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Abstract

Simplified pooling designs employ rows, columns, and principal diagonals from square and rectan-
gular plates. The requirement that every two samples be tested together in exactly one pool leads to
a novel combinatorial configuration, the union jack design. Existence of union jack designs is settled
affirmatively whenever the order n is a prime and n ≡ 3 (mod 4).
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1 Introduction

Pooling experiments are used to screen large recombinant DNA libraries to isolate clones (sets of subinter-
vals) containing a particular DNA sequence [?, ?]. Since it is not practical to screen each clone individually,
subsets of clones, called pools, are used. The specification and collection of these pools is referred to as
a “pooling design”. The primary objective is to determine, for each pool in the design, whether any of
the clones in the pool contain a specified (small) subinterval. Given the results for each pool, we want to
determine which clones contain the subinterval, and to do so unambiguously.

Clones are often stored and produced on square or rectangular plates, and hence, performing the pooling
experiment requires the merging of material from a number of different positions on the plate. This operation
is greatly simplified by defining the pools to be in a pattern, and in practice, the clones from an individual
plate can be combined along lines such as rows, columns, and diagonals [?]. These combinations are sub-
pools which form components of the final pools. Thus, the pooling design includes the specification of
the templates used to obtain the sub-pools and the way that the sub-pools are combined to obtain the final
pools. Since the physical limitations imposed by the templates and the presence of experimental error in the
pooling outcomes must also be taken into account, it can be a challenge to construct pooling experiments
[?].

When the rows and columns are considered, designs useful for constructing templates in pooling have
been studied previously for the design of experiments [?]. A lattice square design of order n is a set of
n+1

2 arrays, each n × n and each containing n2 symbols once. Every pair of symbols occurs together once
either in a row or a column, in exactly one of the arrays, and does not appear together in a row or column
elsewhere. Note that the rows and columns of the arrays of a lattice square design of order n form the blocks
of a resolvable 2-(n2, n, 1) design [?, ?]. Here is a lattice square design of order three:


 0 1 2

3 4 5
6 7 8


,

 0 5 7
4 6 2
8 1 3

 .

Lattice square designs, known initially as quasi-Latin square designs, were one of the variants of Latin
square designs examined by Yates [?]; see also [?, ?]. An explicit construction is given in [?]. Raghavarao
[?, p. 171] remarks that such lattice square designs can always be obtained from an affine plane of odd
order n; partition the n + 1 parallel classes of blocks into pairs, and form an n × n array for each pair by
interpreting blocks in one parallel class as rows and in the other as columns. This does not depend on the
structure of the plane and so every affine plane of odd order gives rise to at least one lattice square design.
Different pairings of the parallel classes can lead to different lattice square designs, and the enumeration of
different lattice square designs appears to be more complex than the (already difficult) enumeration of the
underlying planes. The affine plane can always be recovered from the lattice square design, since the n + 1
parallel classes from the rows and columns of the n+1

2 arrays form such a plane.
Naturally this approach requires the construction of an affine plane in order to obtain the lattice square

design, and a direct construction might be preferred. However, whenever n is the order of a known affine
plane, n is a power of a prime [?]. In this case, there is an affine plane (which we define subsequently)
arising from the finite field of order n. It is a relatively simple matter to write a direct prescription for an
affine plane using the field, and equally straightforward to write a prescription for the arrays of a lattice
square design; we leave the details to the interested reader.

In this paper, we show that affine planes can also be used to construct analogous designs in which the
rows, columns, front diagonals, and back diagonals of the arrays each form a parallel class of the plