

Figure 2.3 Nonsmooth function with minimum at a kink.

17

18

CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

gradient, which are generalizations of the concept of gradient to the nonsmooth case.
Nonsmooth optimization is beyond the scope of this book; we refer instead to Hiriart-
Urruty and Lemaréchal [170] for an extensive discussion of theory. Here, we mention
only that the minimization of a function such as the one illustrated in Figure 2.3 (which
contains a jump discontinuity in the first derivative f’(x) at the minimum) is difficult
because the behavior of f is not predictable near the point of nonsmoothness. That
is, we cannot be sure that information about f obtained at one point can be used
to infer anything about f at neighboring points, because points of nondifferentiabil-
ity may intervene. However, minimization of certain special nondifferentiable functions,
such as

J&x) = r(olh, Jx) = 1llr()lle (2.9)

(where r(x) is a vector function), can be reformulated as smooth constrained optimiza-
tion problems; see Exercise 12.5 in Chapter 12 and (17.31). The functions (2.9) are
useful in data fitting, where r(x) is the residual vector whose components are defined
in (2.2).

2.2 OVERVIEW OF ALGORITHMS

The last forty years have seen the development of a powerful collection of algorithms for
unconstrained optimization of smooth functions. We now give a broad description of their
main properties, and we describe them in more detail in Chapters 3, 4, 5, 6, and 7. All
algorithms for unconstrained minimization require the user to supply a starting point,
which we usually denote by xg. The user with knowledge about the application and the
data set may be in a good position to choose x, to be a reasonable estimate of the solution.
Otherwise, the starting point must be chosen by the algorithm, either by a systematic
approach or in some arbitrary manner.

Beginning at xy, optimization algorithms generate a sequence of iterates {x;}p2,
that terminate when either no more progress can be made or when it seems that a so-
lution point has been approximated with sufficient accuracy. In deciding how to move
from one iterate x; to the next, the algorithms use information about the function f at
Xk, and possibly also information from earlier iterates x¢, x1, ..., x¢—1. They use this in-
formation to find a new iterate x;4; with a lower function value than xj. (There exist
nonmonotone algorithms that do not insist on a decrease in f at every step, but even these
algorithms require f to be decreased after some prescribed number m of iterations, that is,
J) < f (Kk=m)-)

There are two fundamental strategies for moving from the current point x; to a new
iterate x;41. Most of the algorithms described in this book follow one of these approaches.

2.92. OVERVIEW OF ALGORITHMS

TWO STRATEGIES: LINE SEARCH AND TRUST REGION

In the line search strategy, the algorithm chooses a direction p; and searches along
this direction from the current iterate x; for a new iterate with a lower function value.
The distance to move along p; can be found by approximately solving the following one-
dimensional minimization problem to find a step length «:

mig f(xx + apy). (2.10)

By solving (2.10) exactly, we would derive the maximum benefit from the direction py, but
an exact minimization may be expensive and is usually unnecessary. Instead, the line search
algorithm generates a limited number of trial step lengths until it finds one that loosely
approximates the minimum of (2.10). At the new point, a new search direction and step
length are computed, and the process is repeated.

In the second algorithmic strategy, known as trust region, the information gathered
about f is used to construct a model function m; whose behavior near the current point
Xy is similar to that of the actual objective function f. Because the model m; may not be a
good approximation of f when x is far from x;, we restrict the search for a minimizer of m;
to some region around x;. In other words, we find the candidate step p by approximately
solving the following subproblem:

min my(x; + p), where x; + p lies inside the trust region. (2.11)
P

If the candidate solution does not produce a sufficient decrease in f, we conclude that the
trust region is too large, and we shrink it and re-solve (2.11). Usually, the trust region is a
ball defined by || p|l, < A, where the scalar A > 0 is called the trust-region radius. Elliptical
and box-shaped trust regions may also be used.

The model my in (2.11) is usually defined to be a quadratic function of the form

m(x + p) = fi + p"V fi + 30" Bep, (2.12)

where fi, V fi,and By are a scalar, vector, and matrix, respectively. As the notation indicates,
S and V f; are chosen to be the function and gradient values at the point xy, so that my
and f are in agreement to first order at the current iterate x;. The matrix By is either the
Hessian V? f; or some approximation to it.

Suppose that the objective function is given by f(x) = 10(x; — x7)* + (1 — x1)*. At
the point x; = (0, 1) its gradient and Hessian are

or [2 v | <30
=15 | =0 0 |

19

20 CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

contours

of f

unconstrained
minimizer

contours
of model

Figure2.4 Two possible trust regions (circles) and their corresponding steps pi. The
solid lines are contours of the model function m.

The contour lines of the quadratic model (2.12) with By = V? f; are depicted in Figure 2.4,
which also illustrates the contours of the objective function f and the trust region. We
have indicated contour lines where the model m; has values 1 and 12. Note from Figure 2.4
that each time we decrease the size of the trust region after failure of a candidate iterate,
the step from x; to the new candidate will be shorter, and it usually points in a different
direction from the previous candidate. The trust-region strategy differs in this respect from
line search, which stays with a single search direction.

In a sense, the line search and trust-region approaches differ in the order in which they
choose the direction and distance of the move to the next iterate. Line search starts by fixing
the direction p; and then identifying an appropriate distance, namely the step length ;. In
trust region, we first choose a maximum distance—the trust-region radius Ay—and then
seek a direction and step that attain the best improvement possible subject to this distance
constraint. If this step proves to be unsatisfactory, we reduce the distance measure Ay and
try again.

The line search approach is discussed in more detail in Chapter 3. Chapter 4 discusses
the trust-region strategy, including techniques for choosing and adjusting the size of the re-
gion and for computing approximate solutions to the trust-region problems (2.11). We now
preview two major issues: choice of the search direction py in line search methods, and choice
of the Hessian By in trust-region methods. These issues are closely related, as we now observe.

SEARCH DIRECTIONS FOR LINE SEARCH METHODS

The steepest descent direction —V f; is the most obvious choice for search direction
for a line search method. It is intuitive; among all the directions we could move from xy,

2.9. OVERVIEW OF ALGORITHMS

it is the one along which f decreases most rapidly. To verify this claim, we appeal again
to Taylor’s theorem (Theorem 2.1), which tells us that for any search direction p and
step-length parameter o, we have

O +ap) = fx) +ap"V fi + 32’ p" V2 f(xe +tp)p, forsomer € (0,)

(see (2.6)). The rate of change in f along the direction p at x; is simply the coefficient of
o, namely, pTv [k Hence, the unit direction p of most rapid decrease is the solution to the
problem

min p’V fi, subject to || p|| = 1. (2.13)
P

Since pTV fi = | pll IV fill cos@ = ||V fi|| cos 8, where 6 is the angle between p and V f;,
it is easy to see that the minimizer is attained when cos® = —1 and

P ==Vi/IV fil,

as claimed. As we illustrate in Figure 2.5, this direction is orthogonal to the contours of the
function.

The steepest descent method is a line search method that moves along py = —V f; at
every step. It can choose the step length o in a variety of ways, as we discuss in Chapter 3. One
advantage of the steepest descent direction is that it requires calculation of the gradient V f;
but not of second derivatives. However, it can be excruciatingly slow on difficult problems.

Line search methods may use search directions other than the steepest descent direc-
tion. In general, any descent direction—one that makes an angle of strictly less than x/2
radians with —V f;—is guaranteed to produce a decrease in f, provided that the step length

Figure 2.5 Steepest descent direction for a function of two variables.

21

22 CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

Figure 2.6
A downhill direction py.

is sufficiently small (see Figure 2.6). We can verify this claim by using Taylor’s theorem.
From (2.6), we have that

[+ e€pe) = f(xi) + epp V fi + O(€?).
When py is a downbhill direction, the angle 6; between p; and V f; has cos 9y < 0, so that

PiV fi = Ilpell IV fell cos 6 < 0.

It follows that f(x; + €pr) < f(xx) for all positive but sufficiently small values of €.

Another important search direction—perhaps the most important one of all—
is the Newton direction. This direction is derived from the second-order Taylor series
approximation to f(x; + p), which is

def
fGe+p)~ fi+ P Vi+ip"V fip = mi(p). (2.14)

Assuming for the moment that V2 fi is positive definite, we obtain the Newton direction
by finding the vector p that minimizes my (p). By simply setting the derivative of m;(p) to
zero, we obtain the following explicit formula:

Py =— (V)" Vi (2.15)

The Newton direction is reliable when the difference between the true function
f(xx + p) and its quadratic model my(p) is not too large. By comparing (2.14) with (2.6),
we see that the only difference between these functions is that the matrix V2 f(x; + tp) in
the third term of the expansion has been replaced by V? f;. If V2 f is sufficiently smooth,
this difference introduces a perturbation of only O(|| p||®) into the expansion, so that when
[pll is small, the approximation f(x; + p) & my(p) is quite accurate.

2.92. OVERVIEW OF ALGORITHMS

The Newton direction can be used in a line search method when V2 f; is positive
definite, for in this case we have

VI pY = —piTV2 fipy < —arlpiII

for some oy > 0. Unless the gradient V f; (and therefore the step p;) is zero, we have that
V I p¥ < 0, so the Newton direction is a descent direction.

Unlike the steepest descent direction, there is a “natural” step length of 1 associated
with the Newton direction. Most line search implementations of Newton’s method use the
unit step o = 1 where possible and adjust « only when it does not produce a satisfactory
reduction in the value of f.

When V2 f; is not positive definite, the Newton direction may not even be defined,
since (VZ fk) - may not exist. Even when it is defined, it may not satisfy the descent property
\vJ fkT pr < 0, in which case it is unsuitable as a search direction. In these situations, line
search methods modify the definition of p; to make it satisfy the descent condition while
retaining the benefit of the second-order information contained in V2 f;. We describe these
modifications in Chapter 3.

Methods that use the Newton direction have a fast rate of local convergence, typically
quadratic. After a neighborhood of the solution is reached, convergence to high accuracy
often occurs in just a few iterations. The main drawback of the Newton direction is the
need for the Hessian V2 f(x). Explicit computation of this matrix of second derivatives
can sometimes be a cumbersome, error-prone, and expensive process. Finite-difference and
automatic differentiation techniques described in Chapter 8 may be useful in avoiding the
need to calculate second derivatives by hand.

Quasi-Newton search directions provide an attractive alternative to Newton’s method
in that they do not require computation of the Hessian and yet still attain a superlinear rate
of convergence. In place of the true Hessian V2 f;, they use an approximation By, which is
updated after each step to take account of the additional knowledge gained during the step.
The updates make use of the fact that changes in the gradient g provide information about
the second derivative of f along the search direction. By using the expression (2.5) from our
statement of Taylor’s theorem, we have by adding and subtracting the term V2 f(x)p that

1
Vix+p) =Vfx)+Vifx)p+ / [V2f(x +1p) = V2 f(x)] pdr.
0

Because V f () is continuous, the size of the final integral term is o(]| p||). By setting x = x;
and p = x4y — X, we obtain

V fi1 = Vfi + V2 fi g — xi) + o(llxgr — xelD)-

When x; and x; lie in a region near the solution x*, within which V2 f is positive definite,
the final term in this expansion is eventually dominated by the V2 f; (x;,; — x;) term, and

23

24

CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

we can write
V2 fitirr —) 2V figr = V i (2.16)
We choose the new Hessian approximation Bjy; so that it mimics the property (2.16) of

the true Hessian, that is, we require it to satisfy the following condition, known as the secant
equation:

Biiisk = i, (2.17)

where
Sk = Xp41 — Xk, Yk =V fiz1 — Vi

Typically, we impose additional conditions on By, such as symmetry (motivated by
symmetry of the exact Hessian), and a requirement that the difference between successive
approximations By and By, have low rank.

Two of the most popular formulae for updating the Hessian approximation By are
the symmetric-rank-one (SR1) formula, defined by

(yk — Bisk)(ye — Bisi)™
(v — Bisi)Tsi

Biy1 = By + , (2.18)

and the BFGS formula, named after its inventors, Broyden, Fletcher, Goldfarb, and Shanno,
which is defined by

Bisksi Be iyl

Biy1 = By — (2.19)

T T,
S Brsk Vi Sk

Note that the difference between the matrices By and By, is a rank-one matrix in the
case of (2.18) and a rank-two matrix in the case of (2.19). Both updates satisfy the secant
equation and both maintain symmetry. One can show that BFGS update (2.19) generates
positive definite approximations whenever the initial approximation B, is positive definite
and s/ yr > 0. We discuss these issues further in Chapter 6.

The quasi-Newton search direction is obtained by using By in place of the exact
Hessian in the formula (2.15), that is,

pe=—B 'V fi. (2.20)

Some practical implementations of quasi-Newton methods avoid the need to factorize By
at each iteration by updating the inverse of By, instead of By itself. In fact, the equivalent

2.92. OVERVIEW OF ALGORITHMS

formula for (2.18) and (2.19), applied to the inverse approximation Hj def B, Uis

1

T
Yk Sk

Hior = (I — pescyl) He (I = peyesy) + oesesy Px = (2.21)

Calculation of py can then be performed by using the formula py = —HV fi.. This matrix—
vector multiplication is simpler than the factorization/back-substitution procedure that is
needed to implement the formula (2.20).

Two variants of quasi-Newton methods designed to solve large problems—partially
separable and limited-memory updating—are described in Chapter 7.

The last class of search directions we preview here is that generated by nonlinear
conjugate gradient methods. They have the form

P ==V f(xk) + Brpr—1,

where By is a scalar that ensures that p; and p;_; are conjugate—an important concept
in the minimization of quadratic functions that will be defined in Chapter 5. Conjugate
gradient methods were originally designed to solve systems of linear equations Ax = b,
where the coefficient matrix A is symmetric and positive definite. The problem of solving
this linear system is equivalent to the problem of minimizing the convex quadratic function
defined by

o(x) = %xTAx —bTx,
so it was natural to investigate extensions of these algorithms to more general types of
unconstrained minimization problems. In general, nonlinear conjugate gradient directions
are much more effective than the steepest descent direction and are almost as simple to
compute. These methods do not attain the fast convergence rates of Newton or quasi-
Newton methods, but they have the advantage of not requiring storage of matrices. An
extensive discussion of nonlinear conjugate gradient methods is given in Chapter 5.

All of the search directions discussed so far can be used directly in a line search
framework. They give rise to the steepest descent, Newton, quasi-Newton, and conjugate
gradient line search methods. All except conjugate gradients have an analogue in the trust-
region framework, as we now discuss.

MODELS FOR TRUST-REGION METHODS

If we set B, = 0 in (2.12) and define the trust region using the Euclidean norm, the
trust-region subproblem (2.11) becomes

min fi + p"Vfi subjectto | pl, < Ax.
»

25

26

CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

We can write the solution to this problem in closed form as

AV
IV fill”

Pr =

This is simply a steepest descent step in which the step length is determined by the trust-
region radius; the trust-region and line search approaches are essentially the same in this case.

A more interesting trust-region algorithm is obtained by choosing Bj to be the
exact Hessian V2 f; in the quadratic model (2.12). Because of the trust-region restriction
Ipll2 < Ay, the subproblem (2.11) is guaranteed to have a solution even when V2 f; is not
positive definite py, as we see in Figure 2.4. The trust-region Newton method has proved to
be highly effective in practice, as we discuss in Chapter 7.

If the matrix By in the quadratic model function my of (2.12) is defined by means of
a quasi-Newton approximation, we obtain a trust-region quasi-Newton method.

SCALING

The performance of an algorithm may depend crucially on how the problem is formu-
lated. One important issue in problem formulation is scaling. In unconstrained optimization,
aproblem is said to be poorly scaled if changes to x in a certain direction produce much larger
variations in the value of f than do changes to x in another direction. A simple example is
provided by the function f(x) = 10°x7 + xZ, which is very sensitive to small changes in x;
but not so sensitive to perturbations in x,.

Poorly scaled functions arise, for example, in simulations of physical and chemical
systems where different processes are taking place at very different rates. To be more specific,
consider a chemical system in which four reactions occur. Associated with each reaction is
a rate constant that describes the speed at which the reaction takes place. The optimization
problem is to find values for these rate constants by observing the concentrations of each
chemical in the system at different times. The four constants differ greatly in magnitude, since
the reactions take place at vastly different speeds. Suppose we have the following rough esti-
mates for the final values of the constants, each correct to within, say, an order of magnitude:

xR 1070 a1, x~ 100

Before solving this problem we could introduce a new variable z defined by

X 107 0 0 o 21
X2 0 1 0 0 2
x| 0 0 1 0 |
X4 0 0 0 10° 2

and then define and solve the optimization problem in terms of the new variable z. The

2.92. OVERVIEW OF ALGORITHMS

_ka

Figure 2.7 Poorly scaled and well scaled problems, and performance of the steepest
descent direction.

optimal values of z will be within about an order of magnitude of 1, making the solution
more balanced. This kind of scaling of the variables is known as diagonal scaling.

Scaling is performed (sometimes unintentionally) when the units used to represent
variables are changed. During the modeling process, we may decide to change the units of
some variables, say from meters to millimeters. If we do, the range of those variables and
their size relative to the other variables will both change.

Some optimization algorithms, such as steepest descent, are sensitive to poor scaling,
while others, such as Newton’s method, are unaffected by it. Figure 2.7 shows the contours
of two convex nearly quadratic functions, the first of which is poorly scaled, while the second
is well scaled. For the poorly scaled problem, the one with highly elongated contours, the
steepest descent direction does not yield much reduction in the function, while for the
well-scaled problem it performs much better. In both cases, Newton’s method will produce
a much better step, since the second-order quadratic model (m; in (2.14)) happens to be a
good approximation of f.

Algorithms that are not sensitive to scaling are preferable, because they can handle
poor problem formulations in a more robust fashion. In designing complete algorithms, we
try to incorporate scale invariance into all aspects of the algorithm, including the line search
or trust-region strategies and convergence tests. Generally speaking, it is easier to preserve
scale invariance for line search algorithms than for trust-region algorithms.

& EXERCISES

& 2.1 Compute the gradient V £ (x) and Hessian V2 f(x) of the Rosenbrock function

F(x) =100(x; — x2)? + (1 — x))>. (2.22)

27

28 CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

Show that x* = (1, 1)7 is the only local minimizer of this function, and that the Hessian
matrix at that point is positive definite.

& 2.2 Show that the function f(x) = 8x; + 12x, + x7 — 2x7 has only one stationary
point, and that it is neither a maximum or minimum, but a saddle point. Sketch the contour
lines of f.

& 2.3 Leta beagiven n-vector, and A be a given n x n symmetric matrix. Compute the
gradient and Hessian of fi(x) = a” x and f5(x) = xT Ax.

& 2.4 Write the second-order Taylor expansion (2.6) for the function cos(1/x) around
a nonzero point x, and the third-order Taylor expansion of cos(x) around any point x.
Evaluate the second expansion for the specific case of x = 1.

& 2.5 Consider the function f : R* — R defined by f(x) = |x||?. Show that the
sequence of iterates {x;} defined by

. 1 cosk
= + 2k sink

satisfies f(x;+1) < f(xx) for k = 0,1, 2,.... Show that every point on the unit circle
{x | Ix]I> = 1} is a limit point for {x;}. Hint: Every value & € [0, 27r] is a limit point of the
subsequence {£} defined by

& =k(mod2rm) =k —2n {iJ ,

2

where the operator |-| denotes rounding down to the next integer.

& 2.6 Prove that all isolated local minimizers are strict. (Hint: Take an isolated local
minimizer x* and a neighborhood N. Show that for any x € N, x # x* we must have

f(x) > fx*).)

& 2.7 Suppose that f(x) = xT Qx, where Q isann x n symmetric positive semidefinite
matrix. Show using the definition (1.4) that f(x) is convex on the domain R”. Hint: It may
be convenient to prove the following equivalent inequality:

fy+alx—y)—af(x) =1 —-a)f(y) <0,

foralla € [0, 1] and all x, y € R".

& 2.8 Suppose that f is a convex function. Show that the set of global minimizers of f
is a convex set.

2.92. OVERVIEW OF ALGORITHMS

& 2.9 Consider the function f(xj,x;) = (x1 ~|—x§)2. At the point xT = (1,0) we
consider the search direction p” = (—1, 1). Show that p is a descent direction and find all
minimizers of the problem (2.10).

& 2.10 Suppose that f(z) = f(x), where x = Sz + s for some § € R"*" and s € R".
Show that

Vi) =8"Vfx), V'f(z)=STV2f(x)S.

(Hint: Use the chain rule to express df/dzj in terms of df/dx; and dx;/dz; for all
ij=1,2,...,n)

& 2.11 Show that the symmetric rank-one update (2.18) and the BFGS update (2.19)
are scale-invariant if the initial Hessian approximations By are chosen appropriately. That
is, using the notation of the previous exercise, show that if these methods are applied to
f(x) starting from xo = Szo + s with initial Hessian By, and to f (z) starting from zo with
initial Hessian ST B, S, then all iterates are related by x; = Sz; + 5. (Assume for simplicity
that the methods take unit step lengths.)

& 2.12 Suppose that a function f of two variables is poorly scaled at the solution x*.
Write two Taylor expansions of f around x*—one along each coordinate direction—and
use them to show that the Hessian V2 f(x*) is ill-conditioned.

& 2.13 (Por this and the following three questions, refer to the material on “Rates of
Convergence” in Section A.2 of the Appendix.) Show that the sequence x; = 1/k is not
Q-linearly convergent, though it does converge to zero. (This is called sublinear convergence.)

& 2.14 Show that the sequence x; = 1 + (O.S)Zk is Q-quadratically convergent to 1.
& 2.15 Does the sequence x; = 1/k! converge Q-superlinearly? Q-quadratically?

& 2.16 Consider the sequence {x;} defined by

(i)zk, k even,

(xk—1)/k, kodd.

X =

Is this sequence Q-superlinearly convergent? Q-quadratically convergent? R-quadratically
convergent?

29

CHAPTER

Line Search
Methods

Each iteration of a line search method computes a search direction p; and then decides how
far to move along that direction. The iteration is given by

Xi41 = Xk + O Prs (3.1)

where the positive scalar o is called the step length. The success of a line search method
depends on effective choices of both the direction p; and the step length ay.

Most line search algorithms require py to be a descent direction—one for which
PLV fi < 0O—Dbecause this property guarantees that the function f can be reduced along

3.1. STEP LENGTH

this direction, as discussed in the previous chapter. Moreover, the search direction often has
the form

pr=—B. 'V fi, (3.2)

where By is a symmetric and nonsingular matrix. In the steepest descent method, By is
simply the identity matrix I, while in Newton’s method, By is the exact Hessian V2 f (x;).
In quasi-Newton methods, By is an approximation to the Hessian that is updated at every
iteration by means of a low-rank formula. When py, is defined by (3.2) and By is positive
definite, we have

PiVfi==ViB'Vfi <0,

and therefore py is a descent direction.

In this chapter, we discuss how to choose «; and py to promote convergence from
remote starting points. We also study the rate of convergence of steepest descent, quasi-
Newton, and Newton methods. Since the pure Newton iteration is not guaranteed to produce
descent directions when the current iterate is not close to a solution, we discuss modifications
in Section 3.4 that allow it to start from any initial point.

We now give careful consideration to the choice of the step-length parameter o.

3.1 STEP LENGTH

In computing the step length oy, we face a tradeoff. We would like to choose o to give
a substantial reduction of f, but at the same time we do not want to spend too much
time making the choice. The ideal choice would be the global minimizer of the univariate
function ¢(-) defined by

¢(a) = flxx +apr), a>0, (3.3)

but in general, it is too expensive to identify this value (see Figure 3.1). To find even a local
minimizer of ¢ to moderate precision generally requires too many evaluations of the objec-
tive function f and possibly the gradient V f. More practical strategies perform an inexact
line search to identify a step length that achieves adequate reductions in f at minimal cost.

Typical line search algorithms try out a sequence of candidate values for «, stopping to
accept one of these values when certain conditions are satisfied. The line search is done in two
stages: A bracketing phase finds an interval containing desirable step lengths, and a bisection
or interpolation phase computes a good step length within this interval. Sophisticated line
search algorithms can be quite complicated, so we defer a full description until Section 3.5.

31

32 CHAPTER 3. LINE SEARCH METHODS

o ()

first local
minimizer

first
stationary
point

global minimizer

Figure 3.1 The ideal step length is the global minimizer.

We now discuss various termination conditions for line search algorithms and show
that effective step lengths need not lie near minimizers of the univariate function ¢ (o)
defined in (3.3).

A simple condition we could impose on «; is to require a reduction in f, that is,
S (e + axpr) < f(xr). That this requirement is not enough to produce convergence to
x* is illustrated in Figure 3.2, for which the minimum function value is f* = —1, but a
sequence of iterates {x;} for which f(x;) = 5/k, k = 0,1, ... yields a decrease at each
iteration but has a limiting function value of zero. The insufficient reduction in f at each
step causes it to fail to converge to the minimizer of this convex function. To avoid this
behavior we need to enforce a sufficient decrease condition, a concept we discuss next.

Sf(x)

Figure 3.2 Insufficient reduction in f.

3.1. STEP LENGTH

THE WOLFE CONDITIONS

A popular inexact line search condition stipulates that o should first of all give

sufficient decrease in the objective function f, as measured by the following inequality:

fa+apy) < fa) +aaV fl p, (3.4)
for some constant ¢; € (0, 1). In other words, the reduction in f should be proportional to
both the step length o and the directional derivative V fkT Dr- Inequality (3.4) is sometimes
called the Armijo condition.

The sufficient decrease condition is illustrated in Figure 3.3. The right-hand-side of
(3.4), which is a linear function, can be denoted by /(«). The function /(-) has negative slope
1V £ pi, but because ¢; € (0, 1), it lies above the graph of ¢ for small positive values of
o. The sufficient decrease condition states that « is acceptable only if ¢(o) < I(x). The
intervals on which this condition is satisfied are shown in Figure 3.3. In practice, c; is chosen
to be quite small, say ¢; = 107%.

The sufficient decrease condition is not enough by itself to ensure that the algorithm
makes reasonable progress because, as we see from Figure 3.3, it is satisfied for all sufficiently
small values of .. To rule out unacceptably short steps we introduce a second requirement,
called the curvature condition, which requires o to satisfy

V£ +owp) pe = eV £ e, (3.5)
for some constant ¢, € (c1, 1), where ¢ is the constant from (3.4). Note that the left-hand-
side is simply the derivative ¢’(c;), so the curvature condition ensures that the slope of ¢ at
oy, is greater than ¢, times the initial slope ¢'(0). This makes sense because if the slope ¢’ ()

0(0) =f(x,+0p,)

R (/]

acceptable acceptable

Figure 3.3 Sulfficient decrease condition.

33

34 CHAPTER 3. LINE SEARCH METHODS

o(o) =flx,+oupy)

A{/ desired
slope

tangent

acceptable acceptable

Figure 3.4 The curvature condition.

is strongly negative, we have an indication that we can reduce f significantly by moving
further along the chosen direction.

On the other hand, if ¢'(ay) is only slightly negative or even positive, it is a sign that
we cannot expect much more decrease in f in this direction, so it makes sense to terminate
the line search. The curvature condition is illustrated in Figure 3.4. Typical values of ¢, are
0.9 when the search direction py is chosen by a Newton or quasi-Newton method, and 0.1
when py is obtained from a nonlinear conjugate gradient method.

The sufficient decrease and curvature conditions are known collectively as the Wolfe
conditions. We illustrate them in Figure 3.5 and restate them here for future reference:

A

Flo+axp) < fl) + oV L pr, (3.6a)
V £+ axp)’ pi = eV £ b, (3.6b)

v

with0 <c¢; < ¢y < 1.

A step length may satisfy the Wolfe conditions without being particularly close to a
minimizer of ¢, as we show in Figure 3.5. We can, however, modify the curvature condition
to force oy to lie in at least a broad neighborhood of a local minimizer or stationary point
of ¢. The strong Wolfe conditions require o, to satisfy

FOx +arpr) <) + iV i, (3.7a)
IV f o+ axpi)” pil < el VAL pil, (3.7b)

with 0 < ¢; < ¢; < 1. The only difference with the Wolfe conditions is that we no longer
allow the derivative ¢’(a) to be too positive. Hence, we exclude points that are far from
stationary points of ¢.

3.1. STEP LENGTH

o (o) =flx+ap,)

line of sufficient
decrease

RN)

| acceptable | | acceptable |
-_— _—

Figure 3.5 Step lengths satisfying the Wolfe conditions.

It is not difficult to prove that there exist step lengths that satisfy the Wolfe conditions
for every function f that is smooth and bounded below.

Lemma 3.1.

Suppose that f : R" — R is continuously differentiable. Let py be a descent direction at
Xy, and assume that f is bounded below along the ray {x; + aprla > 0}. Then if 0 < ¢; <
¢y < 1, there exist intervals of step lengths satisfying the Wolfe conditions (3.6) and the strong
Wolfe conditions (3.7).

PrOCF. Note that ¢(a) = f(xx + apx) is bounded below for all « > 0. Since 0 < ¢; < 1,

the line /(a) = f(xx) + aciV] py is unbounded below and must therefore intersect the
graph of ¢ at least once. Let o’ > 0 be the smallest intersecting value of &, that is,

FOx+d' pe) = flx) + eV L p. (3.8)

The sufficient decrease condition (3.6a) clearly holds for all step lengths less than «'.
By the mean value theorem (see (A.55)), there exists «” € (0, @’) such that

fo+a'pe) — flx) =a'V f(xi+ " pi)’ pi. (3.9)
By combining (3.8) and (3.9), we obtain

Vi +a" p) pi= Vi pe> eV (3.10)
sincec; < ¢; and V fkT pr < 0. Therefore, o satisfies the Wolfe conditions (3.6), and the

inequalities hold strictly in both (3.6a) and (3.6b). Hence, by our smoothness assumption
on f, there is an interval around «” for which the Wolfe conditions hold. Moreover, since

35

36

CHAPTER 3. LINE SEARCH METHODS

the term in the left-hand side of (3.10) is negative, the strong Wolfe conditions (3.7) hold in
the same interval. O

The Wolfe conditions are scale-invariant in a broad sense: Multiplying the objective
function by a constant or making an affine change of variables does not alter them. They can
be used in most line search methods, and are particularly important in the implementation
of quasi-Newton methods, as we see in Chapter 6.

THE GOLDSTEIN CONDITIONS

Like the Wolfe conditions, the Goldstein conditions ensure that the step length «
achieves sufficient decrease but is not too short. The Goldstein conditions can also be stated
as a pair of inequalities, in the following way:

F) + 0=V pe < foa+apr) < fa) +carV L p, (3.11)

with 0 < ¢ < 1/2. The second inequality is the sufficient decrease condition (3.4), whereas
the first inequality is introduced to control the step length from below; see Figure 3.6

A disadvantage of the Goldstein conditions vis-a-vis the Wolfe conditions is that the
first inequality in (3.11) may exclude all minimizers of ¢. However, the Goldstein and Wolfe
conditions have much in common, and their convergence theories are quite similar. The
Goldstein conditions are often used in Newton-type methods but are not well suited for
quasi-Newton methods that maintain a positive definite Hessian approximation.

o (o) =f(xk+apk)

|

ol

acceptable steplengths

Figure 3.6 The Goldstein conditions.

3.2. CONVERGENCE OF LINE SEARCH METHODS

SUFFICIENT DECREASE AND BACKTRACKING

‘We have mentioned that the sufficient decrease condition (3.6a) alone is not sufficient
to ensure that the algorithm makes reasonable progress along the given search direction.
However, if the line search algorithm chooses its candidate step lengths appropriately, by
using a so-called backtracking approach, we can dispense with the extra condition (3.6b)
and use just the sufficient decrease condition to terminate the line search procedure. In its
most basic form, backtracking proceeds as follows.

Algorithm 3.1 (Backtracking Line Search).
Choose@ > 0, p € (0,1),c € (0, 1); Setx < &;
repeat until f(x; + apy) < f(xx) + caV fil pi

o < po;
end (repeat)
Terminate with o, = «.

In this procedure, the initial step length & is chosen to be 1 in Newton and quasi-
Newton methods, but can have different values in other algorithms such as steepest descent
or conjugate gradient. An acceptable step length will be found after a finite number of
trials, because o will eventually become small enough that the sufficient decrease condition
holds (see Figure 3.3). In practice, the contraction factor p is often allowed to vary at each
iteration of the line search. For example, it can be chosen by safeguarded interpolation, as
we describe later. We need ensure only that at each iteration we have p € [pjo, pni], for some
fixed constants 0 < pj, < pni < 1.

The backtracking approach ensures either that the selected step length oy, is some fixed
value (the initial choice &), or else that it is short enough to satisfy the sufficient decrease
condition but not too short. The latter claim holds because the accepted value o is within
a factor p of the previous trial value, o/ p, which was rejected for violating the sufficient
decrease condition, that is, for being too long.

This simple and popular strategy for terminating a line search is well suited for Newton
methods but is less appropriate for quasi-Newton and conjugate gradient methods.

3.2 CONVERGENCE OF LINE SEARCH METHODS

To obtain global convergence, we must not only have well chosen step lengths but also well
chosen search directions p;. We discuss requirements on the search direction in this section,
focusing on one key property: the angle 6; between p; and the steepest descent direction
—V fi, defined by

=V il pe

—_— 3.12
IV fill | Pl 12

cosby =

37

38 CHAPTER 3. LINE SEARCH METHODS

The following theorem, due to Zoutendijk, has far-reaching consequences. It quantifies
the effect of properly chosen step lengths oy, and shows, for example, that the steepest descent
method is globally convergent. For other algorithms, it describes how far p; can deviate
from the steepest descent direction and still produce a globally convergent iteration. Various
line search termination conditions can be used to establish this result, but for concreteness
we will consider only the Wolfe conditions (3.6). Though Zoutendijk’s result appears at first
to be technical and obscure, its power will soon become evident.

Theorem 3.2.

Consider any iteration of the form (3.1), where py is a descent direction and oy, satisfies
the Wolfe conditions (3.6). Suppose that f is bounded below in R" and that f is continuously
differentiable in an open set N containing the level set L df {x: f(x) < f(x0)}, where xq is
the starting point of the iteration. Assume also that the gradient V f is Lipschitz continuous on
N, that is, there exists a constant L > 0 such that

IVf(x)—=Vf@&E)| <Llx—%|, forallx, ¥eN. (3.13)
Then
> cos? O |V £ill* < oo (3.14)
k>0

ProOF. From (3.6b) and (3.1) we have that
(Vfirr = VI e = (2 = DV f pr.
while the Lipschitz condition (3.13) implies that
(Vfirt = V) pe < e LI il
By combining these two relations, we obtain

¢ —1VfT
o > 2 Ji IZk.
L p«l

By substituting this inequality into the first Wolfe condition (3.6a), we obtain

1—¢ (kaTPk)z
L | Prcll?

Jiri < fi —a
From the definition (3.12), we can write this relation as

fer1 < fe — ccos® OV fill?

3.2. CONVERGENCE OF LINE SEARCH METHODS

where ¢ = ¢1(1 — ¢;)/L. By summing this expression over all indices less than or equal to
k, we obtain

k
fes1 < fo—cY_cos?0;|IV £, (3.15)

Jj=0

Since f is bounded below, we have that fy — fi41 is less than some positive constant, for all
k. Hence, by taking limits in (3.15), we obtain

oo

2 2
D cos’ IV fill” < oo,
k=0

which concludes the proof. O

Similar results to this theorem hold when the Goldstein conditions (3.11) or strong
Wolfe conditions (3.7) are used in place of the Wolfe conditions. For all these strategies, the
step length selection implies inequality (3.14), which we call the Zoutendijk condition.

Note that the assumptions of Theorem 3.2 are not too restrictive. If the function f were
not bounded below, the optimization problem would not be well defined. The smoothness
assumption—Lipschitz continuity of the gradient—is implied by many of the smoothness
conditions that are used in local convergence theorems (see Chapters 6 and 7) and are often
satisfied in practice.

The Zoutendijk condition (3.14) implies that

cos® O ||V fill> — 0. (3.16)
This limit can be used in turn to derive global convergence results for line search algorithms.
If our method for choosing the search direction py in the iteration (3.1) ensures that
the angle 6y defined by (3.12) is bounded away from 90°, there is a positive constant § such
that
cosf, >8>0, forallk. (3.17)
It follows immediately from (3.16) that

lim ||V fi]l = 0. (3.18)
k—00

In other words, we can be sure that the gradient norms ||V f;|| converge to zero, provided
that the search directions are never too close to orthogonality with the gradient. In particular,
the method of steepest descent (for which the search direction py is parallel to the negative

39

40

CHAPTER 3. LINE SEARCH METHODS

gradient) produces a gradient sequence that converges to zero, provided that it uses a line
search satisfying the Wolfe or Goldstein conditions.

We use the term globally convergent to refer to algorithms for which the property
(3.18) is satisfied, but note that this term is sometimes used in other contexts to mean
different things. For line search methods of the general form (3.1), the limit (3.18) is the
strongest global convergence result that can be obtained: We cannot guarantee that the
method converges to a minimizer, but only that it is attracted by stationary points. Only
by making additional requirements on the search direction py—by introducing negative
curvature information from the Hessian V2 f (x;), for example—can we strengthen these
results to include convergence to a local minimum. See the Notes and References at the end
of this chapter for further discussion of this point.

Consider now the Newton-like method (3.1), (3.2) and assume that the matrices By
are positive definite with a uniformly bounded condition number. That is, there is a constant
M such that

IBell 1Bl < M, forall k.
It is easy to show from the definition (3.12) that
costy > 1/M (3.19)
(see Exercise 3.5). By combining this bound with (3.16) we find that
Am IV fill = 0. (3.20)

Therefore, we have shown that Newton and quasi-Newton methods are globally convergent
if the matrices By have a bounded condition number and are positive definite (which is
needed to ensure that p; is a descent direction), and if the step lengths satisfy the Wolfe
conditions.

For some algorithms, such as conjugate gradient methods, we will be able to prove
the limit (3.18), but only the weaker result

k— 00

In other words, just a subsequence of the gradient norms ||V f;, || converges to zero, rather
than the whole sequence (see Appendix A). This result, too, can be proved by using Zou-
tendijk’s condition (3.14), but instead of a constructive proof, we outline a proof by
contradiction. Suppose that (3.21) does not hold, so that the gradients remain bounded
away from zero, that is, there exists y > 0 such that

IV fill =y, forall k sufficiently large. (3.22)

3.3. RATE OF CONVERGENCE

Then from (3.16) we conclude that
cosfy — 0, (3.23)

that is, the entire sequence {cos 8, } converges to 0. To establish (3.21), therefore, it is enough
to show that a subsequence {cos 6, } is bounded away from zero. We will use this strategy in
Chapter 5 to study the convergence of nonlinear conjugate gradient methods.

By applying this proof technique, we can prove global convergence in the sense of
(3.20) or (3.21) for a general class of algorithms. Consider any algorithm for which (i) every
iteration produces a decrease in the objective function, and (ii) every mth iteration is a
steepest descent step, with step length chosen to satisfy the Wolfe or Goldstein conditions.
Then, since cos 9y = 1 for the steepest descent steps, the result (3.21) holds. Of course, we
would design the algorithm so that it does something “better" than steepest descent at the
other m — 1 iterates. The occasional steepest descent steps may not make much progress,
but they at least guarantee overall global convergence.

Note that throughout this section we have used only the fact that Zoutendijk’s condi-
tion implies the limit (3.16). In later chapters we will make use of the bounded sum condition
(3.14), which forces the sequence {cos® 6; ||V fi||?} to converge to zero at a sufficiently rapid
rate.

3.3 RATE OF CONVERGENCE

It would seem that designing optimization algorithms with good convergence properties is
easy, since all we need to ensure is that the search direction p; does not tend to become
orthogonal to the gradient V f;, or that steepest descent steps are taken regularly. We could
simply compute cos 6y, at every iteration and turn p; toward the steepest descent direction if
cos 6 is smaller than some preselected constant § > 0. Angle tests of this type ensure global
convergence, but they are undesirable for two reasons. First, they may impede a fast rate of
convergence, because for problems with an ill-conditioned Hessian, it may be necessary to
produce search directions that are almost orthogonal to the gradient, and an inappropriate
choice of the parameter § may cause such steps to be rejected. Second, angle tests destroy
the invariance properties of quasi-Newton methods.

Algorithmic strategies that achieve rapid convergence can sometimes conflict with
the requirements of global convergence, and vice versa. For example, the steepest descent
method is the quintessential globally convergent algorithm, but it is quite slow in practice,
as we shall see below. On the other hand, the pure Newton iteration converges rapidly when
started close enough to a solution, but its steps may not even be descent directions away
from the solution. The challenge is to design algorithms that incorporate both properties:
good global convergence guarantees and a rapid rate of convergence.

We begin our study of convergence rates of line search methods by considering the
most basic approach of all: the steepest descent method.

41

42

CHAPTER 3. LINE SEARCH METHODS

Figure 3.7 Steepest descent steps.

CONVERGENCE RATE OF STEEPEST DESCENT

We can learn much about the steepest descent method by considering the ideal case, in
which the objective function is quadratic and the line searches are exact. Let us suppose that

flx)= %xTQx —bTx, (3.24)

where Q is symmetric and positive definite. The gradient is given by V f (x) = Qx — b and
the minimizer x* is the unique solution of the linear system Qx = b.

It is easy to compute the step length o that minimizes f (x; —«'V f;). By differentiating
the function

Fl —a¥ i) = 5~ @V)T Ol — ¥ i) = b (¢ — ¥ fy)

with respect to «, and setting the derivative to zero, we obtain

VRV
=5t ov (3.25)

If we use this exact minimizer oy, the steepest descent iteration for (3.24) is given by

vflv
Xp+1 = X — <%) V fi. (3.26)

Since V fi = Oxi — b, this equation yields a closed-form expression for x4, in terms of x.
In Figure 3.7 we plot a typical sequence of iterates generated by the steepest descent method
on a two-dimensional quadratic objective function. The contours of f are ellipsoids whose

3.3. RATE OF CONVERGENCE

axes lie along the orthogonal eigenvectors of Q. Note that the iterates zigzag toward the
solution.

To quantify the rate of convergence we introduce the weighted norm ||x[|3, = x” Qx.
By using the relation Qx* = b, we can show that

U —x*13 = £x) = F(x"), (3.27)

so this norm measures the difference between the current objective value and the optimal
value. By using the equality (3.26) and noting that V f; = Q(x; — x™*), we can derive the
equality

ViV)
(Vi V) }nxk—x*nz (3.28)

— x* 2 — —
llxk+1 — x ||Q {1 (kaTQvfk) (kaTQ71ka)

(see Exercise 3.7). This expression describes the exact decrease in f at each iteration, but
since the term inside the brackets is difficult to interpret, it is more useful to bound it in
terms of the condition number of the problem.

Theorem 3.3.
When the steepest descent method with exact line searches (3.26) is applied to the strongly
convex quadratic function (3.24), the error norm (3.27) satisfies

o < (ol 12 (3.29)
1 = xllg = { 57—) e = x7llg, :

where0 < Xy < Ay < --- < X, are the eigenvalues of Q.

The proof of this result is given by Luenberger [195]. The inequalities (3.29) and (3.27)
show that the function values f; converge to the minimum f, at a linear rate. As a special
case of this result, we see that convergence is achieved in one iteration if all the eigenvalues
are equal. In this case, Q is a multiple of the identity matrix, so the contours in Figure 3.7
are circles and the steepest descent direction always points at the solution. In general, as the
condition number x(Q) = X, /A; increases, the contours of the quadratic become more
elongated, the zigzagging in Figure 3.7 becomes more pronounced, and (3.29) implies that
the convergence degrades. Even though (3.29) is a worst-case bound, it gives an accurate
indication of the behavior of the algorithm when n > 2.

The rate-of-convergence behavior of the steepest descent method is essentially the
same on general nonlinear objective functions. In the following result we assume that the
step length is the global minimizer along the search direction.

Theorem 3.4.
Suppose that f : R" — R is twice continuously differentiable, and that the iterates
generated by the steepest-descent method with exact line searches converge to a point x* at

43

44

CHAPTER 3. LINE SEARCH METHODS

which the Hessian matrix V2 f (x*) is positive definite. Let r be any scalar satisfying

(i)
r e , 1),
A+ M

whered; < Ay < --- < A, are the eigenvalues of V> f (x*). Then for all k sufficiently large, we
have

S Gagn) = F() < P2 [f () = fxX)].

In general, we cannot expect the rate of convergence to improve if an inexact line
search is used. Therefore, Theorem 3.4 shows that the steepest descent method can have an
unacceptably slow rate of convergence, even when the Hessian is reasonably well conditioned.
For example, if x(Q) = 800, f(x;) = 1, and f(x*) = 0, Theorem 3.4 suggests that the
function value will still be about 0.08 after one thousand iterations of the steepest descent
method with exact line search.

NEWTON'S METHOD

We now consider the Newton iteration, for which the search is given by
P = -V 'V fi. (3.30)

Since the Hessian matrix V2 f; may not always be positive definite, p} may not always
be a descent direction, and many of the ideas discussed so far in this chapter no longer
apply. In Section 3.4 and Chapter 4 we will describe two approaches for obtaining a globally
convergent iteration based on the Newton step: a line search approach, in which the Hessian
V2 fi is modified, if necessary, to make it positive definite and thereby yield descent, and a
trust region approach, in which V2 f; is used to form a quadratic model that is minimized
in a ball around the current iterate xy.

Here we discuss just the local rate-of-convergence properties of Newton’s method.
We know that for all x in the vicinity of a solution point x* such that V2 f(x*) is positive
definite, the Hessian V2 f(x) will also be positive definite. Newton’s method will be well
defined in this region and will converge quadratically, provided that the step lengths o are
eventually always 1.

Theorem 3.5.
Supposethat f is twice differentiable and that the Hessian V?* f (x) is Lipschitz continuous
(see (A.42)) in a neighborhood of a solution x* at which the sufficient conditions (Theorem 2.4)
are satisfied. Consider the iteration xy11 = Xy + pi, where py. is given by (3.30). Then
(i) if the starting point x is sufficiently close to x*, the sequence of iterates converges to x*;

(ii) the rate of convergence of {xy} is quadratic; and

(iii) the sequence of gradient norms {||V fi ||} converges quadratically to zero.

3.3. RATE OF CONVERGENCE

PROOF. From the definition of the Newton step and the optimality condition V f, = 0 we
have that

X+ pl—xF=x—xF = VIV L
=V Vi o =) = (Vi = VI (3.31)

Since Taylor’s theorem (Theorem 2.1) tells us that

1
Vi —Vf = / V2 £ (4 10" — x0) (xk — x)
0

we have
|V2F () (i = x*) = (V fi = V£ (x)]
1
/ [sz(xk) — V2 +t(x* — xk))] (xx — x*)dt
0

1
< [192500 = V2 10 =) = 2l
0
1
< o= [Ledr=3Lin - xR (332)
0

where L is the Lipschitz constant for V2 f(x) for x near x*. Since V2 f(x*) is nonsingular,
there is a radius 7 > 0 such that | V2 ;|| < 2|V f(x*)7!| for all x; with |lx; — x*|| <.
By substituting in (3.31) and (3.32), we obtain

e + pi — <™l < LIV £)Mo — x*11F = Lo — x|, (3.33)

where L = L||V2f(x*)~!||. Choosing xg so that ||xo — x*|| < min(r, 1/(2L)), we can use
this inequality inductively to deduce that the sequence converges to x*, and the rate of
convergence is quadratic.

By using the relations x;+1 — x; = p} and V fi + V2 fi p;’ = 0, we obtain that

IV £ s) = IV f (1) = Vi — V2 F () i
1
= ‘ / V2 (xx + tpY) (Xegr — xp) dt — V* f(xi) p}
0

1
< / |V G+ 1p) = V2 £ G| 1y de
0

< 3LIPI?

< SLIVZ F Q) TPV fell?
< 2L|VEF) TPV £l

proving that the gradient norms converge to zero quadratically. O

45

46

CHAPTER 3. LINE SEARCH METHODS

As the iterates generated by Newton’s method approach the solution, the Wolfe (or
Goldstein) conditions will accept the step length ap = 1 for all large k. This observation
follows from Theorem 3.6 below. Indeed, when the search direction is given by Newton’s
method, the limit (3.35) is satisfied—the ratio is zero for all k! Implementations of Newton’s
method using these line search conditions, and in which the line search always tries the unit
step length first, will set oy = 1 for all large k and attain a local quadratic rate of convergence.

QUASI-NEWTON METHODS

Suppose now that the search direction has the form
pe =B 'V i, (3.34)

where the symmetric and positive definite matrix By is updated at every iteration by a
quasi-Newton updating formula. We already encountered one quasi-Newton formula, the
BFGS formula, in Chapter 2; others will be discussed in Chapter 6. We assume here that the
step length oy is computed by an inexact line search that satisfies the Wolfe or strong Wolfe
conditions, with the same proviso mentioned above for Newton’s method: The line search
algorithm will always try the step length o = 1 first, and will accept this value if it satisfies
the Wolfe conditions. (We could enforce this condition by setting @ = 1 in Algorithm 3.1,
for example.) This implementation detail turns out to be crucial in obtaining a fast rate of
convergence.

The following result shows that if the search direction of a quasi-Newton method
approximates the Newton direction well enough, then the unit step length will satisfy the
Wolfe conditions as the iterates converge to the solution. It also specifies a condition that
the search direction must satisfy in order to give rise to a superlinearly convergent iteration.
To bring out the full generality of this result, we state it first in terms of a general descent
iteration, and then examine its consequences for quasi-Newton and Newton methods.

Theorem 3.6.

Suppose that f : R" — R is twice continuously differentiable. Consider the iteration
Xk+1 = X + o pr, where py. is a descent direction and ay satisfies the Wolfe conditions (3.6)
withc, < 1/2. Ifthe sequence {x;} converges to a point x* such thatV f (x*) = 0 and V* f (x*)
is positive definite, and if the search direction satisfies

lim IV fi + V2 fipell _

0, (3.35)
k=00 Il

then

(i) the step length o, = 1 is admissible for all k greater than a certain index ky; and

(i) ifox =1 forallk > ko, {xi} converges to x* superlinearly.

3.3. RATE OF CONVERGENCE

It is easy to see that if ¢; > 1/2, then the line search would exclude the minimizer of
a quadratic, and unit step lengths may not be admissible.
If py is a quasi-Newton search direction of the form (3.34), then (3.35) is equivalent to

lin 1Bk — V) pell
m =
k—o00 Il Pl

0. (3.36)

Hence, we have the surprising (and delightful) result that a superlinear convergence rate
can be attained even if the sequence of quasi-Newton matrices By does not converge to
V2 f(x*); it suffices that the By become increasingly accurate approximations to V2 f (x*)
along the search directions py. Importantly, condition (3.36) is both necessary and sufficient
for the superlinear convergence of quasi-Newton methods.

Theorem 3.7.

Suppose that f : R" — R is twice continuously differentiable. Consider the iteration
Xk+1 = Xy + pr (thatis, the step length oy, is uniformly 1) and that py is given by (3.34). Let us
assume also that {x;} converges to a point x* such that V f (x*) = 0 and V?* f(x*) is positive
definite. Then {x;} converges superlinearly if and only if (3.36) holds.

PROOF. We first show that (3.36) is equivalent to

pr — py = o(llpill), (3.37)

where pf = —V? fk_lv S is the Newton step. Assuming that (3.36) holds, we have that

e —py =V (VP fipe + Y i)
= V2NV fo — B pr
= O(I(V* f — B pill)
= o(llpl),
where we have used the fact that | V2 f,:1 || is bounded above for x; sufficiently close to x*,
since the limiting Hessian V2 f(x*) is positive definite. The converse follows readily if we

multiply both sides of (3.37) by V2 f; and recall (3.34).
By combining (3.33) and (3.37), we obtain that

Ik + px — x*1 < x4+ pf — x* 1 + llpx — PRI = Ollxe — x*11*) + o(ll pell).-
A simple manipulation of this inequality reveals that || p¢|| = O(||xx — x*||), so we obtain
lxx + pr — x*| < o(llxx — x™|),

giving the superlinear convergence result. (]

47

48

CHAPTER 3. LINE SEARCH METHODS

We will see in Chapter 6 that quasi-Newton methods normally satisfy condition (3.36)
and are therefore superlinearly convergent.

3.4 NEWTON'S METHOD WITH HESSIAN MODIFICATION

Away from the solution, the Hessian matrix V2 f(x) may not be positive definite, so the
Newton direction p} defined by

V2 f(xi)pY = =V f(xz) (3.38)

(see (3.30)) may not be a descent direction. We now describe an approach to overcome this
difficulty when a direct linear algebra technique, such as Gaussian elimination, is used to
solve the Newton equations (3.38). This approach obtains the step p; from a linear system
identical to (3.38), except that the coefficient matrix is replaced with a positive definite
approximation, formed before or during the solution process. The modified Hessian is
obtained by adding either a positive diagonal matrix or a full matrix to the true Hessian
V2 f(xi). A general description of this method follows.

Algorithm 3.2 (Line Search Newton with Modification).
Given initial point x;
for k=0,1,2,...

Factorize the matrix By = V2 f(x;) + Ej, where E;, = 0if V2 f(x;)
is sufficiently positive definite; otherwise, Ey is chosen to
ensure that By is sufficiently positive definite;

Solve Bypr = —V f(x1);

Set xp11 < X + oy pr, where a; satisfies the Wolfe, Goldstein, or
Armijo backtracking conditions;

end

Some approaches do not compute Ej explicitly, but rather introduce extra steps and
tests into standard factorization procedures, modifying these procedures “on the fly” so
that the computed factors are the factors of a positive definite matrix. Strategies based on
modifying a Cholesky factorization and on modifying a symmetric indefinite factorization
of the Hessian are described in this section.

Algorithm 3.2 is a practical Newton method that can be applied from any starting
point. We can establish fairly satisfactory global convergence results for it, provided that
the strategy for choosing E; (and hence By) satisfies the bounded modified factorization
property. This property is that the matrices in the sequence { B} have bounded condition
number whenever the sequence of Hessians {V? f (x;)} is bounded; that s,

k(By) = |Bell IB{'| < C, someC >0andallk =0,1,2,.... (3.39)

3.4. NEWTON’'S METHOD WITH HESSIAN MODIFICATION

If this property holds, global convergence of the modified line search Newton method follows
from the results of Section 3.2.

Theorem 3.8.

Let f be twice continuously differentiable on an open set D, and assume that the starting
point xq of Algorithm 3.2 is such that the level set L = {x € D : f(x) < f(x0)} is compact.
Then if the bounded modified factorization property holds, we have that

k]in’l Vf(xk) =0.

For a proof this result see [215].

We now consider the convergence rate of Algorithm 3.2. Suppose that the sequence
of iterates x; converges to a point x* where V2 f(x*) is sufficiently positive definite in the
sense that the modification strategies described in the next section return the modification
E; = 0 for all sufficiently large k. By Theorem 3.6, we have that oy = 1 for all sufficiently
large k, so that Algorithm 3.2 reduces to a pure Newton method, and the rate of convergence
is quadratic.

For problems in which V f* is close to singular, there is no guarantee that the mod-
ification Ej will eventually vanish, and the convergence rate may be only linear. Besides
requiring the modified matrix By to be well conditioned (so that Theorem 3.8 holds), we
would like the modification to be as small as possible, so that the second-order information
in the Hessian is preserved as far as possible. Naturally, we would also like the modified
factorization to be computable at moderate cost.

To set the stage for the matrix factorization techniques that will be used in Al-
gorithm 3.2, we will begin by assuming that the eigenvalue decomposition of V2 f(x;) is
available. Thisis not realistic for large-scale problems because this decomposition is generally
too expensive to compute, but it will motivate several practical modification strategies.

EIGENVALUE MODIFICATION

Consider a problem in which, at the current iterate xz, V f(x¢) = (1, =3, 2)T and
V2 f(x:) = diag(10, 3, —1), which is clearly indefinite. By the spectral decomposition
theorem (see Appendix A) we can define Q = I and A = diag(X1, X2, A3), and write

V() = QA0 =) higiq]. (3.40)
i=1

The pure Newton step—the solution of (3.38)—is p; = (—0.1, 1, 2)T, which is not a de-
scent direction, since V £ (x;)” p¥ > 0. One might suggest a modified strategy in which we
replace V2 f (x;) by a positive definite approximation By, in which all negative eigenvalues
in V2 f(x;) are replaced by a small positive number § that is somewhat larger than ma-
chine precision u; say § = ./u. For a machine precision of 107!, the resulting matrix in

49

50

CHAPTER 3. LINE SEARCH METHODS

our example is

2
B =) hqiq! +8qsq] = diag (10,3,107%), (3.41)

i=1

which is numerically positive definite and whose curvature along the eigenvectors ¢; and
q> has been preserved. Note, however, that the search direction based on this modified
Hessian is

2

pk=—B'Vfi = —Z

i=1

~ —(2 x 10%)gs. (3.42)

1 1
P (¢! V1) — 3% (g3 V f(x1))

For small §, this step is nearly parallel to g5 (with relatively small contributions from ¢, and
¢>) and quite long. Although f decreases along the direction py, its extreme length violates
the spirit of Newton’s method, which relies on a quadratic approximation of the objective
function that is valid in a neighborhood of the current iterate x;. It is therefore not clear
that this search direction is effective.

Various other modification strategies are possible. We could flip the signs of the
negative eigenvalues in (3.40), which amounts to setting § = 1 in our example. We could
set the last term in (3.42) to zero, so that the search direction has no components along
the negative curvature directions. We could adapt the choice of § to ensure that the length
of the step is not excessive, a strategy that has the flavor of trust-region methods. As this
discussion shows, there is a great deal of freedom in devising modification strategies, and
there is currently no agreement on which strategy is best.

Setting the issue of the choice of § aside for the moment, let us look more closely at the
process of modifying a matrix so that it becomes positive definite. The modification (3.41)
to the example matrix (3.40) can be shown to be optimal in the following sense. If A is a
symmetric matrix with spectral decomposition A = QA Q7, then the correction matrix
A A of minimum Frobenius norm that ensures that Anin(A + AA) > § is given by

0,)

(3.43)
s —)\.i,)"i <34

AA = Q diag (7;)Q7, with T = {

Here, Amin(A) denotes the smallest eigenvalue of A, and the Frobenius norm of a matrix is
n

defined as || A% = Zi’j:l aizj (see (A.9)). Note that A A is not diagonal in general, and that
the modified matrix is given by

A+ AA = Q(A + diag(r;)) Q7.

By using a different norm we can obtain a diagonal modification. Suppose again that
A is a symmetric matrix with spectral decomposition A = QA Q7. A correction matrix

3.4. NEWTON’'S METHOD WITH HESSIAN MODIFICATION

A A with minimum Euclidean norm that satisfies Apin (A + AA) > § is given by
AA=r1l, with T = max(0, 8 — Amin(A)). (3.44)
The modified matrix now has the form
A+1l, (3.45)

which happens to have the same form as the matrix occurring in (unscaled) trust-region
methods (see Chapter 4). All the eigenvalues of (3.45) have thus been shifted, and all are
greater than §.

These results suggest that both diagonal and nondiagonal modifications can be con-
sidered. Even though we have not answered the question of what constitutes a good
modification, various practical diagonal and nondiagonal modifications have been pro-
posed and implemented in software. They do not make use of the spectral decomposition of
the Hessian, since it is generally too expensive to compute. Instead, they use Gaussian elim-
ination, choosing the modifications indirectly and hoping that somehow they will produce
good steps. Numerical experience indicates that the strategies described next often (but not
always) produce good search directions.

ADDING A MULTIPLE OF THE IDENTITY

Perhaps the simplestideaisto findascalar t > Osuchthat V2 f(x;) + 71 issufficiently
positive definite. From the previous discussion we know that t must satisfy (3.44), but a good
estimate of the smallest eigenvalue of the Hessian is normally not available. The following
algorithm describes a method that tries successively larger values of 7. (Here, a;; denotes a
diagonal element of A.)

Algorithm 3.3 (Cholesky with Added Multiple of the Identity).
Choose 8 > 0;
if mini aii > 0
set g < 0;
else
79 = —min(g;;) + B;
end (if)
fork=0,1,2,...
Attempt to apply the Cholesky algorithm to obtain LLT = A + 7 [;
if the factorization is completed successfully
stop and return L;
else
Tp1 < max(2ty, B);
end (if)
end (for)

51

52

CHAPTER 3. LINE SEARCH METHODS

The choice of B is heuristic; a typical value is 8 = 107>. We could choose the first
nonzero shift 7y to be proportional to be the final value of 7 used in the latest Hessian
modification; see also Algorithm B.1. The strategy implemented in Algorithm 3.3 is quite
simple and may be preferable to the modified factorization techniques described next, but
it suffers from one drawback. Every value of 7; requires a new factorization of A + 7,7, and
the algorithm can be quite expensive if several trial values are generated. Therefore it may
be advantageous to increase T more rapidly, say by a factor of 10 instead of 2 in the last else
clause.

MODIFIED CHOLESKY FACTORIZATION

Another approach for modifying a Hessian matrix that is not positive definite is
to perform a Cholesky factorization of V2 f(x;), but to increase the diagonal elements
encountered during the factorization (where necessary) to ensure that they are sufficiently
positive. This modified Cholesky approach is designed to accomplish two goals: It guarantees
that the modified Cholesky factors exist and are bounded relative to the norm of the actual
Hessian, and it does not modify the Hessian if it is sufficiently positive definite.

We begin our description of this approach by briefly reviewing the Cholesky
factorization. Every symmetric positive definite matrix A can be written as

A=LDLT, (3.46)
where L is a lower triangular matrix with unit diagonal elements and D is a diagonal matrix

with positive elements on the diagonal. By equating the elements in (3.46), column by
column, it is easy to derive formulas for computing L and D.

(d ExampLE 3.1

Consider the case n = 3. The equation A = LDLT is given by

ai axn as 10 0 d 0 0 1 by Iy
an an ap |=|ln 1 0 0 4 0 0 1 I
as asx as Iy In 1 0 0 ds 0 0 1

(The notation indicates that A is symmetric.) By equating the elements of the first column,
we have

ay =d;,
ay =dily = b =ay/d,
a1 =dilsy = 31 =a3/d.

3.4. NEWTON’'S METHOD WITH HESSIAN MODIFICATION

Proceeding with the next two columns, we obtain

ay = dllzzl + dz = dz =day — dllzzlv
asy = dll31121 + d2132 = 132 = ((,132 - dll31121) /d27
as3 = dll§1 + d21§2 + d3 = d3 = ds33 — d11§1 — d2[§2.

This procedure is generalized in the following algorithm.

Algorithm 3.4 (Cholesky Factorization, LDLT Form).
for j=1,2,...,n
cjj < aj— Y12 dl3;
dj < cjj;
for i=j+1,...,n
Cij < aij — Zf;ll dglisljs;
lij < cij/djs
end
end

One can show (see, for example, Golub and Van Loan [136, Section 4.2.3]) that the
diagonal elements d;; are all positive whenever A is positive definite. The scalars ¢;; have
been introduced only to facilitate the description of the modified factorization discussed
below. We should note that Algorithm 3.4 differs a little from the standard form of the
Cholesky factorization, which produces a lower triangular matrix M such that

A=MMT. (3.47)

In fact, we can make the identification M = L D2 to relate M to the factors L and D
computed in Algorithm 3.4. The technique for computing M appears as Algorithm A.2 in
Appendix A.

If A is indefinite, the factorization A = LDL” may not exist. Even if it does exist,
Algorithm 3.4 is numerically unstable when applied to such matrices, in the sense that the
elements of L and D can become arbitrarily large. It follows that a strategy of computing
the LDLT factorization and then modifying the diagonal after the fact to force its elements
to be positive may break down, or may result in a matrix that is drastically different from A.

Instead, we can modify the matrix A during the course of the factorization in such
a way that all elements in D are sufficiently positive, and so that the elements of D and
L are not too large. To control the quality of the modification, we choose two positive
parameters § and B, and require that during the computation of the jth columns of L and
D in Algorithm 3.4 (that is, for each j in the outer loop of the algorithm) the following

53

54

CHAPTER 3. LINE SEARCH METHODS

bounds be satisfied:
deS, |m,~j|§ﬂ, i=j+1,j4+2,...,n, (3.48)
where m;; = l;;,/d;. To satisfy these bounds we only need to change one step in Algo-

rithm 3.4: The formula for computing the diagonal element d; in Algorithm 3.4 is replaced
by

0. 2
dj = max <|ij|, (é) ,(S) s with Qj = mnax |C,’j|. (349)
j<i<n

To verify that (3.48) holds, we note from Algorithm 3.4 that ¢;; = [;;d;, and therefore

|mlj| - |lljf| - \/;— |c”|ﬁ ,3, foralli >]

We note that 6; can be computed prior to d; because the elements ¢;; in the second

for loop of Algorithm 3.4 do not involve d;. In fact, this is the reason for introducing the
quantities ¢;; into the algorithm.

These observations are the basis of the modified Cholesky algorithm described in detail
in Gill, Murray, and Wright [130], which introduces symmetric interchanges of rows and
columns to try to reduce the size of the modification. If P denotes the permutation matrix
associated with the row and column interchanges, the algorithm produces the Cholesky
factorization of the permuted, modified matrix PAPT + E, that is,

PAPT + E=LDLT = MMT, (3.50)

where E is a nonnegative diagonal matrix that is zero if A is sufficiently positive definite.
One can show (Moré and Sorensen [215]) that the matrices By obtained by this modified
Cholesky algorithm to the exact Hessians V2 f (x;) have bounded condition numbers, that
is, the bound (3.39) holds for some value of C.

MODIFIED SYMMETRIC INDEFINITE FACTORIZATION

Another strategy for modifying an indefinite Hessian is to use a procedure based on
a symmetric indefinite factorization. Any symmetric matrix A, whether positive definite or
not, can be written as

PAPT = LBLT, (3.51)

where L is unit lower triangular, B is a block diagonal matrix with blocks of dimension 1
or 2, and P is a permutation matrix (see our discussion in Appendix A and also Golub and

3.4. NEWTON’'S METHOD WITH HESSIAN MODIFICATION

Van Loan [136, Section 4.4]). We mentioned earlier that attempting to compute the LDLT
factorization of an indefinite matrix (where D is a diagonal matrix) is inadvisable because
even if the factors L and D are well defined, they may contain entries that are larger than the
original elements of A, thus amplifying rounding errors that arise during the computation.
However, by using the block diagonal matrix B, which allows 2 x 2 blocks as well as 1 x 1
blocks on the diagonal, we can guarantee that the factorization (3.51) always exists and can
be computed by a numerically stable process.

(J EXAMPLE 3.2

The matrix

W N = O
[\ (SR S
W W NN
> W N W

can be written in the form (3.51) with P = [ey, ¢4, €3, €3],

1 0 0 0 03 0 0
0 1 0 0 3 4 0 0
|1 2 — 7 5
L=| 1 2 0 B=|, 4, 7 5| (3.52)
9 3 9 9
2 1 5 10
S - 01 00 = —
9 3 9 9

Note that both diagonal blocks in B are 2 x 2. Several algorithms for computing symmetric
indefinite factorizations are discussed in Section A.1 of Appendix A. a

The symmetric indefinite factorization allows us to determine the inertia of a matrix,
that is, the number of positive, zero, and negative eigenvalues. One can show that the inertia
of B equals the inertia of A. Moreover, the 2 x 2 blocks in B are always constructed to
have one positive and one negative eigenvalue. Thus the number of positive eigenvalues in
A equals the number of positive 1 x 1 blocks plus the number of 2 x 2 blocks.

As for the Cholesky factorization, an indefinite symmetric factorization algorithm
can be modified to ensure that the modified factors are the factors of a positive definite
matrix. The strategy is first to compute the factorization (3.51), as well as the spectral
decomposition B = QA QT, which is inexpensive to compute because B is block diagonal

55

56

CHAPTER 3. LINE SEARCH METHODS

(see Exercise 3.12). We then construct a modification matrix F such that
L(B+ F)L”

is sufficiently positive definite. Motivated by the modified spectral decomposition (3.43),
we choose a parameter § > 0 and define F to be

F = Q diag(z;) OT 0 MEO (3.53)
= 1ag(T; s T = 1=1,2,...,n, .
8 8—)\.1‘,)\.,‘<5,

where A; are the eigenvalues of B. The matrix F is thus the modification of minimum
Frobenius norm that ensures that all eigenvalues of the modified matrix B 4 F are no less
than §. This strategy therefore modifies the factorization (3.51) as follows:

P(A+ E)PT =L(B+ F)LT, where E = PTLFLTP.

(Note that E will not be diagonal, in general.) Hence, in contrast to the modified Cholesky
approach, this modification strategy changes the entire matrix A, not just its diagonal. The
aim of strategy (3.53) is that the modified matrix satisfies Apnin(A + E) & § whenever the
original matrix A has Ap;n(A) < 8. It is not clear, however, whether it always comes close
to attaining this goal.

3.5 STEP-LENGTH SELECTION ALGORITHMS

We now consider techniques for finding a minimum of the one-dimensional function

P(a) = f(xx +api), (3.54)

or for simply finding a step length o satisfying one of the termination conditions described
in Section 3.1. We assume that p; is a descent direction—that is, ¢'(0) < 0—so that our
search can be confined to positive values of «.

If f is a convex quadratic, f(x) = %xT Ox — bT x, its one-dimensional minimizer
along the ray x; + apy can be computed analytically and is given by

iy
= Yhepe (3.55)
Pi Ok
For general nonlinear functions, it is necessary to use an iterative procedure. The line search
procedure deserves particular attention because it has a major impact on the robustness and
efficiency of all nonlinear optimization methods.

3.5. STEP-LENGTH SELECTION ALGORITHMS

Line search procedures can be classified according to the type of derivative information
they use. Algorithms that use only function values can be inefficient since, to be theoretically
sound, they need to continue iterating until the search for the minimizer is narrowed down
to a small interval. In contrast, knowledge of gradient information allows us to determine
whether a suitable step length has been located, as stipulated, for example, by the Wolfe
conditions (3.6) or Goldstein conditions (3.11). Often, particularly when x; is close to the
solution, the very first choice of « satisfies these conditions, so the line search need not
be invoked at all. In the rest of this section, we discuss only algorithms that make use of
derivative information. More information on derivative-free procedures is given in the notes
at the end of this chapter.

All line search procedures require an initial estimate ¢y and generate a sequence {o;}
that either terminates with a step length satisfying the conditions specified by the user (for
example, the Wolfe conditions) or determines that such a step length does not exist. Typical
procedures consist of two phases: a bracketing phase that finds an interval [a, b] containing
acceptable step lengths, and a selection phase that zooms in to locate the final step length.
The selection phase usually reduces the bracketing interval during its search for the desired
step length and interpolates some of the function and derivative information gathered on
earlier steps to guess the location of the minimizer. We first discuss how to perform this
interpolation.

In the following discussion we let oy and o1 denote the step lengths used at iterations
k and k — 1 of the optimization algorithm, respectively. On the other hand, we denote the
trial step lengths generated during the line search by «; and «;—; and also o/;. We use g to
denote the initial guess.

INTERPOLATION

We begin by describing a line search procedure based on interpolation of known
function and derivative values of the function ¢. This procedure can be viewed as an
enhancement of Algorithm 3.1. The aim is to find a value of « that satisfies the sufficient
decrease condition (3.6a), without being “too small.” Accordingly, the procedures here
generate a decreasing sequence of values ¢; such that each value ¢; is not too much smaller
than its predecessor «; ;.

Note that we can write the sufficient decrease condition in the notation of (3.54) as

d(ar) < ¢d(0) + craud’(0), (3.56)

and that since the constant c; is usually chosen to be small in practice (c; = 107, say), this
condition asks for little more than descent in f. We design the procedure to be “efficient”
in the sense that it computes the derivative V f(x) as few times as possible.

Suppose that the initial guess o is given. If we have

¢(eg) < ¢(0) + c1009'(0),

57

58

CHAPTER 3. LINE SEARCH METHODS

this step length satisfies the condition, and we terminate the search. Otherwise, we know that
the interval [0, op] contains acceptable step lengths (see Figure 3.3). We form a quadratic
approximation ¢, () to ¢ by interpolating the three pieces of information available—¢(0),
¢’'(0), and ¢(ay)—to obtain

P(o) — $(0) — aog’(0)

2
)

¢q(a) = () o +¢'(0)a + ¢(0). (3.57)

(Note that this function is constructed so that it satisfies the interpolation conditions
¢4(0) = ¢(0), qb; (0) = ¢(0), and ¢, () = P(ep).) The new trial value o, is defined as the
minimizer of this quadratic, that is, we obtain

@' (0)org

a : 3.58
2 [¢(arg) — ¢(0) — ¢ (0)axp] (3.58)

o) =

If the sufficient decrease condition (3.56) is satisfied at «;, we terminate the search. Oth-
erwise, we construct a cubic function that interpolates the four pieces of information ¢(0),
@'(0), ¢(p), and ¢(e;), obtaining

dc(a) = aa® + ba® + ag'(0) + $(0),
where
a | _ 1 ap = [¢ler) —(0) - ¢'(0)y
b | et —a0) | -} o ¢(a0) — $(0) — ¢'(0)rg |
By differentiating ¢ (x), we see that the minimizer «, of ¢, lies in the interval [0, ;] and is
given by

—b + /b? — 3a¢/'(0)
Oy = .

If necessary, this process is repeated, using a cubic interpolant of ¢(0), ¢’(0) and the two
most recent values of ¢, until an « that satisfies (3.56) is located. If any «; is either too
close to its predecessor ¢;_; or else too much smaller than o;_;, we reset o; = «;_1/2. This
safeguard procedure ensures that we make reasonable progress on each iteration and that
the final « is not too small.

The strategy just described assumes that derivative values are significantly more ex-
pensive to compute than function values. It is often possible, however, to compute the
directional derivative simultaneously with the function, at little additional cost; see Chap-
ter 8. Accordingly, we can design an alternative strategy based on cubic interpolation of the
values of ¢ and ¢’ at the two most recent values of .

3.5. STEP-LENGTH SELECTION ALGORITHMS

Cubic interpolation provides a good model for functions with significant changes of
curvature. Suppose we have an interval [a, b] known to contain desirable step lengths, and
two previous step length estimates ;_; and ¢; in this interval. We use a cubic function to
interpolate ¢ (o;—1), ¢’ (@i—1), ¢(e;), and ¢ (e;). (This cubic function always exists and is
unique; see, for example, Bulirsch and Stoer [41, p. 52].) The minimizer of this cubic in
[@, b] is either at one of the endpoints or else in the interior, in which case it is given by

e @' () +dy — dy
ip1 =0 — (o — o) |:¢/(Oli) T 2d2] , (3.59)
with
dy = ¢ (aiy) + ¢ (o) — 3M,
Qi1 —

dy = sign(a; — ;1) [df — ¢/(0li—1)¢/(05i)]1/2 .

The interpolation process can be repeated by discarding the data at one of the step
lengths o;_; or «; and replacing it by ¢(¢;+1) and ¢'(@;+1). The decision on which of o; 4
and «; should be kept and which discarded depends on the specific conditions used to
terminate the line search; we discuss this issue further below in the context of the Wolfe
conditions. Cubic interpolation is a powerful strategy, since it usually produces a quadratic
rate of convergence of the iteration (3.59) to the minimizing value of «.

INITIAL STEP LENGTH

For Newton and quasi-Newton methods, the step cp = 1 should always be used as
the initial trial step length. This choice ensures that unit step lengths are taken whenever
they satisfy the termination conditions and allows the rapid rate-of-convergence properties
of these methods to take effect.

For methods that do not produce well scaled search directions, such as the steepest de-
scent and conjugate gradient methods, it is important to use current information about the
problem and the algorithm to make the initial guess. A popular strategy is to assume that the
first-order change in the function at iterate x; will be the same as that obtained at the previ-
ous step. In other words, we choose the initial guess o so that oV fkT Pk = a1V fkT_1 DPik—1>
that is,

Vil P
Vi

Another useful strategy is to interpolate a quadratic to the data f(x;—1), f(x¢), and
V £, pr—1 and to define oy to be its minimizer. This strategy yields

oy = Ug—1

2/~ fio)

59

60

CHAPTER 3. LINE SEARCH METHODS

It can be shown that if x;, — x* superlinearly, then the ratio in this expression converges to
1. If we adjust the choice (3.60) by setting

oy < min(1, 1.01«y),

we find that the unit step length oy = 1 will eventually always be tried and accepted, and the
superlinear convergence properties of Newton and quasi-Newton methods will be observed.

A LINE SEARCH ALGORITHM FOR THE WOLFE CONDITIONS

The Wolfe (or strong Wolfe) conditions are among the most widely applicable and
useful termination conditions. We now describe in some detail a one-dimensional search
procedure that is guaranteed to find a step length satisfying the strong Wolfe conditions (3.7)
for any parameters ¢; and c; satisfying 0 < ¢; < ¢, < 1. As before, we assume that p is a
descent direction and that f is bounded below along the direction p.

The algorithm has two stages. This first stage begins with a trial estimate o, and keeps
increasing it until it finds either an acceptable step length or an interval that brackets the
desired step lengths. In the latter case, the second stage is invoked by calling a function called
zoom (Algorithm 3.6, below), which successively decreases the size of the interval until an
acceptable step length is identified.

A formal specification of the line search algorithm follows. We refer to (3.7a) as the
sufficient decrease condition and to (3.7b) as the curvature condition. The parameter o/max
is a user-supplied bound on the maximum step length allowed. The line search algorithm
terminates with o, set to a step length that satisfies the strong Wolfe conditions.

Algorithm 3.5 (Line Search Algorithm).
Set oy < 0, choose o > 0and o € (0, Xmax);
I < 1;
repeat
Evaluate ¢(«;);
if p(o;) > ¢(0) + c10:¢'(0) or [P(e;) > Pp(at;—1) and i > 1]
o, <—zoom(w;_1, ;) and stop;
Evaluate ¢’ (o;);
if |¢'(0;)| < —c29(0)
set o, < o; and stop;
if¢p'(o;) >0
set o, <—zoom(«;, ;1) and stop;
Choose @; 11 € (&, tmax);
i<i+1;
end (repeat)

3.5. STEP-LENGTH SELECTION ALGORITHMS

Note that the sequence of trial step lengths {¢;} is monotonically increasing, but that
the order of the arguments supplied to the zoom function may vary. The procedure uses
the knowledge that the interval («;_;, ;) contains step lengths satisfying the strong Wolfe
conditions if one of the following three conditions is satisfied:

(i) o; violates the sufficient decrease condition;
(ii) P(ai) = Plai1)s
(iii) ¢'(a;) > 0.

The last step of the algorithm performs extrapolation to find the next trial value ;. To
implement this step we can use approaches like the interpolation procedures above, or
we can simply set o;4; to some constant multiple of «;. Whichever strategy we use, it is
important that the successive steps increase quickly enough to reach the upper limit @y in
a finite number of iterations.

We now specify the function zoom, which requires a little explanation. The order of
its input arguments is such that each call has the form zoom (oo, i), where

(a) the interval bounded by ¢, and ay,; contains step lengths that satisfy the strong Wolfe
conditions;

(b) «j is, among all step lengths generated so far and satisfying the sufficient decrease
condition, the one giving the smallest function value; and

(c) ap; is chosen so that ¢’ (o) (arn; — 1) < 0.

Each iteration of zoom generates an iterate r; between o, and oy, and then replaces one
of these endpoints by «; in such a way that the properties (a), (b), and (c) continue to hold.

Algorithm 3.6 (zoom).
repeat
Interpolate (using quadratic, cubic, or bisection) to find
a trial step length «; between o, and ay;
Evaluate ¢(«;);
if $()) > $(0) + cra;¢/(0) or pla;) = (o)
Ohi < O3
else
Evaluate ¢'(;);
if ¢ ()] < —2¢9(0)
Set o, <— o and stop;
if ¢ (o) (oni — a10) = 0
Ohi < o3
Qo < O3
end (repeat)

61

62

CHAPTER 3. LINE SEARCH METHODS

If the new estimate o« ; happens to satisfy the strong Wolfe conditions, then zoom has served
its purpose of identifying such a point, so it terminates with o, = «;. Otherwise, if o;
satisfies the sufficient decrease condition and has a lower function value than xj,, then we
set o, <— orj to maintain condition (b). If this setting results in a violation of condition (c),
we remedy the situation by setting op; to the old value of o,. Readers should sketch some
graphs to see for themselves how zoom works!

As mentioned earlier, the interpolation step that determines o ; should be safeguarded
to ensure that the new step length is not too close to the endpoints of the interval. Practical
line search algorithms also make use of the properties of the interpolating polynomials to
make educated guesses of where the next step length should lie; see [39, 216]. A problem
that can arise is that as the optimization algorithm approaches the solution, two consecutive
function values f(x;) and f(x;—;) may be indistinguishable in finite-precision arithmetic.
Therefore, the line search must include a stopping test if it cannot attain a lower function
value after a certain number (typically, ten) of trial step lengths. Some procedures also
stop if the relative change in x is close to machine precision, or to some user-specified
threshold.

A line search algorithm that incorporates all these features is difficult to code. We
advocate the use of one of the several good software implementations available in the
public domain. See Dennis and Schnabel [92], Lemaréchal [189], Fletcher [101], Moré and
Thuente [216] (in particular), and Hager and Zhang [161].

One may ask how much more expensive it is to require the strong Wolfe conditions
instead of the regular Wolfe conditions. OQur experience suggests that for a “loose” line
search (with parameters such as ¢; = 107* and ¢, = 0.9), both strategies require a similar
amount of work. The strong Wolfe conditions have the advantage that by decreasing ¢, we
can directly control the quality of the search, by forcing the accepted value of « to lie closer
to a local minimum. This feature is important in steepest descent or nonlinear conjugate
gradient methods, and therefore a step selection routine that enforces the strong Wolfe
conditions has wide applicability.

NOTES AND REFERENCES

For an extensive discussion of line search termination conditions see Ortega and
Rheinboldt [230]. Akaike [2] presents a probabilistic analysis of the steepest descent method
with exact line searches on quadratic functions. He shows that when n > 2, the worst-case
bound (3.29) can be expected to hold for most starting points. The case n = 2 can be
studied in closed form; see Bazaraa, Sherali, and Shetty [14]. Theorem 3.6 is due to Dennis
and Moré.

Some line search methods (see Goldfarb [132] and Moré and Sorensen [213]) compute
a direction of negative curvature, whenever it exists, to prevent the iteration from converging
to nonminimizing stationary points. A direction of negative curvature p_ is one that satisfies
pIV2 f(xi)p— < 0.These algorithms generate a search direction by combining p_ with the
steepest descent direction —V f, often performing a curvilinear backtracking line search.

3.5. STEP-LENGTH SELECTION ALGORITHMS

It is difficult to determine the relative contributions of the steepest descent and negative
curvature directions. Because of this fact, the approach fell out of favor after the introduction
of trust-region methods.

For a more thorough treatment of the modified Cholesky factorization see Gill,
Murray, and Wright [130] or Dennis and Schnabel [92]. A modified Cholesky factorization
based on Gershgorin disk estimates is described in Schnabel and Eskow [276]. The modified
indefinite factorization is from Cheng and Higham [58].

Another strategy for implementing a line search Newton method when the Hessian
contains negative eigenvalues is to compute a direction of negative curvature and use it to
define the search direction (see Moré and Sorensen [213] and Goldfarb [132]).

Derivative-free line search algorithms include golden section and Fibonacci search.
They share some of the features with the line search method given in this chapter. They
typically store three trial points that determine an interval containing a one-dimensional
minimizer. Golden section and Fibonacci differ in the way in which the trial step lengths are
generated; see, for example, [79, 39].

Our discussion of interpolation follows Dennis and Schnabel [92], and the algorithm
for finding a step length satisfying the strong Wolfe conditions can be found in Fletcher
[101].

& EXERCISES

& 3.1 Program the steepest descent and Newton algorithms using the backtracking line
search, Algorithm 3.1. Use them to minimize the Rosenbrock function (2.22). Set the initial
step length oy = 1 and print the step length used by each method at each iteration. First try
the initial point xo = (1.2, 1.2)7 and then the more difficult starting point xo = (—1.2, 1)7.

& 3.2 Showthatif0 < ¢, < ¢1 < 1, there may be no step lengths that satisfy the Wolfe
conditions.

& 3.3 Show that the one-dimensional minimizer of a strongly convex quadratic function
is given by (3.55).

& 3.4 Show that the one-dimensional minimizer of a strongly convex quadratic function
always satisfies the Goldstein conditions (3.11).

& 3.5 Prove that ||Bx| > |x||/||B~}| for any nonsingular matrix B. Use this fact to
establish (3.19).

& 3.6 Consider the steepest descent method with exact line searches applied to the
convex quadratic function (3.24). Using the properties given in this chapter, show that if the
initial point is such that x, — x* is parallel to an eigenvector of Q, then the steepest descent
method will find the solution in one step.

63

64

CHAPTER 3. LINE SEARCH METHODS

& 3.7 Prove the result (3.28) by working through the following steps. First, use (3.26)
to show that

e — 1% = legs — x* 1% = 204V T Qi — x*) — a2V £T OV fi,
where || - || o is defined by (3.27). Second, use the fact that V fi = Q(x; — x*) to obtain

AVAVR?E (VAIVAY?
(VAIOVS) (VA OV fo)

2 2
e = x*Ip = lxkr — x*llp =

and
lxe —x* Iy = VA Q7' fi

& 3.8 Let Q be a positive definite symmetric matrix. Prove that for any vector x, we
have
(xTx)? - Ah,)
TOX)(xTQ71x) T (A + A1)

where X, and A; are, respectively, the largest and smallest eigenvalues of Q. (This relation,
which is known as the Kantorovich inequality, can be used to deduce (3.29) from (3.28).)

& 3.9 Program the BFGS algorithm using the line search algorithm described in this
chapter that implements the strong Wolfe conditions. Have the code verify that y/ s is
always positive. Use it to minimize the Rosenbrock function using the starting points given
in Exercise 3.1.

& 3.10 Compute the eigenvalues of the 2 diagonal blocks of (3.52) and verify that each
block has a positive and a negative eigenvalue. Then compute the eigenvalues of A and verify
that its inertia is the same as that of B.

& 3.11 Describe the effect that the modified Cholesky factorization (3.50) would have
on the Hessian V2 f (x;) = diag(—2, 12, 4).

& 3.12 Consider a block diagonal matrix B with 1 x 1 and 2 x 2 blocks. Show that the
eigenvalues and eigenvectors of B can be obtained by computing the spectral decomposition
of each diagonal block separately.

& 3.13 Show that the quadratic function that interpolates ¢(0), ¢'(0), and ¢ (o) is
given by (3.57). Then, make use of the fact that the sufficient decrease condition (3.6a) is
not satisfied at oy to show that this quadratic has positive curvature and that the minimizer
satisfies

240}

< —
50—

3.5. STEP-LENGTH SELECTION ALGORITHMS

Since ¢; is chosen to be quite small in practice, this inequality indicates that «; cannot be
much greater than % (and may be smaller), which gives us an idea of the new step length.

& 3.14 If ¢(ayp) is large, (3.58) shows that o can be quite small. Give an example of a
function and a step length & for which this situation arises. (Drastic changes to the estimate
of the step length are not desirable, since they indicate that the current interpolant does not
provide a good approximation to the function and that it should be modified before being
trusted to produce a good step length estimate. In practice, one imposes a lower bound—
typically, p = 0.1—and defines the new step length as o; = max(pa;_1, @;), where &; is the
minimizer of the interpolant.)

& 3.15 Suppose that the sufficient decrease condition (3.6a) is not satisfied at the step
lengths «, and «;, and consider the cubic interpolating ¢(0), ¢’(0), ¢(xo) and ¢(a;).
By drawing graphs illustrating the two situations that can arise, show that the mini-
mizer of the cubic lies in [0, «;]. Then show that if ¢(0) < ¢(a;), the minimizer is
less than %al.

65

CHAPTER

Trust-Region
Methods

Line search methods and trust-region methods both generate steps with the help of a
quadratic model of the objective function, but they use this model in different ways. Line
search methods use it to generate a search direction, and then focus their efforts on finding
a suitable step length o along this direction. Trust-region methods define a region around
the current iterate within which they trust the model to be an adequate representation of
the objective function, and then choose the step to be the approximate minimizer of the
model in this region. In effect, they choose the direction and length of the step simul-
taneously. If a step is not acceptable, they reduce the size of the region and find a new

CHAPTER 4. TRUST-REGION METHODS

minimizer. In general, the direction of the step changes whenever the size of the trust region
is altered.

The size of the trust region is critical to the effectiveness of each step. If the region is
too small, the algorithm misses an opportunity to take a substantial step that will move it
much closer to the minimizer of the objective function. If too large, the minimizer of the
model may be far from the minimizer of the objective function in the region, so we may have
to reduce the size of the region and try again. In practical algorithms, we choose the size of
the region according to the performance of the algorithm during previous iterations. If the
model is consistently reliable, producing good steps and accurately predicting the behavior
of the objective function along these steps, the size of the trust region may be increased to
allow longer, more ambitious, steps to be taken. A failed step is an indication that our model
is an inadequate representation of the objective function over the current trust region. After
such a step, we reduce the size of the region and try again.

Figure 4.1 illustrates the trust-region approach on a function f of two variables in
which the current point x; and the minimizer x* lie at opposite ends of a curved valley.
The quadratic model function my, whose elliptical contours are shown as dashed lines, is
constructed from function and derivative information at x; and possibly also on information
accumulated from previous iterations and steps. A line search method based on this model
searches along the step to the minimizer of m; (shown), but this direction will yield at most
a small reduction in f, even if the optimal steplength is used. The trust-region method
steps to the minimizer of m; within the dotted circle (shown), yielding a more significant
reduction in f and better progress toward the solution.

In this chapter, we will assume that the model function m; that is used at each
iterate x; is quadratic. Moreover, m; is based on the Taylor-series expansion of f around

-... Trust region

Line search direction

contours of my

Trust region step

contours of f

Figure 4.1 Trust-region and line search steps.

67

68

CHAPTER 4. TRUST-REGION METHODS

Xy, which is

fe+p)=fi+eglp+3p" Vil +1ip)p, (4.1)

where f; = f(xx)and g = V f(xx), and 7 is some scalar in the interval (0, 1). By using an
approximation By, to the Hessian in the second-order term, my, is defined as follows:

me(p) = fe+g p+ip"Bip, (4.2)

where By is some symmetric matrix. The difference between m;(p) and f(x; + p) is
o (||p||2), which is small when p is small.

When B is equal to the true Hessian V? f (x;), the approximation error in the model
function my is O (|| p ||3), so this model is especially accurate when || p|| is small. This choice
By = V% f(x;) leads to the trust-region Newton method, and will be discussed further in
Section 4.4. In other sections of this chapter, we emphasize the generality of the trust-region
approach by assuming little about By except symmetry and uniform boundedness.

To obtain each step, we seek a solution of the subproblem

min mi(p) = fi+gip+3p Bip st llpll = Ax, (4.3)

where Ay > 0 is the trust-region radius. In most of our discussions, we define || - || to be
the Euclidean norm, so that the solution p; of (4.3) is the minimizer of m, in the ball of
radius A;. Thus, the trust-region approach requires us to solve a sequence of subproblems
(4.3) in which the objective function and constraint (which can be written as p” p < A,%)
are both quadratic. When B is positive definite and || B, Yerll < Ay, the solution of (4.3) is
easy to identify—it is simply the unconstrained minimum p? = — B, ' g; of the quadratic
my(p). In this case, we call p; the full step. The solution of (4.3) is not so obvious in other
cases, but it can usually be found without too much computational expense. In any case,
as described below, we need only an approximate solution to obtain convergence and good
practical behavior.

OUTLINE OF THE TRUST-REGION APPROACH

One of the key ingredients in a trust-region algorithm is the strategy for choosing the
trust-region radius Ay at each iteration. We base this choice on the agreement between the
model function m; and the objective function f at previous iterations. Given a step p; we
define the ratio

_ S = flut o)
my(0) — my(py)

(4.4)

the numerator is called the actual reduction, and the denominator is the predicted reduction
(that is, the reduction in f predicted by the model function). Note that since the step pi

CHAPTER 4. TRUST-REGION METHODS

is obtained by minimizing the model m; over a region that includes p = 0, the predicted
reduction will always be nonnegative. Hence, if p; is negative, the new objective value
f(xx + pr) is greater than the current value f(xi), so the step must be rejected. On the
other hand, if p; is close to 1, there is good agreement between the model my and the
function f over this step, so it is safe to expand the trust region for the next iteration. If p
is positive but significantly smaller than 1, we do not alter the trust region, but if it is close
to zero or negative, we shrink the trust region by reducing Ay at the next iteration.
The following algorithm describes the process.

Algorithm 4.1 (Trust Region).
Given A > 0, Ay € (0, A), andn € [O, i):
fork=0,1,2,...
Obtain py by (approximately) solving (4.3);
Evaluate p; from (4.4);
if,Ok < 711
Apyr = 1A
else
if o > 3 and | pull = Ay
Ak+1 = min(ZAk, A)

else
Ay = Aps
ifpr >n
Xpy1 = Xk + Pk
else
X1 = X5
end (for).

Here A is an overall bound on the step lengths. Note that the radius is increased only if || py ||
actually reaches the boundary of the trust region. If the step stays strictly inside the region,
we infer that the current value of Ay is not interfering with the progress of the algorithm,
so we leave its value unchanged for the next iteration.

To turn Algorithm 4.1 into a practical algorithm, we need to focus on solving the
trust-region subproblem (4.3). In discussing this matter, we sometimes drop the iteration
subscript k and restate the problem (4.3) as follows:

. def
min m(p) =f+e p+ip"Bp stpl <A (4.5)

A first step to characterizing exact solutions of (4.5) is given by the following theorem
(due to Moré and Sorensen [214]), which shows that the solution p* of (4.5) satisfies

(B+Al)p*=—¢g (4.6)

for some A > 0.

69

70

CHAPTER 4. TRUST-REGION METHODS

Theorem 4.1.
The vector p* is a global solution of the trust-region problem

minm(p) = f + g"p+1ip"Bp, st lpl <A, (4.7)

if and only if p* is feasible and there is a scalar . > 0 such that the following conditions are
satisfied:

(B+AM)p* =—g, (4.8a)
AA —p*l) =0, (4.8b)
(B+ AI) is positive semidefinite. (4.8¢)

We delay the proof of this result until Section 4.3, and instead discuss just its key
features here with the help of Figure 4.2. The condition (4.8b) is a complementarity condition
that states that at least one of the nonnegative quantities A and (A — || p*||) must be zero.
Hence, when the solution lies strictly inside the trust region (as it does when A = A, in
Figure 4.2), we must have A = 0 and so Bp* = —g with B positive semidefinite, from (4.8a)
and (4.8¢), respectively. In the other cases A = A; and A = Aj;, we have || p*|| = A, and
so A is allowed to take a positive value. Note from (4.8a) that

* —_—

Ap* = —Bp* — g = —Vm(p").

Figure 4.2 Solution of trust-region subproblem for different radii A!, A2, A3,

4.1. ALGORITHMS BASED ON THE CAUCHY POINT

Thus, when A > 0, the solution p* is collinear with the negative gradient of m and normal
to its contours. These properties can be seen in Figure 4.2.

In Section 4.1, we describe two strategies for finding approximate solutions of the
subproblem (4.3), which achieve at least as much reduction in my, as the reduction achieved
by the so-called Cauchy point. This point is simply the minimizer of m; along the steepest
descent direction —gi. subject to the trust-region bound. The first approximate strategy is
the dogleg method, which is appropriate when the model Hessian By, is positive definite. The
second strategy, known as two-dimensional subspace minimization, can be applied when By
is indefinite, though it requires an estimate of the most negative eigenvalue of this matrix.
A third strategy, described in Section 7.1, uses an approach based on the conjugate gradient
method to minimize my, and can therefore be applied when B is large and sparse.

Section 4.3 is devoted to a strategy in which an iterative method is used to identify the
value of A for which (4.6) is satisfied by the solution of the subproblem. We prove global
convergence results in Section 4.2. Section 4.4 discusses the trust-region Newton method, in
which the Hessian By, of the model function is equal to the Hessian V2 f (x;) of the objective
function. The key result of this section is that, when the trust-region Newton algorithm con-
verges to a point x* satisfying second-order sufficient conditions, it converges superlinearly.

4.1 ALGORITHMS BASED ON THE CAUCHY POINT

THE CAUCHY POINT

As we saw in Chapter 3, line search methods can be globally convergent even when the
optimal step length is not used at each iteration. In fact, the step length o; need only satisfy
fairlyloose criteria. A similar situation applies in trust-region methods. Although in principle
we seek the optimal solution of the subproblem (4.3), it is enough for purposes of global
convergence to find an approximate solution py that lies within the trust region and gives a
sufficient reduction in the model. The sufficient reduction can be quantified in terms of the
Cauchy point, which we denote by p; and define in terms of the following simple procedure.

Algorithm 4.2 (Cauchy Point Calculation).
Find the vector p; that solves a linear version of (4.3), that is,

pi = argmin fi + gip stlpl <Ak (4.9)

Calculate the scalar 75 > 0 that minimizes m (7 p;) subject to
satisfying the trust-region bound, that is,

T = argmiél my(tp}) st ltpll < Ags (4.10)
>

Set p; = T p;.

A

72 CHAPTER 4. TRUST-REGION METHODS

It is easy to write down a closed-form definition of the Cauchy point. For a start, the
solution of (4.9) is simply

Pp = s g
Bk,
k gl

To obtain t; explicitly, we consider the cases of ng Bigr < 0and ng Bygr > 0 separately. For
the former case, the function my (7 p;) decreases monotonically with T whenever g; # 0,
so Tk is simply the largest value that satisfies the trust-region bound, namely, 7z = 1. For
the case ng Bigk > 0, my(T p;) is a convex quadratic in 7, so 7 is either the unconstrained

minimizer of this quadratic, || gx|I*/(Arg/ Bigk), or the boundary value 1, whichever comes
first. In summary, we have

. Ay
Py = — T8k, (4.11)
ll gl
where
1 if g{ Bigk < 0; w12)
min (||gclI’/(Acg{ Brgr), 1) otherwise. '

Figure 4.3 illustrates the Cauchy point for a subproblem in which By is positive
definite. In this example, p; lies strictly inside the trust region.
The Cauchy step p; is inexpensive to calculate—no matrix factorizations are
required—and is of crucial importance in deciding if an approximate solution of the
trust-region subproblem is acceptable. Specifically, a trust-region method will be globally

.. Trust region

contours of my,

Figure 4.3 The Cauchy point.

4.1. ALGORITHMS BASED ON THE CAUCHY POINT

convergent if its steps py give a reduction in the model m; that is at least some fixed positive
multiple of the decrease attained by the Cauchy step.

IMPROVING ON THE CAUCHY POINT

Since the Cauchy point p; provides sufficient reduction in the model function n
to yield global convergence, and since the cost of calculating it is so small, why should
we look any further for a better approximate solution of (4.3)? The reason is that by
always taking the Cauchy point as our step, we are simply implementing the steepest
descent method with a particular choice of step length. As we have seen in Chap-
ter 3, steepest descent performs poorly even if an optimal step length is used at each
iteration.

The Cauchy point does not depend very strongly on the matrix By, which is used only
in the calculation of the step length. Rapid convergence can be expected only if By plays a
role in determining the direction of the step as well as its length, and if By contains valid
curvature information about the function.

A number of trust-region algorithms compute the Cauchy point and then try to
improve on it. The improvement strategy is often designed so that the full step p? = —B, ' gx
is chosen whenever By is positive definite and || p}|| < Ar. When By is the exact Hessian
V2 f(xx) or a quasi-Newton approximation, this strategy can be expected to yield superlinear
convergence.

We now consider three methods for finding approximate solutions to (4.3) that have
the features just described. Throughout this section we will be focusing on the internal
workings of a single iteration, so we simplify the notation by dropping the subscript “k”
from the quantities Ay, pi, My, and g, and refer to the formulation (4.5) of the subproblem.
In this section, we denote the solution of (4.5) by p*(A), to emphasize the dependence
on A.

THE DOGLEG METHOD

The first approach we discuss goes by the descriptive title of the dogleg method. It can
be used when B is positive definite.

To motivate this method, we start by examining the effect of the trust-region radius A
on the solution p*(A) of the subproblem (4.5). When B is positive definite, we have already
noted that the unconstrained minimizer of m is p* = —B~'g. When this point is feasible
for (4.5), it is obviously a solution, so we have

pr(A) = p", when A = || p®|. (4.13)

When A is small relative to p®, the restriction || p|| < A ensures that the quadratic term in
m has little effect on the solution of (4.5). For such A, we can get an approximation to p(A)

73

74 CHAPTER 4. TRUST-REGION METHODS

... Trust region

Optimal trajectory p(A)

PY (uncoristrained min along —g)g AN

dogleg path ™

Figure 4.4 Exact trajectory and dogleg approximation.

by simply omitting the quadratic term from (4.5) and writing

Pi(A) ~ —Aﬁ, when A is small. (4.14)
8

For intermediate values of A, the solution p*(A) typically follows a curved trajectory like
the one in Figure 4.4.

The dogleg method finds an approximate solution by replacing the curved trajectory
for p*(A) with a path consisting of two line segments. The first line segment runs from the
origin to the minimizer of m along the steepest descent direction, which is

=——g, (4.15)

while the second line segment runs from pY to p® (see Figure 4.4). Formally, we denote this
trajectory by p(t) for v € [0, 2], where

. pY, 0<t<l,
=1 | . (4.16)
p’+ (=D -p), 1 2.

The dogleg method chooses p to minimize the model m along this path, subject to
the trust-region bound. The following lemma shows that the minimum along the dogleg
path can be found easily.

4.1. ALGORITHMS BASED ON THE CAUCHY POINT

Lemma 4.2.
Let B be positive definite. Then

(1) |p()l is an increasing function of T, and
(ii) m(p(r)) is a decreasing function of T.
PrROOF. It is easy to show that (i) and (ii) both hold for t € [0, 1], so we restrict our
attention to the case of T € [1, 2]. For (i), define 4 («) by
h(a) = 3Ip(1 + a)||?
=3lp" +a(p® — p)I?
= 1P I> + a(pV)" (p* — p¥) + L2 p" — pUlI%.

Our result is proved if we can show that 4'(«) > 0 for & € (0, 1). Now,

W(a)=—(p") (p" = p*) +alp® — p'II?
- (p¥ = p)

T T
_ gggr< ggg+31g)

v

g’ Bg ¢TBg
_oTg88 8 [1 o (gTe)? }
g"Bg (g"Bg)(g"B'g)
>0

where the final inequality is a consequence of the Cauchy-Schwarz inequality. (We leave the
details as an exercise.)

For (ii), we define i(a) = m(p(1 + «)) and show that A'(a) < 0 for & € (0, 1).
Substitution of (4.16) into (4.5) and differentiation with respect to the argument leads to

h(a)=(p*—p") (g + Bp®) +a(p’ — p") B(p* — pV)
<(p"=p")'(g+ Bp"+ B(p"— p"))
=(p*—p") (g + Bp") =0,

giving the result. O

It follows from this lemma that the path p(7) intersects the trust-region boundary
Pl = A at exactly one point if || p®|| > A, and nowhere otherwise. Since m is decreasing
along the path, the chosen value of p will be at p® if || p*|| < A, otherwise at the point of
intersection of the dogleg and the trust-region boundary. In the latter case, we compute the
appropriate value of 7 by solving the following scalar quadratic equation:

Ip’ + (t — D(p" — p)I* = A

75

76

CHAPTER 4. TRUST-REGION METHODS

Consider now the case in which the exact Hessian V2 f (x;) is available for use in the
model problem (4.5). When V2 f(x;) is positive definite, we can simply set B = V2 f(x)
(that is, p® = (V2 f(xx)) 'gk) and apply the procedure above to find the Newton-dogleg
step. Otherwise, we can define p® by choosing B to be one of the positive definite modified
Hessians described in Section 3.4, then proceed as above to find the dogleg step. Near
a solution satisfying second-order sufficient conditions (see Theorem 2.4), p® will be set
to the usual Newton step, allowing the possibility of rapid local convergence of Newton’s
method (see Section 4.4).

The use of a modified Hessian in the Newton-dogleg method is not completely
satisfying from an intuitive viewpoint, however. A modified factorization perturbs the
diagonals of V2 f (x;) in a somewhat arbitrary manner, and the benefits of the trust-region
approach may not be realized. In fact, the modification introduced during the factorization
of the Hessian is redundant in some sense because the trust-region strategy introduces its
own modification. As we show in Section 4.3, the exact solution of the trust-region problem
(4.3) with By = V2 f(x;) is (V2 f(xx) + AI) "' gx, where A is chosen large enough to make
(V2 f(xx) + AI) positive definite, and its value depends on the trust-region radius A;. We
conclude that the Newton-dogleg method is most appropriate when the objective function
is convex (that is, V2 f (x;) is always positive semidefinite). The techniques described below
may be more suitable for the general case.

The dogleg strategy can be adapted to handle indefinite matrices B, but there is not
much point in doing so because the full step p® is not the unconstrained minimizer of m
in this case. Instead, we now describe another strategy, which aims to include directions of
negative curvature (that is, directions d for which d TBd < 0) in the space of candidate
trust-region steps.

TWO-DIMENSIONAL SUBSPACE MINIMIZATION

When B is positive definite, the dogleg method strategy can be made slightly more
sophisticated by widening the search for p to the entire two-dimensional subspace spanned
by pY and p* (equivalently, g and —B~'g). The subproblem (4.5) is replaced by

minm(p) = f + g"p+ip"Bp st |lpll <A, p espan[g, B~'g]. (4.17)

This is a problem in two variables that is computationally inexpensive to solve. (After some
algebraic manipulation it can be reduced to finding the roots of a fourth degree polynomial.)
Clearly, the Cauchy point p° is feasible for (4.17), so the optimal solution of this subproblem
yields at least as much reduction in m as the Cauchy point, resulting in global convergence
of the algorithm. The two-dimensional subspace minimization strategy is obviously an
extension of the dogleg method as well, since the entire dogleg path lies in span[g, B~'g].
This strategy can be modified to handle the case of indefinite B in a way that is intuitive,
practical, and theoretically sound. We mention just the salient points of the handling of the

4.9, GLoBAL CONVERGENCE

indefiniteness here, and refer the reader to papers by Byrd, Schnabel, and Schultz (see [54]
and [279]) for details. When B has negative eigenvalues, the two-dimensional subspace in
(4.17) is changed to

span[g, (B +al) 'g], for some o € (—Ay, —2XA1], (4.18)

where A denotes the most negative eigenvalue of B. (This choice of & ensures that B+« is
positive definite, and the flexibility in the choice of & allows us to use a numerical procedure
such as the Lanczos method to compute it.) When ||(B + al)'g|| < A, we discard the
subspace search of (4.17), (4.18) and instead define the step to be

p=—(B+al) g+, (4.19)

where v is a vector that satisfies v/ (B + «f)~!g < 0. (This condition ensures that || p| >
(B + al)~!g|l.) When B has zero eigenvalues but no negative eigenvalues, we define the
step to be the Cauchy point p = p°.

When the exact Hessian is available, we can set B = V2 f (x;), and note that B~ g is
the Newton step. Hence, when the Hessian is positive definite at the solution x* and when
X s close to x™ and A is sufficiently large, the subspace minimization problem (4.17) will
be solved by the Newton step.

The reduction in model function m achieved by the two-dimensional subspace min-
imization strategy often is close to the reduction achieved by the exact solution of (4.5).
Most of the computational effort lies in a single factorization of B or B 4+ o/ (estimation of
« and solution of (4.17) are less significant), while strategies that find nearly exact solutions
of (4.5) typically require two or three such factorizations (see Section 4.3).

4.2 GLOBAL CONVERGENCE

REDUCTION OBTAINED BY THE CAUCHY POINT

In the preceding discussion of algorithms for approximately solving the trust-region
subproblem, we have repeatedly emphasized that global convergence depends on the ap-
proximate solution obtaining at least as much decrease in the model function m as the
Cauchy point. (In fact, a fixed positive fraction of the Cauchy decrease suffices.) We start
the global convergence analysis by obtaining an estimate of the decrease in m achieved by
the Cauchy point. We then use this estimate to prove that the sequence of gradients {g;}
generated by Algorithm 4.1 has an accumulation point at zero, and in fact converges to zero
when 7 is strictly positive.

Our first main result is that the dogleg and two-dimensional subspace minimization
algorithms and Steihaug’s algorithm (Algorithm 7.2) produce approximate solutions py of
the subproblem (4.3) that satisfy the following estimate of decrease in the model function:

. llgxll
m(0) — my(pr) = c1llgkll min (Ak, 1B) (4.20)
k

77

78 CHAPTER 4. TRUST-REGION METHODS

for some constant ¢; € (0, 1]. The usefulness of this estimate will become clear in the
following two sections. For now, we note that when Ay is the minimum value in (4.20), the
condition is slightly reminiscent of the first Wolfe condition: The desired reduction in the
model is proportional to the gradient and the size of the step.

We show now that the Cauchy point pj satisfies (4.20), with ¢; = %
Lemma 4.3.
The Cauchy point p; satisfies (4.20) with ¢, = %, that is,

i) llgll
mi(0) — my(pg) > 1|8kl min (Ak, 180 (4.21)
&

ProOF. For simplicity, we drop the iteration index k in the proof.
We consider first the case g7 Bg < 0. Here, we have

m(p®) —m(0) = m(—Ag/llgl) — f
A A2
=——|igl*+i—¢"Bg
gl gl
< —Algl
<

. lgll
—llgll min <A, —) ,
1Bl
and so (4.21) certainly holds.

For the next case, consider g7 Bg > 0 and

lgll®

— < 4.22
AgTBg — ()

From (4.12), we have t = ||g|I°/ (AgTBg), and so from (4.11) it follows that

sl
g Bg
o lsll
*¢"Bg
gl
— Z|Bllgl?

_ o lel?
2B]

. llgll

1

—3 gl min (A, —,
: Bl

so (4.21) holds here too.

In the remaining case, (4.22) does not hold, and therefore

lell*
+1gTBg——2—
: (¢" Bg)?

m(p®) —m(0) =

IA

gl

T
Bg <
8 bg A

(4.23)

4.9, GLoBAL CONVERGENCE

From (4.12), we have t = 1, and using this fact together with (4.23), we obtain

A 2
m(p) —m(0) = ——||g|* + 5 —¢" Bg
gl 2 |gli*
1 A% gl
< -Alglh+ 5 —5——
2gl* A
_ 1
= —3Allgl
. gl
< —3llgll min (A, el
? Bl
yielding the desired result (4.21) once again. d

To satisfy (4.20), our approximate solution p; has only to achieve a reduction that is
at least some fixed fraction ¢, of the reduction achieved by the Cauchy point. We state the
observation formally as a theorem.

Theorem 4.4,

Let py. be any vector such that || pi|| < Ay andmy(0) —myi(pr) > ¢ (mk(O) - mk(p,i)).
Then py satisfies (4.20) with ¢1 = c,/2. In particular, if py is the exact solution p} of (4.3),
then it satisfies (4.20) with ¢; = %

PROCF. Since || prll < Ay, we have from Lemma 4.3 that

‘ . gl
mi(0) — my(pi) = ¢z (me(0) — mi(p§)) > 3eallgill min <Ak, ||§k|| ,

giving the result. O

Note that the dogleg and two-dimensional subspace minimization algorithms both
satisfy (4.20) with ¢; = %, because they all produce approximate solutions p; for which

mi(pr) < mi(py).

CONVERGENCE TO STATIONARY POINTS

Global convergence results for trust-region methods come in two varieties, depending
on whether we set the parameter 1 in Algorithm 4.1 to zero or to some small positive value.
When 1 = 0 (that is, the step is taken whenever it produces a lower value of f), we can
show that the sequence of gradients {g;} has a limit point at zero. For the more stringent
acceptance test with n > 0, which requires the actual decrease in f to be at least some small
fraction of the predicted decrease, we have the stronger result that g; — 0.

In this section we prove the global convergence results for both cases. We assume
throughout that the approximate Hessians By are uniformly bounded in norm, and that f

79

80

CHAPTER 4. TRUST-REGION METHODS

is bounded below on the level set

def

S={xlfx) = flxo)} (4.24)

For later reference, we define an open neighborhood of this set by
S(Ro) & {x|llx —y|l < Ry for some y € S},

where Ry is a positive constant.

To allow our results to be applied more generally, we also allow the length of the
approximate solution p; of (4.3) to exceed the trust-region bound, provided that it stays
within some fixed multiple of the bound; that is,

lpell < y Ay, for some constant y > 1. (4.25)

The first result deals with the case n = 0.

Theorem 4.5.

Let n = 0 in Algorithm 4.1. Suppose that ||Bi|| < B for some constant 8, that f is
bounded below on the level set S defined by (4.24) and Lipschitz continuously differentiable in
the neighborhood S(Ry) for some Ry > 0, and that all approximate solutions of (4.3) satisfy
the inequalities (4.20) and (4.25), for some positive constants ¢, and y . We then have

liminf || g¢|| = 0. (4.26)
k—o00

PROOF. By performing some technical manipulation with the ratio oy from (4.4), we obtain

1] = ‘(f(xk) — G + pir)) — (m(0) — my(pi))
mg(0) — my(pi)
B ‘mk(Pk) — f(x + pr)
| mi(0) — my(pi)

Since from Taylor’s theorem (Theorem 2.1) we have that

1
Foa+ p) = Fou) + g0a) pi + / g xx + 1pe) — g(e)]T ped,
0

for some t € (0, 1), it follows from the definition (4.2) of m, that

[mi(pr) — f(xx + pr)l =

1
1p{ Bip — / [g(x + tpi) — g(x)]" prdt
0

< (B/2)pill® + Bull el (4.27)

4.9, GLoBAL CONVERGENCE

where we have used 8; to denote the Lipschitz constant for g on the set S(R), and assumed
that || prll < Ry to ensure that x; and x; + ¢py both lie in the set S(Ry).
Suppose for contradiction that there is € > 0 and a positive index K such that

llgxll = €, forallk > K. (4.28)

From (4.20), we have for k > K that

: ll gl : €
m(0) — mi(pr) = c1llgkll min <Ak, ||§ ” > ciemin | Ay, 5) (4.29)
k

Using (4.29), (4.27), and the bound (4.25), we have

*AL(B/2
lox — 1] < M (4.30)
cr€e min(Ay, €/8)
We now derive a bound on the right-hand-side that holds for all sufficiently small values of
Ag, that is, for all A; < A, where A is defined as follows:

A = min (EL &> (4.31)
B 2y2B/2+B) v) '

The Ry/y term in this definition ensures that the bound (4.27) is valid (because || pi|| <
yA; <)/A < Ry). Note that since ¢; < 1 and y > 1, we have A < €/B. The latter
condition implies that for all A, € [0, A], we have min(Ay, €/8) = Ay, so from (4.30) and
(4.31), we have

1 < CAIBEB) VAL R) VAR
Pk - C1€Ak o C1€ - C1€

1
f— 2 .

Therefore, p; > i, and so by the workings of Algorithm 4.1, we have Az, > Ay whenever
A, falls below the threshold A. It follows that reduction of Ay (by a factor of i) can occur
in our algorithm only if

A > A,
and therefore we conclude that
Ar > min (Ag, A/4) forallk > K. (4.32)

Suppose now that there is an infinite subsequence /C such that p; > i for k € K. For

81

82 CHAPTER 4. TRUST-REGION METHODS

k € K and k > K, we have from (4.29) that

S o) = f (i) = fx) — F G + p)
> 1 mi(0) — my(po)]
> icle min(Ag, €/8).

Since f is bounded below, it follows from this inequality that

lim Ak = 0,
kek, k—oo

contradicting (4.32). Hence no such infinite subsequence /C can exist, and we must have
pr < 1 for all k sufficiently large. In this case, A, will eventually be multiplied by } at every
iteration, and we have lim;_, .o Ay = 0, which again contradicts (4.32). Hence, our original
assertion (4.28) must be false, giving (4.26). O

Our second global convergence result, for the case n > 0, borrows much of the analysis
from the proof above. Our approach here follows that of Schultz, Schnabel, and Byrd [279].

Theorem 4.6.

Letn € (0, 1) in Algorithm 4.1. Suppose that || By|| < B for some constant B, that f is
bounded below on the level set S (4.24) and Lipschitz continuously differentiable in S(R,) for
some Ry > 0, and that all approximate solutions py. of (4.3) satisfy the inequalities (4.20) and
(4.25) for some positive constants ¢ and y. We then have

lim g = 0. (4.33)
k—o00

PROOF. We consider a particular positive index m with g, # 0. Using B; again to denote
the Lipschitz constant for g on the set S(Ry), we have

llg(x) — gmll = Brllx — xmll,

for all x € S(Ry). We now define the scalars € and R to satisfy

€= %”gm”» R = min (i’ RO> .
B
Note that the ball
B(xm, R) = {x | llx — xull < R}
is contained in S(Ry), so Lipschitz continuity of g holds inside B(x,,, R). We have

x € Bxpn, R) = lIg0O)ll = llgmll = 18(x) — gnll = 3llgnll = €.

If the entire sequence {x¢}i>, stays inside the ball B(x,,, R), we would have ||g]| > € > 0

4.3. [TERATIVE SOLUTION OF THE SUBPROBLEM

for all k > m. The reasoning in the proof of Theorem 4.5 can be used to show that this
scenario does not occur. Therefore, the sequence {x };>,, eventually leaves B(x,,, R).

Let the index [> m be such that x;; is the first iterate after x,, outside B(x,,, R).
Since ||gk|| = e fork =m,m + 1, ..., 1, we can use (4.29) to write

1
fOm) = o) =) fa) = f ()

k=m

= Zi:m,xk¢Xk+1n[mk(0) - mk(pk)]

! . €
ZE neiemin | Ay, — |,
k=m X #xk 41 B

where we have limited the sum to the iterations k for which x; # x; 1, thatis, those iterations
on which a step was actually taken. If Ay < e/Bforallk =m,m +1,...,[, we have
I
. €
fxm) — fxi11) = neje Z A > nci€R = ncie min (/3—, Ro> . (4.34)

k=m,xy#X+1 1

Otherwise, we have Ay > ¢/ forsomek =m,m + 1, ...,1,and so
€
fQm) = f(xi41) = nC1€E~ (4.35)

Since the sequence { f (x;)}2, is decreasing and bounded below, we have that

flx)d fF (4.36)

for some f* > —oo. Therefore, using (4.34) and (4.35), we can write

JGom) = 5= fom) = f(x141)

(3.2
Z nciemin| —, —,
B B

1 . Ngml 1Igml
—nc min ,——, Ry) > 0.
277 llgmll (28 28, 0

Since f(x,,) — f* | 0, we must have g,, — 0, giving the result. O

4.3 ITERATIVE SOLUTION OF THE SUBPROBLEM

In this section, we describe a technique that uses the characterization (4.6) of the subprob-
lem solution, applying Newton’s method to find the value of A which matches the given

83

84

CHAPTER 4. TRUST-REGION METHODS

trust-region radius A in (4.5). We also prove the key result Theorem 4.1 concerning the
characterization of solutions of (4.3).

The methods of Section 4.1 make no serious attempt to find the exact solution of
the subproblem (4.5). They do, however, make some use of the information in the model
Hessian By, and they have advantages of reasonable implementation cost and nice global
convergence properties.

When the problem is relatively small (that is, is not too large), it may be worthwhile
to exploit the model more fully by looking for a closer approximation to the solution of the
subproblem. In this section, we describe an approach for finding a good approximation at the
cost of a few factorizations of the matrix B (typically three factorization), as compared with
a single factorization for the dogleg and two-dimensional subspace minimization methods.
This approach is based on the characterization of the exact solution given in Theorem 4.1,
together with an ingenious application of Newton’s method in one variable. Essentially, the
algorithm tries to identify the value of A for which (4.6) is satisfied by the solution of (4.5).

The characterization of Theorem 4.1 suggests an algorithm for finding the solution p
of (4.7). Either A = 0 satisfies (4.8a) and (4.8¢c) with ||p|| < A, or else we define

p(M) = —(B+A1)7'g
for X sufficiently large that B + A1 is positive definite and seek a value A > 0 such that
Pl = A. (4.37)
This problem is a one-dimensional root-finding problem in the variable A.
To see that a value of A with all the desired properties exists, we appeal to the eigende-
composition of B and use it to study the properties of || p(1)]|. Since B is symmetric, there
is an orthogonal matrix Q and a diagonal matrix A such that B = QA Q7, where

A = diag(kl,)Lz, ooy)Ln)’

and A; < A, < --- < A, are the eigenvalues of B; see (A.16). Clearly, B + A1 = Q(A +
A1)QT, and for A # A, we have

n T
qg; 8

1) =—0(A AI‘IT:—E / : 4.38

p(x) QA+AI)" Q"¢ jZIAdeq/ (4.38)

where g; denotes the jth column of Q. Therefore, by orthonormality of g1, q», .. ., gu, we
have

" q; g)
PP =) ~——= (4.39)

. 2°
O+)

4.3. [TERATIVE SOLUTION OF THE SUBPROBLEM 85

el

Figure 4.5 | p())|| as a function of A.

This expression tells us a lot about ||p(A)||. If A > —AX;, we have A; + A > 0 for all
j=12,...,n,andso || p(1)|| is a continuous, nonincreasing function of A on the interval
(—=A1, 00). In fact, we have that

lim |[p(A)] =0. (4.40)
A—o00
Moreover, we have when ¢ g # 0 that

AEIPA/ lp(M)] = oo. (4.41)

Figure 4.5 plots || p(1)|| against A in a case in whcih ¢! g, ¢! g,and ¢! g are all nonzero.
Note that the properties (4.40) and (4.41) hold and that || p(1)|| is a nonincreasing function
of A on (—Xq, 00). In particular, as is always the case when qlT g # 0, that there is a unique
value 1* € (—Aj, 00) such that || p(A*)|| = A. (There may be other, smaller values of A for
which || p(X)|| = A, but these will fail to satisfy (4.8¢).)

We now sketch a procedure foridentifying the A* € (—1;, oo) for which || p(A*)|| = A,
which works when g g # 0. (We discuss the case of ¢! g = 0 later.) First, note that when B
positive definite and || B~'g|| < A, the value A = 0 satisfies (4.8), so the procedure can be
terminated immediately with A* = 0. Otherwise, we could use the root-finding Newton’s
method (see the Appendix) to find the value of & > —A; that solves

o1 (A) = llp(M)l — A =0. (4.42)

86

CHAPTER 4. TRUST-REGION METHODS

The disadvantage of this approach can be seen by considering the form of || p(1)|| when A
is greater than, but close to, —A;. For such A, we can approximate ¢; by a rational function,
as follows:

C
A+ A

oi(A) = + Cs,

where C; > 0 and C, are constants. Clearly this approximation (and hence ¢;) is highly
nonlinear, so the root-finding Newton’s method will be unreliable or slow. Better results will
be obtained if we reformulate the problem (4.42) so that it is nearly linear near the optimal
A. By defining

$r(0) = ~ = —
PUTA T Ipon

it can be shown using (4.39) that for A slightly greater than —X,, we have

1 A4+
MR — -
$2(A) X G

for some C3 > 0. Hence, ¢, is nearly linear near —\; (see Figure 4.6), and the root-finding

lloll ~*

Figure4.6 1/| p(1)|| as a function of A.

4.3. [TERATIVE SOLUTION OF THE SUBPROBLEM

Newton’s method will perform well, provided that it maintains A > —2X;. The root-finding
Newton’s method applied to ¢, generates a sequence of iterates A(*) by setting

(&)
LD — 30 _ ¢ (» _). (4.43)
95 (1)
After some elementary manipulation, this updating formula can be implemented in the
following practical way.

Algorithm 4.3 (Trust Region Subproblem).
Given .9, A > 0:
for?{=0,1,2,...
Factor B+ AT = RTR;
Solve RT Rpy = —g, RT gy = py;

Set

2
)“([+1)=)\‘([)+<”p5”) (”PK”_A); (4.44)
ligell A

end (for).

Safeguards must be added to this algorithm to make it practical; for instance, when
1 < —A,, the Cholesky factorization B 4+ AT = R” R will not exist. A slightly enhanced
version of this algorithm does, however, converge to a solution of (4.37) in most cases.

The main work in each iteration of this method is, of course, the Cholesky factorization
of B 4+ A“1. Practical versions of this algorithm do not iterate until convergence to the
optimal X is obtained with high accuracy, but are content with an approximate solution that
can be obtained in two or three iterations.

THE HARD CASE

Recall that in the discussion above, we assumed that g/ g # 0. In fact, the approach
described above can be applied even when the most negative eigenvalue is a multiple
eigenvalue (thatis, 0 > A; = A, = ---), provided that Q7 g # 0, where Q; is the matrix
whose columns span the subspace corresponding to the eigenvalue A;. When this condition
does not hold, the situation becomes a little complicated, because the limit (4.41) does not
hold for A; = A, and so there may not be a value A € (—1,, 00) such that || p(A)|| = A (see
Figure 4.7). Moré and Sorensen [214] refer to this case as the hard case. At first glance, it is
not clear how p and A can be chosen to satisfy (4.8) in the hard case. Clearly, our root-finding
technique will not work, since there is no solution for A in the open interval (—A1, o). But
Theorem 4.1 assures us that the right value of X lies in the interval [—2,, 00), so there is only

87

88 CHAPTER 4. TRUST-REGION METHODS

lIpll

Figure 4.7 The hard case: || p(})|| < A forall A € (—Xq, 00).

one possibility: A = —;. To find p, it is not enough to delete the terms for which A; = X,
from the formula (4.38) and set

T
q; 8
JihjF#EM J

Instead, we note that (B — A1) is singular, so there is a vector z such that ||z|| = 1 and
(B — A1)z = 0. In fact, z is an eigenvector of B corresponding to the eigenvalue X1, so by
orthogonality of Q we have quz = 0for A; # A,. It follows from this property that if we set

T

q; 8
p= Z Al’+/\qj+rz (4.45)
Jihj#En

for any scalar 7, we have

s

2
T
(a7¢)
lpl>= Y ——~5+7

. 2
Jihj#Eh () +4)

so it is always possible to choose 7 to ensure that || p|| = A. It is easy to check that the
conditions (4.8) holds for this choice of p and A = —A;.

4.3. [TERATIVE SOLUTION OF THE SUBPROBLEM

PROOF OF THEOREM 4.1

We now give a formal proof of Theorem 4.1, the result that characterizes the exact
solution of (4.5). The proof relies on the following technical lemma, which deals with the
unconstrained minimizers of quadratics and is particularly interesting in the case where the
Hessian is positive semidefinite.

Lemma 4.7.
Let m be the quadratic function defined by

m(p)=g"p+1ip" Bp, (4.46)

where B is any symmetric matrix. Then the following statements are true.
(i) m attains a minimum if and only if B is positive semidefinite and g is in the range of B.
If B is positive semidefinite, then every p satisfying Bp = —g is a global minimizer of m.

(ii) m has a unique minimizer if and only if B is positive definite.

PrROOF. We prove each of the three claims in turn.

(i) We start by proving the “if” part. Since g is in the range of B, thereisa p with Bp = —g.
For all w € R", we have

mp+w)=g" (p+w) +ip+wBp+w)
=" p+3p"Bp)+¢"w+ (Bp) w+ jw' Bw
=m(p) + tw’ Bw
= m(p), (4.47)

since B is positive semidefinite. Hence, p is a minimizer of m.

For the “only if” part, let p be a minimizer of m. Since Vm(p) = Bp + g = 0, we
have that g is in the range of B. Also, we have V2m(p) = B positive semidefinite, giving
the result.

(ii) For the “if” part, the same argument as in (i) suffices with the additional point that
w! Bw > 0 whenever w # 0. For the “only if” part, we proceed as in (i) to deduce that B is
positive semidefinite. If B is not positive definite, there is a vector w # 0 such that Bw = 0.
Hence, from (4.47), we have m(p + w) = m(p), so the minimizer is not unique, giving a
contradiction. |

To illustrate case (i), suppose that

89

90 CHAPTER 4. TRUST-REGION METHODS

which has eigenvalues 0, 1,2 and is therefore singular. If g is any vector whose second
component is zero, then g will be in the range of B, and the quadratic will attain a minimum.
But if the second element in g is nonzero, we can decrease m(-) indefinitely by moving along
the direction (0, —g,, 0)7.

We are now in a position to take account of the trust-region bound ||p|| < A and
hence prove Theorem 4.1.

PrOOF. (Theorem 4.1)
Assume first that there is A > 0 such that the conditions (4.8) are satisfied.
Lemma 4.7(i) implies that p* is a global minimum of the quadratic function

N A
i(p)=g"p+3p"(B+rDp=m(p)+p"p. (4.48)
Since m(p) > m(p*), we have

T

A
m(p) = m(p*) + 5((17*)Tp* —p'p). (4.49)

Because A(A — || p*||) = 0 and therefore A(A%? — (p*)T p*) = 0, we have
* A 2 T
m(p) > m(p*) + E(A — ' p).

Hence, from A > 0, we have m(p) > m(p*) for all p with || p|| < A. Therefore, p* is a
global minimizer of (4.7).

For the converse, we assume that p* is a global solution of (4.7) and show that there
isa A > 0 that satisfies (4.8).

In the case | p*|| < A, p* is an unconstrained minimizer of m, and so

Vm(p*) = Bp* + g =0, V?m(p*) = B positive semidefinite,

and so the properties (4.8) hold for A = 0.

Assume for the remainder of the proof that || p*|| = A. Then (4.8b) is immediately
satisfied, and p* also solves the constrained problem

minm(p) subjectto ||p| = A.

By applying optimality conditions for constrained optimization to this problem (see
(12.34)), we find that there is a A such that the Lagrangian function defined by

A
L(p,r) =m(p)+ 5(17TP — A%

4.3. [TERATIVE SOLUTION OF THE SUBPROBLEM

has a stationary point at p*. By setting V,L(p*, 1) to zero, we obtain
Bp*+g+ip*=0 = (B+Al)p*=—g, (4.50)

so that (4.8a) holds. Since m(p) > m(p*) for any p with p” p = (p*)T p* = A?, we have
for such vectors p that

A
m(p) = m(p*) + 3 ((p)Tp*—p"p).

If we substitute the expression for g from (4.50) into this expression, we obtain after some
rearrangement that

Hp—pH)T"(B+A1)(p—p*) = 0. (4.51)
Since the set of directions
{w w = j:&, for some p with || p|| = A}
Ilp— p*ll

is dense on the unit sphere, (4.51) suffices to prove (4.8c).

It remains to show that A > 0. Because (4.8a) and (4.8c) are satisfied by p*, we have
from Lemma 4.7(i) that p* minimizes 71, so (4.49) holds. Suppose that there are only negative
values of A that satisfy (4.8a) and (4.8¢c). Then we have from (4.49) that m(p) > m(p*)
whenever ||p|| > || p*|| = A. Since we already know that p* minimizes m for ||p|| < A,
it follows that m is in fact a global, unconstrained minimizer of m. From Lemma 4.7(i) it
follows that Bp = —g and B is positive semidefinite. Therefore conditions (4.8a) and (4.8¢)
are satisfied by A = 0, which contradicts our assumption that only negative values of A can
satisfy the conditions. We conclude that A > 0, completing the proof. g

CONVERGENCE OF ALGORITHMS BASED ON NEARLY EXACT SOLUTIONS

As we noted in the discussion of Algorithm 4.3, the loop to determine the optimal
values of A and p for the subproblem (4.5) does not iterate until high accuracy is achieved.
Instead, it is terminated after two or three iterations with a fairly loose approximation to
the true solution. The inexactness in this approximate solution is measured in a different
way from the dogleg and subspace minimization algorithms. We can add safeguards to the
root-finding Newton method to ensure that the key assumptions of Theorems 4.5 and 4.6
are satisfied by the approximate solution. Specifically, we require that

m(0) —m(p) = ¢;(m(0) — m(p*)), (4.52a)
Ipl <yA (4.52b)

91

92

CHAPTER 4. TRUST-REGION METHODS

(where p* is the exact solution of (4.3)), for some constants ¢; € (0, 1] and y > 0. The
condition (4.52a) ensures that the approximate solution achieves a significant fraction of the
maximum decrease possible in the model function m. (It is not necessary to know p*; there
are practical termination criteria that imply (4.52a).) One major difference between (4.52)
and the earlier criterion (4.20) is that (4.52) makes better use of the second-order part of
m(-), that is, the p” Bp term. This difference is illustrated by the case in which g = 0 while
B has negative eigenvalues, indicating that the current iterate x; is a saddle point. Here,
the right-hand-side of (4.20) is zero (indeed, the algorithms we described earlier would
terminate at such a point). The right-hand-side of (4.52) is positive, indicating that decrease
in the model function is still possible, so it forces the algorithm to move away from xy.

The close attention that near-exact algorithms pay to the second-order term is war-
ranted only if this term closely reflects the actual behavior of the function f—in fact,
the trust-region Newton method, for which B = V2 f(x), is the only case that has been
treated in the literature. For purposes of global convergence analysis, the use of the exact
Hessian allows us to say more about the limit points of the algorithm than merely that they
are stationary points. The following result shows that second-order necessary conditions
(Theorem 2.3) are satisfied at the limit points.

Theorem 4.8.

Suppose that the assumptions of Theorem 4.6 are satisfied and in addition that f is twice
continuously differentiable in the level set S. Suppose that B = V? f(x;) for allk, and that the
approximate solution py of (4.3) at each iteration satisfies (4.52) for some fixed y > 0. Then
limy s o0 [l gk Il = 0.

If, in addition, the level set S of (4.24) is compact, then either the algorithm terminates
at a point x;. at which the second-order necessary conditions (Theorem 2.3) for a local solution
hold, or else {x;.} has a limit point x* in S at which the second-order necessary conditions hold.

We omit the proof, which can be found in Moré and Sorensen [214, Section 4].

4.4 LOCAL CONVERGENCE OF TRUST-REGION NEWTON
METHODS

Since global convergence of trust-region methods that use exact Hessians V2 f (x) is estab-
lished above, we turn our attention now to local convergence issues. The key to attaining
the fast rate of convergence usually associated with Newton’s method is to show that the
trust-region bound eventually does not interfere as we approach a solution. Specifically, we
hope that near the solution, the (approximate) solution of the trust-region subproblem is
well inside the trust region and becomes closer and closer to the true Newton step. Steps
that satisfy the latter property are said to be asymptotically similar to Newton steps.

We first prove a general result that applies to any algorithm of the form of Algo-
rithm 4.1 (see Chapter 4) that generates steps that are asymptotically similar to Newton

4.4, LocaL CONVERGENCE OF TRUST-REGION NEWTON METHODS

steps whenever the Newton steps easily satisfy the trust-region bound. It shows that the
trust-region constraint eventually becomes inactive in algorithms with this property and
that superlinear convergence can be attained. The result assumes that the exact Hessian
By = V? f(x;) is used in (4.3) when x; is close to a solution x* that satisfies second-order
sufficient conditions (see Theorem 2.4). Moreover, it assumes that the algorithm uses an
approximate solution pj of (4.3) that achieves a similar decrease in the model function m
as the Cauchy point.

Theorem 4.9.

Let f be twice Lipschitz continuously differentiable in a neighborhhod of a point x* at
which second-order sufficient conditions (Theorem 2.4) are satisfied. Suppose the sequence {x; }
converges to x* and that for all k sufficiently large, the trust-region algorithm based on (4.3)
with By = V2 f(xx) chooses steps py that satisfy the Cauchy-point-based model reduction
criterion (4.20) and are asymptotically similar to Newton steps p; whenever || p;|l < %Ak,
that is,

e — pll = o(ll Pl (4.53)

Then the trust-region bound Ay becomes inactive for all k sufficiently large and the sequence
{xi} converges superlinearly to x*.

PROOF. We show that [|p}|| < 1A and ||pll < Ay, for all sufficiently large &, so the
near-optimal step py in (4.53) will eventually always be taken.

We first seek a lower bound on the predicted reduction m;(0) — my(py) for all
sufficiently large k. We assume that k is large enough that the o(|| p}'||) term in (4.53) is less
than || p} . When || p} | < £ A, we then have that || il < 11 p} 1l + (Il p}1) < 21l p}l, while
if | pi 1l > %Ak, we have || pr|l < Ax < 2||pZ|l. In both cases, then, we have

-1
el = 20900 = 2| 92 7)™ el

and so [lgill = 3l pxll/ [V2 f ().
We have from the relation (4.20) that

m(0) — my(py)

= c1llgkll min (Ak’ %)

> CI%ITHH ||l7k|| ||Pk||
T2 v 2 Ve reo | VR e
_ Il pecll®
=C 2 .
4] V2 £) [VRS G |

Because x; — x*, we use continuity of V2 f(x) and positive definiteness of V2 f(x*), to

93

94

CHAPTER 4. TRUST-REGION METHODS

deduce that the following bound holds for all k sufficiently large:

C1 < C1 déf
4|V r) P VR F | 8 VR T VR Ge)|

C3,

where ¢3 > 0. Hence, we hae

mi(0) — mi(pi) > csllpell? (4.54)

for all sufficiently large k. By Lipschitz continuity of V2 f(x) near x*, and using Taylor’s
theorem (Theorem 2.1), we have

[(f () = f ek + pr)) — (mg(0) — my(pr)l

1
— LIV o — / TV (xk + tp) pedi
0

where L > 0 is the Lipschitz constant for V2 £ (-). Hence, by definition (4.4) of pi, we have
for sufficiently large k that

| prcll’ (L /4) L L
ok =1l = ———5— = —lpll = — A (4.55)
o3l pell 4cs 4¢3

Now, the trust-region radius can be reduced only if p; < ; (or some other fixed number less
than 1), so it is clear from (4.55) that the sequence { A} is bounded away from zero. Since
X — x*, we have || p}|| = 0 and therefore || px|| — 0 from (4.53). Hence, the trust-region
bound is inactive for all k sufficiently large, and the bound || p}|| < 3 Ay is eventually always
satisfied.

To prove superlinear convergence, we use the quadratic convergence of Newton’s
method, proved in Theorem 3.5. In particular, we have from (3.33) that

lxk + py — x*Il = o (Ilxe — x*|1%),
which implies that || pj’ll = O(|lxx — x*||). Therefore, using (4.53), we have

llxx + pi — x*||
< lxi+ pf = x* I+ 1P} — pell = o (Ilxi — x*1?) + ol py 1) = o (Ilxx — x*|1),

thus proving superlinear convergence. 0

It is immediate from Theorem 3.5 that if p; = p} for all k sufficiently large, we have
quadratic convergence of {x;} to x*.

4.5, OTHER ENHANCEMENTS

Reasonable implementations of the dogleg, subspace minimization, and nearly-exact
algorithm of Section 4.3 with By = V? f(xy) eventually use the steps p;y = p} under the
conditions of Theorem 4.9, and therefore converge quadratically. In the case of the dogleg and
two-dimensional subspace minimization methods, the exact step p;' is one of the candidates
for py—it lies inside the trust region, along the dogleg path, and inside the two-dimensional
subspace. Since under the assumptions of Theorem 4.9, p;’ is the unconstrained minimizer
of my, for k sufficiently large, it is certainly the minimizer in the more restricted domains,
so we have py = py. For the approach of Section 4.3, if we follow the reasonable strategy
of checking whether pj is a solution of (4.3) prior to embarking on Algorithm 4.3, then
eventually we will also have p; = p} also.

4.5 OTHER ENHANCEMENTS

SCALING

As we noted in Chapter 2, optimization problems are often posed with poor scaling—
the objective function f is highly sensitive to small changes in certain components of
the vector x and relatively insensitive to changes in other components. Topologically, a
symptom of poor scaling is that the minimizer x* lies in a narrow valley, so that the contours
of the objective f(-) near x* tend towards highly eccentric ellipses. Algorithms that fail to
compensate for poor scaling can perform badly; see Figure 2.7 for an illustration of the poor
performance of the steepest descent approach.

Recalling our definition of a trust region—a region around the current iterate within
which the model m;(-) is an adequate representation of the true objective f(-)—it is easy
to see that a spherical trust region may not be appropriate when f is poorly scaled. Even if
the model Hessian By, is exact, the rapid changes in f along certain directions probably will
cause my, to be a poor approximation to f along these directions. On the other hand, m;
may be a more reliable approximation to f along directions in which f is changing more
slowly. Since the shape of our trust region should be such that our confidence in the model
is more or less the same at all points on the boundary of the region, we are led naturally
to consider elliptical trust regions in which the axes are short in the sensitive directions and
longer in the less sensitive directions.

Elliptical trust regions can be defined by

IDpll < A, (4.56)

where D is a diagonal matrix with positive diagonal elements, yielding the following scaled
trust-region subproblem:

. def
min m(p) = fe+gip+3p Bip st [Dpll < Ax. (4.57)

95

96 CHAPTER 4. TRUST-REGION METHODS

When f(x) is highly sensitive to the value of the ith component x;, we set the corresponding
diagonal element d;; of D to be large, while d;; is smaller for less-sensitive components.

Information to construct the scaling matrix D may be derived from the second
derivatives 3% f/dx}7. We can allow D to change from iteration to iteration; most of the
theory of this chapter will still apply with minor modifications provided that each d;; stays
within some predetermined range [d)o, dp;], where 0 < dj, < dn;i < 0o. Of course, we do
not need D to be a precise reflection of the scaling of the problem, so it is not necessary to
devise elaborate heuristics or to perform extensive computations to get it just right.

The following procedure shows how the Cauchy point calculation (Algorithm 4.2)
changes when we use a scaled trust region,

Algorithm 4.4 (Generalized Cauchy Point Calculation).
Find the vector pj, that solves

pi = argmin fi + gip st lDpl < An (4.58)

Calculate the scalar 7y > 0 that minimizes m; (7 p}) subject to satisfying the trust-region
bound, that is,

T = argmig mi(tpy) st.ltDpll < Ag; (4.59)
>
Py = TPy
For this scaled version, we find that

Ag =
pp = ————D72g, (4.60)
T ID gl

and that the step length 7; is obtained from the following modification of (4.12):

1 if gl D*ByD g, <0

T = . D~ gill?
min 3
Ag{ D72BD~2g;

(4.61)

1) otherwise.

(The detalils are left as an exercise.)

A simpler alternative for adjusting the definition of the Cauchy point and the various
algorithms of this chapter to allow for the elliptical trust region is simply to rescale the
variables p in the subproblem (4.57) so that the trust region is spherical in the scaled
variables. By defining

5 ¥ pp,

4.5, OTHER ENHANCEMENTS

and by substituting into (4.57), we obtain
o def 1a AT e - -
min /iy (5) < fi+gi D5+ 35" DTBD TS st |Ipl < A
P

The theory and algorithms can now be derived in the usual way by substituting p for p,
D 1g, for g4, D™'B, D! for By, and so on.

TRUST REGIONS IN OTHER NORMS

Trust regions may also be defined in terms of norms other than the Euclidean norm.
For instance, we may have

Iplh = Ak or [Plloo = A,
or their scaled counterparts
IDplly = Ax or [Dplloo < Ax,

where D is a positive diagonal matrix as before. Norms such as these offer no obvious ad-
vantages for small-medium unconstrained problems, but they may be useful for constrained
problems. For instance, for the bound-constrained problem

min f(x), subject to x > 0,
x€eR"
the trust-region subproblem may take the form

min mi(p) = fi+gp+3p Bip stoxmtpz0lpl < A (4.62)

When the trust region is defined by a Euclidean norm, the feasible region for (4.62) consists of
the intersection of a sphere and the nonnegative orthant—an awkward object, geometrically
speaking. When the co-norm is used, however, the feasible region is simply the rectangular
box defined by

xx+p=0, p=>=-—»Ake, p=A»Age,

where e = (1, 1,..., 1)7, so the solution of the subproblem is easily calculated by using
techniques for bound-constrained quadratic programming.

For large problems, in which factorization or formation the model Hessian By, is not
computationally desirable, the use of a trust region defined by || - || will also give rise to a
bound-constrained subproblem, which may be more convenient to solve than the standard
subproblem (4.3). To our knowledge, there has not been much research on the relative
performance of methods that use trust regions of different shapes on large problems.

97

98

CHAPTER 4. TRUST-REGION METHODS

NOTES AND REFERENCES

One of the earliest works on trust-region methods is Winfield [307]. The influential
paper of Powell [244] proves a result like Theorem 4.5 for the case of n = 0, where the algo-
rithm takes a step whenever it decreases the function value. Powell uses a weaker assumption
than ours on the matrices || B ||, but his analysis is more complicated. Moré [211] summarizes
developments in algorithms and software before 1982, paying particular attention to the
importance of using a scaled trust-region norm.

Byrd, Schnabel, and Schultz [279], [54] provide a general theory for inexact trust-
region methods; they introduce the idea of two-dimensional subspace minimization and
also focus on proper handling of the case of indefinite B to ensure stronger local convergence
results than Theorems 4.5 and 4.6. Dennis and Schnabel [93] survey trust-region methods as
part of their overview of unconstrained optimization, providing pointers to many important
developments in the literature.

The monograph of Conn, Gould, and Toint [74] is an exhaustive treatment of the state
of the art in trust-region methods for both unconstrained and constrained optimization. It
includes an comprehensive annotated bibliography of the literature in the area.

& EXERCISES

& 4.1 Let f(x) = 10(x; — x7)* + (1 — x1)%. At x = (0, —1) draw the contour lines of
the quadratic model (4.2) assuming that B is the Hessian of f. Draw the family of solutions
of (4.3) as the trust region radius varies from A = 0 to A = 2. Repeat this at x = (0, 0.5).

& 4.2 Write a program that implements the dogleg method. Choose Bj, to be the exact
Hessian. Apply it to solve Rosenbrock’s function (2.22). Experiment with the update rule
for the trust region by changing the constants in Algorithm 4.1, or by designing your own
rules.

& 4.3 Program the trust-region method based on Algorithm 7.2. Choose By to be the
exact Hessian, and use it to minimize the function

n

min f(x) = Z [(1 —x2i-1)" + 10(xy — x22i—1)2]

i=1

with n = 10. Experiment with the starting point and the stopping test for the CG iteration.
Repeat the computation with n = 50.

Your program should indicate, at every iteration, whether Algorithm 7.2 encountered
negative curvature, reached the trust-region boundary, or met the stopping test.

4.5, OTHER ENHANCEMENTS

& 4.4 Theorem 4.5 shows that the sequence {||g||} has an accumulation point at zero.
Show that if the iterates x stay in a bounded set 3, then there is a limit point x, of the
sequence {x;} such that g(x) = 0.

& 4.5 Show that 7 defined by (4.12) does indeed identify the minimizer of m; along
the direction —gy.

& 4.6 The Cauchy-Schwarz inequality states that for any vectors u and v, we have
"o < (" u)("v),

with equality only when u and v are parallel. When B is positive definite, use this inequality
to show that

def lgll*
(g"Bg)(gTB~'g) —

)

with equality only if g and Bg (and B~'g) are parallel.

& 4.7 When B is positive definite, the double-dogleg method constructs a path with three
line segments from the origin to the full step. The four points that define the path are

e the origin;
e the unconstrained Cauchy step p¢ = — (g7 g)/(g” Bg)g;

e a fraction of the full step y p* = —y B~ !g, for some y € (y, 1], where y is defined in
the previous question; and

o the full step p* = —B~'g.

Show that || p|| increases monotonically along this path.

(Note: The double-dogleg method, as discussed in Dennis and Schnabel [92, Section
6.4.2], was for some time thought to be superior to the standard dogleg method, but later
testing has not shown much difference in performance.)

& 4.8 Show that (4.43) and (4.44) are equivalent. Hints: Note that

d 1 _ i n-1/2 _1 5 ,3/21 ,
da <||p(x)||> = - (lpIP) " = =2 (Ip)IF) ™ —llp I,

n

d - (978
Tr PP =-2)" G +0p

J=1

99

100

CHAPTER 4. TRUST-REGION METHODS

(from (4.39)), and

n

lgl* = IR pI> =p"(B+AD)"'p=)_

J=1

(q;8)°
(hj+A)3

& 4.9 Derive the solution of the two-dimensional subspace minimization problem in
the case where B is positive definite.

& 4.10 Show thatif B is any symmetric matrix, then there exists A > 0 such that B + A1
is positive definite.

& 4.11 Verify that the definitions (4.60) for p; and (4.61) for 74 are valid for the Cauchy
point in the case of an elliptical trust region. (Hint: Using the theory of Chapter 12, we can
show that the solution of (4.58) satisfies g; + ochp,i = 0 for some scalar & > 0.)

& 4.12 The following example shows that the reduction in the model function m
achieved by the two-dimensional minimization strategy can be much smaller than that
achieved by the exact solution of (4.5).

In (4.5), set

where € is a small positive number. Set
. 1 3
B:dlag 6—3,1,6 5 A =0.5.

Show that the solution of (4.5) has components (0(6), % + O(e), O(e))T and that the
reduction in the model m is % + O(e). For the two-dimensional minimization strategy,
show that the solution is a multiple of B~!g and that the reduction in m is O (¢).

CHAPTER

Conjugate
Gradient Methods

Our interest in conjugate gradient methods is twofold. First, they are among the most useful
techniques for solving large linear systems of equations. Second, they can be adapted to solve
nonlinear optimization problems. The remarkable properties of both linear and nonlinear
conjugate gradient methods will be described in this chapter.

The linear conjugate gradient method was proposed by Hestenes and Stiefel in the
1950s as an iterative method for solving linear systems with positive definite coefficient
matrices. It is an alternative to Gaussian elimination that is well suited for solving large
problems. The performance of the linear conjugate gradient method is determined by the

102

CHAPTER 5. CONJUGATE GRADIENT METHODS

distribution of the eigenvalues of the coefficient matrix. By transforming, or preconditioning,
the linear system, we can make this distribution more favorable and improve the convergence
of the method significantly. Preconditioning plays a crucial role in the design of practical
conjugate gradient strategies. Our treatment of the linear conjugate gradient method will
highlight those properties of the method that are important in optimization.

The first nonlinear conjugate gradient method was introduced by Fletcher and Reeves
in the 1960s. It is one of the earliest known techniques for solving large-scale nonlinear
optimization problems. Over the years, many variants of this original scheme have been
proposed, and some are widely used in practice. The key features of these algorithms are
that they require no matrix storage and are faster than the steepest descent method.

5.1 THE LINEAR CONJUGATE GRADIENT METHOD

In this section we derive the linear conjugate gradient method and discuss its essential
convergence properties. For simplicity, we drop the qualifier “linear” throughout.

The conjugate gradient method is an iterative method for solving a linear system of
equations

Ax = b, (5.1)

where A is an n X n symmetric positive definite matrix. The problem (5.1) can be stated
equivalently as the following minimization problem:

min ¢(x) def %xTAx —bTx, (5.2)

that is, both (5.1) and (5.2) have the same unique solution. This equivalence will allow us
to interpret the conjugate gradient method either as an algorithm for solving linear systems
or as a technique for minimizing convex quadratic functions. For future reference, we note
that the gradient of ¢ equals the residual of the linear system, that is,

Vo(x) = Ax — b % r(x), (5.3)

so in particular at x = x; we have
Iy = Axk —b. (5.4)

CONJUGATE DIRECTION METHODS

One of the remarkable properties of the conjugate gradient method is its ability to
generate, in a very economical fashion, a set of vectors with a property known as conjugacy. A

5.1. THE LINEAR CONJUGATE GRADIENT METHOD

set of nonzero vectors {pg, p1, ..., pi} is said to be conjugate with respect to the symmetric
positive definite matrix A if

pl-TApj =0, foralli # j. (5.5)

It is easy to show that any set of vectors satisfying this property is also linearly independent.
(For a geometrical illustration of conjugate directions see Section 9.4.)

The importance of conjugacy lies in the fact that we can minimize ¢(-) in n steps
by successively minimizing it along the individual directions in a conjugate set. To verify
this claim, we consider the following conjugate direction method. (The distinction between
the conjugate gradient method and the conjugate direction method will become clear as we
proceed.) Given astarting point x, € R" and aset of conjugate directions {py, p1, ..., Pn—1}>
let us generate the sequence {x;} by setting

Xk1 = Xg + o Py, (5.6)

where o is the one-dimensional minimizer of the quadratic function ¢(-) along x; + apy,
given explicitly by

T
T Pk

; (5.7)
Pi Apk

o = —

see (3.55). We have the following result.

Theorem 5.1.
For any xo € R" the sequence {x;} generated by the conjugate direction algorithm (5.6),
(5.7) converges to the solution x* of the linear system (5.1) in at most n steps.

ProOF. Since the directions {p;} are linearly independent, they must span the whole space
R". Hence, we can write the difference between x(and the solution x* in the following way:

x* —xo=0opo+o1p1 + -+ Op_1Pu-1,

for some choice of scalars oy. By premultiplying this expression by p! A and using the
conjugacy property (5.5), we obtain

pTAGT - x)

(5.8)
pi Apk

We now establish the result by showing that these coefficients o} coincide with the step
lengths «; generated by the formula (5.7).

103

104

CHAPTER 5. CONJUGATE GRADIENT METHODS

If x is generated by algorithm (5.6), (5.7), then we have
Xp = Xo+opo+o1pr+ -+ g1 Pr—1-
By premultiplying this expression by p! A and using the conjugacy property, we have that
plA(x — x0) = 0,
and therefore
plAG* = x0) = Pl A" —x0) = pl (b — Ax) = —pl .

By comparing this relation with (5.7) and (5.8), we find that ox = o, giving the result. O

There is a simple interpretation of the properties of conjugate directions. If the matrix
A in (5.2) is diagonal, the contours of the function ¢(-) are ellipses whose axes are aligned

with the coordinate directions, as illustrated in Figure 5.1. We can find the minimizer of this
function by performing one-dimensional minimizations along the coordinate directions

¢

Figure 5.1 Successive minimizations along the coordinate directions find the
minimizer of a quadratic with a diagonal Hessian in n iterations.

5.1. THE LINEAR CONJUGATE GRADIENT METHOD

Figure5.2 Successive minimization along coordinate axes does not find the solution
in n iterations, for a general convex quadratic.

e1, €, ...,e, in turn. When A is not diagonal, its contours are still elliptical, but they
are usually no longer aligned with the coordinate directions. The strategy of successive
minimization along these directions in turn no longer leads to the solution in n iterations (or
even in a finite number of iterations). This phenomenon is illustrated in the two-dimensional
example of Figure 5.2 We can, however, recover the nice behavior of Figure 5.1 if we transform
the problem to make A diagonal and then minimize along the coordinate directions. Suppose
we transform the problem by defining new variables x as

£=5"x, (5.9)
where S is the n x n matrix defined by

S=1[pop1 - pual,

where {po, p2, ..., pn—1} is the set of conjugate directions with respect to A. The quadratic
¢ defined by (5.2) now becomes

$(2) & p(5%) = 127 (STAS)R — (STh) 2.
By the conjugacy property (5.5), the matrix S” AS is diagonal, so we can find the minimizing
value of ¢ by performing n one-dimensional minimizations along the coordinate directions

105

106

CHAPTER 5. CONJUGATE GRADIENT METHODS

of x. Because of the relation (5.9), however, the ith coordinate direction in X-space corre-
sponds to the direction p; in x-space. Hence, the coordinate search strategy applied to ¢ is
equivalent to the conjugate direction algorithm (5.6), (5.7). We conclude, as in Theorem 5.1,
that the conjugate direction algorithm terminates in at most n steps.

Returning to Figure 5.1, we note another interesting property: When the Hessian ma-
trix is diagonal, each coordinate minimization correctly determines one of the components
of the solution x*. In other words, after k one-dimensional minimizations, the quadratic
has been minimized on the subspace spanned by ey, e, ..., ;. The following theorem
proves this important result for the general case in which the Hessian of the quadratic is not
necessarily diagonal. (Here and later, we use the notation span{po, p1, ..., px} to denote
the set of all linear combinations of the vectors py, p1, ..., pi.) In proving the result we will
make use of the following expression, which is easily verified from the relations (5.4) and
(5.6):

Tyl = Fe + apApg. (5.10)

Theorem 5.2 (Expanding Subspace Minimization).
Let xo € R”" be any starting point and suppose that the sequence {x;} is generated by the
conjugate direction algorithm (5.6), (5.7). Then

rlpi=0, fori=0,1,....,k—1, (5.11)
and xy is the minimizer of p(x) = 1xT Ax — b” x over the set

{x | x = xo + span{po, p1, ..., Pk—1}}- (5.12)

PROOF. We begin by showing that a point ¥ minimizes ¢ over the set (5.12) if and only
ifr(x)Tp; = 0,foreachi = 0,1,...,k — 1. Let us define h(c) = ¢(xg + oopo + - - +
04_1Pk—1), where 0 = (09, 01, ..., 04_1)T. Since h(o) is a strictly convex quadratic, it has
a unique minimizer o* that satisfies

oh(c™*) _

aO'i

0, i=0,1,...,k—1.

By the chain rule, this equation implies that
V¢(x0+06kp0~|—--~+o:_1pk_1)Tp,- =0, i=0,1,...,k—1.

By recalling the definition (5.3), we have for the minimizer X = xo + o po + o/ p2 +--- +
0 Pk—1 on the set (5.12) that r(%)T pi = 0, as claimed.

We now use induction to show that x; satisfies (5.11). For the case k = 1, we have
from the fact that x; = xo + oo po minimizes ¢ along p, that r[py = 0. Let us now make

5.1. THE LINEAR CONJUGATE GRADIENT METHOD 107

the induction hypothesis, namely, that rkT_lpi =0fori =0,1,...,k— 2. By (5.10), we

have
rk = rk—1 + o1 Api—1,
so that
plore=plna +aapl (Api =0,
by the definition (5.7) of ax—;. Meanwhile, for the other vectors p;,i = 0,1, ...,k —2, we
have

pline=pln+aipl Apry =0,

where piT re—1 = 0 because of the induction hypothesis and piT Apr_1 = 0 because of
conjugacy of the vectors p;. We have shown that rkTpi =0, fori =0,1,...,k—1,so the
proof is complete. O

The fact that the current residual r, is orthogonal to all previous search directions, as
expressed in (5.11), is a property that will be used extensively in this chapter.

The discussion so far has been general, in that it applies to a conjugate direction
method (5.6), (5.7) based on any choice of the conjugate direction set {po, p1, ..., Pn—1}-
There are many ways to choose the set of conjugate directions. For instance, the eigen-
vectors vy, Uz, ..., U, of A are mutually orthogonal as well as conjugate with respect to
A, so these could be used as the vectors {po, p1, ..., pa—1}. For large-scale applications,
however, computation of the complete set of eigenvectors requires an excessive amount of
computation. An alternative approach is to modify the Gram—Schmidt orthogonalization
process to produce a set of conjugate directions rather than a set of orthogonal directions.
(This modification is easy to produce, since the properties of conjugacy and orthogonality
are closely related in spirit.) However, the Gram—Schmidt approach is also expensive, since
it requires us to store the entire direction set.

BASIC PROPERTIES OF THE CONJUGATE GRADIENT METHOD

The conjugate gradient method is a conjugate direction method with a very special
property: In generating its set of conjugate vectors, it can compute a new vector p; by
using only the previous vector pi_;. It does not need to know all the previous elements
Do, P1s - - - » Pk—2 of the conjugate set; p; is automatically conjugate to these vectors. This
remarkable property implies that the method requires little storage and computation.

In the conjugate gradient method, each direction py is chosen to be a linear combi-
nation of the negative residual —r; (which, by (5.3), is the steepest descent direction for the

108

CHAPTER 5. CONJUGATE GRADIENT METHODS

function ¢) and the previous direction p;_;. We write

DPr = —Fk + BrPr—1, (5.13)

where the scalar f; is to be determined by the requirement that p;_; and p; must be
conjugate with respect to A. By premultiplying (5.13) by p/_, A and imposing the condition
pi_ Apr = 0, we find that

VkTAPk—l
B = kP
D1 ADk-1

We choose the first search direction py to be the steepest descent direction at the initial point
Xo. As in the general conjugate direction method, we perform successive one-dimensional
minimizations along each of the search directions. We have thus specified a complete
algorithm, which we express formally as follows:

Algorithm 5.1 (CG-Preliminary Version).

Given xp;
Setrg < Axg — b, pg < —1p, k < 0;
while r;, # 0
T
r
ap < — }‘pk ; (5.14a)
P APk
Xk+1 <= Xk + Qx Pics (5.14b)
Tip1 < Axpp — b; (5.14¢)
T
7o Apr
Brar < —H——; (5.14d)
PLADPK
Pkl < —Fig1 + B Pis (5.14e)
k<—k+1; (5.14f)
end (while)

This version is useful for studying the essential properties of the conjugate gradient
method, but we present a more efficient version later. We show first that the directions
Dos P1, - -, Pu—1 are indeed conjugate, which by Theorem 5.1 implies termination in n
steps. The theorem below establishes this property and two other important properties.
First, the residuals r; are mutually orthogonal. Second, each search direction py and residual
ri is contained in the Krylov subspace of degree k for ry, defined as

K(ro; k) def span{ry, Arg, ..., Akro}. (5.15)

5.1. THE LINEAR CONJUGATE GRADIENT METHOD 109

Theorem 5.3.
Suppose that the k th iterate generated by the conjugate gradient method is not the solution
point x*. The following four properties hold:

rkTr,'zo, fori =0,1,...,k—1, (5.16)

span{rg, r1, ..., iy} = span{ry, Ary, .. ., AFrol, (5.17)
span{po, p1, ..., px} = span{ry, Ary, ..., AFrol, (5.18)
plApi =0, fori =0,1,...,k—1. (5.19)

Therefore, the sequence {x;} converges to x* in at most n steps.

PrOOF. The proofis by induction. The expressions (5.17) and (5.18) hold trivially for k = 0,

while (5.19) holds by construction for k = 1. Assuming now that these three expressions are

true for some k (the induction hypothesis), we show that they continue to hold for k£ + 1.
To prove (5.17), we show first that the set on the left-hand side is contained in the set

on the right-hand side. Because of the induction hypothesis, we have from (5.17) and (5.18)
that

ry € span{ry, Ary, ..., Ay}, Pk € span{ry, Arg, ..., Ay},
while by multiplying the second of these expressions by A, we obtain
Apy € span{Ary, ..., A ro). (5.20)
By applying (5.10), we find that
rr+1 € span{rg, Arg, ..., Ak“ro}.
By combining this expression with the induction hypothesis for (5.17), we conclude that
span{rg, 71, ..., %, Fep1} C span{rg, Arg, ..., AXrg).

To prove that the reverse inclusion holds as well, we use the induction hypothesis on (5.18)
to deduce that

Ay = A(A%ry) € span{Apy, Apy, ..., Api).
Since by (5.10) we have Ap; = (r;41 —r;)/a; fori =0, 1, ..., k, it follows that

k+1
A + rog € span{ro,rl, ...,Vk+1}.

110

CHAPTER 5. CONJUGATE GRADIENT METHODS

By combining this expression with the induction hypothesis for (5.17), we find that

span{rg, Arg, ..., AkHro} C span{rg, 11, ..., Ik, Fk+1)-

Therefore, the relation (5.17) continues to hold when & is replaced by k + 1, as claimed.
We show that (5.18) continues to hold when £ is replaced by k + 1 by the following
argument:

span{po, p1, ..., Pis Pr+1}
= span{po, p1, .., Pks Tk+1} by (5.14e)
= span{ry, Arg, ..., ARro, riga) by induction hypothesis for (5.18)
=span{ro, r1, ..., Fi, rk41} by (5.17)
= span{ry, Ary, ..., A r) by (5.17) for k + 1.

Next, we prove the conjugacy condition (5.19) with k replaced by k +- 1. By multiplying
(5.14e) by Ap;,i = 0,1, ..., k, we obtain

Pis1Api = =1 Api + B pi Api. (5.21)

By the definition (5.14d) of B, the right-hand-side of (5.21) vanishes when i = k. For
i < k — 1 we need to collect a number of observations. Note first that our induction
hypothesis for (5.19) implies that the directions py, p1, ..., px are conjugate, so we can
apply Theorem 5.2 to deduce that

riapi=0, fori=0,1,... k. (5.22)

Second, by repeatedly applying (5.18), we find that fori = 0, 1, ...,k — 1, the following
inclusion holds:

Ap; € Aspan{ry, Ary, ..., A'ry} = span{Ary, A’rg, ..., A7 rg)
C Span{po, Pls---, Pi+1}- (5.23)

By combining (5.22) and (5.23), we deduce that
reaApi=0, fori=0,1,....k—1,

so the first term in the right-hand-side of (5.21) vanishes for i = 0,1,...,k — 1. Be-
cause of the induction hypothesis for (5.19), the second term vanishes as well, and we

5.1. THE LINEAR CONJUGATE GRADIENT METHOD

conclude that ka+1Ap,- =0,i =0,1,..., k.Hence, theinduction argument holds for (5.19)
also.

It follows that the direction set generated by the conjugate gradient method is indeed
a conjugate direction set, so Theorem 5.1 tells us that the algorithm terminates in at most n
iterations.

Finally, we prove (5.16) by a noninductive argument. Because the direction set is
conjugate, we have from (5.11) that rkTpi =0foralli =0,1,...,k — 1 and any k =
1,2,...,n — 1. By rearranging (5.14e), we find that

pi = —ri + Bipi-1,

so that r; € span{p;, pi—1} foralli = 1,...,k — 1. We conclude that /r; = 0 for all
i =1,...,k — 1. To complete the proof, we note that rkTro = —rkTpo = 0, by definition of
po in Algorithm 5.1 and by (5.11). O

The proof of this theorem relies on the fact that the first direction p, is the steep-
est descent direction —rg; in fact, the result does not hold for other choices of p,. Since
the gradients r; are mutually orthogonal, the term “conjugate gradient method” is ac-
tually a misnomer. It is the search directions, not the gradients, that are conjugate with
respect to A.

A PRACTICAL FORM OF THE CONJUGATE GRADIENT METHOD

We can derive a slightly more economical form of the conjugate gradient method by
using the results of Theorems 5.2 and 5.3. First, we can use (5.14¢) and (5.11) to replace the
formula (5.14a) for o by

rkTrk

pLApPC

Second, we have from (5.10) that ax Apy = rx+1 — 7%, so by applying (5.14e) and (5.11)
once again we can simplify the formula for B4, to

T

B Ter1Tk+1

k+1 = — 7 -
V{I”k

By using these formulae together with (5.10), we obtain the following standard form of the
conjugate gradient method.

111

112 CHAPTER 5. CONJUGATE GRADIENT METHODS

Algorithm 5.2 (CG).

Given xg;
Setrg < Axg — b, po < —19, k < 0;
while r;, # 0
rlr
g (5.24a)
P Apy
X1 < X + Qp Prs (5.24b)
Tkl < Tk + o Apy; (5.24¢)
”1<T+1rk+1
Bit1 < —F—: (5.24d)
l”k Ik
DPik+1 < —Ti+1 + Br+1Pxs (5.24e)
k<—k+1; (5.24f)
end (while)

At any given point in Algorithm 5.2 we never need to know the vectors x, r, and
p for more than the last two iterations. Accordingly, implementations of this algorithm
overwrite old values of these vectors to save on storage. The major computational tasks to be
performed at each step are computation of the matrix—vector product Apy, calculation of
the inner products ka (Apy) and rkT +17k+1> and calculation of three vector sums. The inner
product and vector sum operations can be performed in a small multiple of n floating-point
operations, while the cost of the matrix—vector product is, of course, dependent on the
problem. The CG method is recommended only for large problems; otherwise, Gaussian
elimination or other factorization algorithms such as the singular value decomposition are
to be preferred, since they are less sensitive to rounding errors. For large problems, the CG
method has the advantage that it does not alter the coefficient matrix and (in contrast to
factorization techniques) does not produce fill in the arrays holding the matrix. Another key
property is that the CG method sometimes approaches the solution quickly, as we discuss
next.

RATE OF CONVERGENCE

We have seen that in exact arithmetic the conjugate gradient method will terminate at
the solution in at most n iterations. What is more remarkable is that when the distribution
of the eigenvalues of A has certain favorable features, the algorithm will identify the solution
in many fewer than n iterations. To explain this property, we begin by viewing the expanding
subspace minimization property proved in Theorem 5.2 in a slightly different way, using it
to show that Algorithm 5.2 is optimal in a certain important sense.

5.1. THE LINEAR CONJUGATE GRADIENT METHOD

From (5.24b) and (5.18), we have that

Xk+1 = Xo + 0P + -+ - + QP
= Xo + Yoro + 1Aro + - - + y Afry, (5.25)

for some constants y;. We now define P(-) to be a polynomial of degree k with coefficients
Y0s Y1 - - - » Yk. Like any polynomial, P}’ can take either a scalar or a square matrix as its
argument. For the matrix argument A, we have

PHA) =l + A+ + pAk,
which allows us to express (5.25) as follows:
Xip1 = Xo + P (A)ro. (5.26)

We now show that among all possible methods whose first k steps are restricted to the
Krylov subspace KC(ry; k) given by (5.15), Algorithm 5.2 does the best job of minimizing the
distance to the solution after k steps, when this distance is measured by the weighted norm
measure || - || 4 defined by

Izll; = 2" Az. (5.27)

(Recall that this norm was used in the analysis of the steepest descent method of Chapter 3.)
Using this norm and the definition of ¢ (5.2), and the fact that x* minimizes ¢, it is easy to
show that

e = x5 = 3(x = x)T Al = x%) = p(x) — p(x™). (5.28)

Theorem 5.2 states that x;;; minimizes ¢, and hence [|x — x*||4, over the set xo +
span{po, p1, - .., pr}, which by (5.18) is the same as xo +span{rg, Ary, . .., A¥r}. It follows
from (5.26) that the polynomial P} solves the following problem in which the minimum is
taken over the space of all possible polynomials of degree k:

n})in lxo + Pe(A)rg — x™| 4. (5.29)
k

We exploit this optimality property repeatedly in the remainder of the section.
Since

ro = Axg —b = Axg — Ax™ = A(xg — x¥),
we have that

X1 — X =x9+ Pl (A)rg —x* = [I + P (A)A](xp — x™). (5.30)

113

114

CHAPTER 5. CONJUGATE GRADIENT METHODS

Let 0 < A; < Ay < --- < X, be the eigenvalues of A, and let vy, v,, ..., v, be the
corresponding orthonormal eigenvectors, so that

n
A= E AiviviT.
i=l

Since the eigenvectors span the whole space R", we can write
n
xg — x* :Zgiviv (5.31)
i=1

for some coefficients &;. It is easy to show that any eigenvector of A is also an eigenvector
of Pi(A) for any polynomial Py. For our particular matrix A and its eigenvalues A; and
eigenvectors v;, we have

P (A)v; = P(Xi)v;, i=12,...,n.

By substituting (5.31) into (5.30) we have
n
Xey1 — X = Z[l + X P (M))&
i=1
By using the fact that ||z||} = zT Az = Y1, A (v] 2)?, we have
n
Pregr = x*1% = Y il + A PE()PE (5.32)
i=1
Since the polynomial P;* generated by the CG method is optimal with respect to this norm,
we have
n
e = 215 = min 3 S Ai[1+ 2 PGu) P8
i=1

By extracting the largest of the terms [1 + A; P¢();)]* from this expression, we obtain that

n
Irer — x*|% < min max [1+ 4 PO | D 4s&7
j=1

P, 1<i<n

= min max [1 + A; Py(A;)]*[lx0 — x*[13, (5.33)

P, 1<i<n

where we have used the fact that ||x) — x*||3 = > Ajéf.

5.1. THE LINEAR CONJUGATE GRADIENT METHOD

The expression (5.33) allows us to quantify the convergence rate of the CG method
by estimating the nonnegative scalar quantity

min max [1 + A; PO (5.34)

P, 1<i<n

In other words, we search for a polynomial Py that makes this expression as small as possible.
In some practical cases, we can find this polynomial explicitly and draw some interesting
conclusions about the properties of the CG method. The following result is an example.

Theorem 5.4.
If A has only r distinct eigenvalues, then the CG iteration will terminate at the solution
in at most r iterations.

PROOF. Suppose that the eigenvalues A1, ,, ..., A, take on the r distinct values 1, < 7, <
- < T,. We define a polynomial Q, () by

0,00 =—"Y G-t (-1,
T T,

and note that Q,(A;) =0fori = 1,2,...,nand Q,(0) = 1. From the latter observation,
we deduce that O, (1) — 1 is a polynomial of degree r with a root at A = 0, so by polynomial
division, the function P,_; defined by

Proa(3) = (Q,(0) = 1)/&
is a polynomial of degree r — 1. By setting k = r — 1 in (5.34), we have

0 < min max 1 +2;F,(4)]° < max[1+ 4 £, (4)]° = max Q7(x;) =0.
<i<n

Py 1<i=n <i<n

Hence, the constant in (5.34) is zero for the value k = r — 1, so we have by substituting into
(5.33) that ||x, — x* ||124 = 0, and therefore x, = x*, as claimed. O

By using similar reasoning, Luenberger [195] establishes the following estimate, which
gives a useful characterization of the behavior of the CG method.

Theorem 5.5.
If A has eigenvalues .y < Ay < --- < A, we have that

112)L"—k B)“1 ? %112
lxerr —x7[1y < m llxo — x™I%. (5.35)
n— 1

115

116 CHAPTER 5. CONJUGATE GRADIENT METHODS

Figure 5.3 Two clusters of eigenvalues.

Without giving details of the proof, we describe how this result is obtained from (5.33). One
selects a polynomial P, of degree k such that the polynomial Qy11(A) = 1 + AP;(%) has
roots at the k largest eigenvalues A,, Ay—1, ..., Ay—k+1, as well as at the midpoint between
A1 and A, _g. It can be shown that the maximum value attained by Q. on the remaining
eigenvalues Ay, Ay, ..., A,k is precisely (A,—x — A1)/ (Ap—k + A1).

We now illustrate how Theorem 5.5 can be used to predict the behavior of the CG
method on specific problems. Suppose we have the situation plotted in Figure 5.3, where
the eigenvalues of A consist of m large values, with the remaining n — m smaller eigenvalues
clustered around 1. If we define € = A,,_,, — A, Theorem 5.5 tells us that after m + 1 steps
of the conjugate gradient algorithm, we have

lXms1 — x*[a = €llxg — x| 4.

For a small value of €, we conclude that the CG iterates will provide a good estimate of the
solution after only m + 1 steps.

Figure 5.4 shows the behavior of CG on a problem of this type, which has five large
eigenvalues with all the smaller eigenvalues clustered between 0.95 and 1.05, and compares
this behavior with that of CG on a problem in which the eigenvalues satisfy some random
distribution. In both cases, we plot the log of ¢ after each iteration.

For the problem with clustered eigenvalues, Theorem 5.5 predicts a sharp decrease in
the error measure at iteration 6. Note, however, that this decrease was achieved one iteration
earlier, illustrating the fact that Theorem 5.5 gives only an upper bound, and that the rate of
convergence can be faster. By contrast, we observe in Figure 5.4 that for the problem with
randomly distributed eigenvalues (dashed line), the convergence rate is slower and more
uniform.

Figure 5.4 illustrates another interesting feature: After one more iteration (a total
of seven) on the problem with clustered eigenvalues, the error measure drops sharply. An
extension of the arguments leading to Theorem 5.4 explains this behavior. It is almost
true to say that the matrix A has just six distinct eigenvalues: the five large eigenvalues
and 1. Then we would expect the error measure to be zero after six iterations. Because the
eigenvalues near 1 are slightly spread out, however, the error does not become very small until
iteration 7.

5.1. THE LINEAR CONJUGATE GRADIENT METHOD

A log(lx-x*[)
5 clustered eigenvalues
o -
uniformly distributed
eigenvalues
5=
210 |—
| | | | | | | o
1 2 3 4 5 6 7

iteration

Figure5.4 Performance of the conjugate gradient method on (a) a problem in which
five of the eigenvalues are large and the remainder are clustered near 1, and (b) a matrix
with uniformly distributed eigenvalues.

To state this claim more precisely, it is generally true that if the eigenvalues occur in
distinct clusters, the CG iterates will approximately solve the problem in about r steps (see
[136]). This result can be proved by constructing a polynomial P,_; suchthat 1+AP_; (1))
has zeros inside each of the clusters. This polynomial may not vanish at the eigenvalues A;,
i =1,2,...,n,but its value will be small at these points, so the constant defined in (5.34)
will be small for k > r — 1. We illustrate this behavior in Figure 5.5, which shows the
performance of CG on a matrix of dimension #n = 14 that has four clusters of eigenvalues:
single eigenvalues at 140 and 120, a cluster of 10 eigenvalues very close to 10, with the
remaining eigenvalues clustered between 0.95 and 1.05. After four iterations, the error has
decreased significantly. After six iterations, the solution is identified to good accuracy.

Another, more approximate, convergence expression for CG is based on the Euclidean
condition number of A, which is defined by

Kk(A) = NAILIAT 2 = An /2.

It can be shown that

A — k
V)~ 1 1) oo — x* . (5.36)

Xp— x4 <2
[l vk la < (A1

This bound often gives a large overestimate of the error, but it can be useful in those cases

117

118 CHAPTER 5. CONJUGATE GRADIENT METHODS

A log(lr-x#5)

iteration

Figure5.5 Performance of the conjugate gradient method on a matrix in which the
eigenvalues occur in four distinct clusters.

where the only information we have about A is estimates of the extreme eigenvalues 1,
and X,,. This bound should be compared with that of the steepest descent method given by
(3.29), which is identical in form but which depends on the condition number «(A), and
not on its square root 4/« (A).

PRECONDITIONING

We can accelerate the conjugate gradient method by transforming the linear system
to improve the eigenvalue distribution of A. The key to this process, which is known as
preconditioning, is a change of variables from x to X via a nonsingular matrix C, that is,

X =Cx. (5.37)
The quadratic ¢ defined by (5.2) is transformed accordingly to
$(2) = 127(cTACTH: — (CTTh)" 1. (5.38)
If we use Algorithm 5.2 to minimize é or, equivalently, to solve the linear system

(cTAC™Hzr =CTh,

then the convergence rate will depend on the eigenvalues of the matrix C~7 AC™! rather
than those of A. Therefore, we aim to choose C such that the eigenvalues of C TAoCc!

5.1. THE LINEAR CONJUGATE GRADIENT METHOD

are more favorable for the convergence theory discussed above. We can try to choose C
such that the condition number of C=7 AC~! is much smaller than the original condition
number of A, for instance, so that the constant in (5.36) is smaller. We could also try to
choose C such that the eigenvalues of C~7 AC~! are clustered, which by the discussion of
the previous section ensures that the number of iterates needed to find a good approximate
solution is not much larger than the number of clusters.

It is not necessary to carry out the transformation (5.37) explicitly. Rather, we can
apply Algorithm 5.2 to the problem (5.38), in terms of the variables X, and then invert the
transformations to reexpress all the equations in terms of x. This process of derivation results
in Algorithm 5.3 (Preconditioned Conjugate Gradient), which we now define. It happens
that Algorithm 5.3 does not make use of C explicitly, but rather the matrix M = C Tc,
which is symmetric and positive definite by construction.

Algorithm 5.3 (Preconditioned CG).
Given xg, preconditioner M;
Setry < Axg — b;
Solve Myy = ry for yp;
Set po = —yo, k < 0;

whiler;, # 0
T
,
PR L (5.392)
P APk
Xp41 < Xp + O Pis (5.39b)
Tet1 < T + o Api; (5.39¢)
Solve Myjy1 = ri41; (5.39d)
rl Yie+1
Brs1 — (5.39)
Te Yk
Pk+1 < —Yk+1 + Brr1Pks (5.39f)
k< k+1; (5.39g)
end (while)

If weset M = I in Algorithm 5.3, we recover the standard CG method, Algorithm 5.2.
The properties of Algorithm 5.2 generalize to this case in interesting ways. In particular, the
orthogonality property (5.16) of the successive residuals becomes

rIM7'rj =0 foralli # j. (5.40)

119

120

CHAPTER 5. CONJUGATE GRADIENT METHODS

In terms of computational effort, the main difference between the preconditioned
and unpreconditioned CG methods is the need to solve systems of the form My = r (step
(5.394d)).

PRACTICAL PRECONDITIONERS

No single preconditioning strategy is “best” for all conceivable types of matrices:
The tradeoff between various objectives—effectiveness of M, inexpensive computation and
storage of M, inexpensive solution of My = r—varies from problem to problem.

Good preconditioning strategies have been devised for specific types of matrices, in
particular, those arising from discretizations of partial differential equations (PDEs). Often,
the preconditioner is defined in such a way that the system My = r amounts to a simplified
version of the original system Ax = b. In the case of a PDE, My = r could represent
a coarser discretization of the underlying continuous problem than Ax = b. As in many
other areas of optimization and numerical analysis, knowledge about the structure and
origin of a problem (in this case, knowledge that the system Ax = b is a finite-dimensional
representation of a PDE) is the key to devising effective techniques for solving the problem.

General-purpose preconditioners have also been proposed, but their success varies
greatly from problem to problem. The most important strategies of this type include sym-
metric successive overrelaxation (SSOR), incomplete Cholesky, and banded preconditioners.
(See [272], [136], and [72] for discussions of these techniques.) Incomplete Cholesky is prob-
ably the most effective in general. The basic idea is simple: We follow the Cholesky procedure,
but instead of computing the exact Cholesky factor L that satisfies A = LL”, we compute
an approximate factor L that is sparser than L. (Usually, we require L to be no denser, or
not much denser, than the lower triangle of the original matrix A.) We then have A ~ LLT,
and by choosing C = L7, we obtain M = LL” and

CTAC'=LT'AL T~ 1,

so the eigenvalue distribution of C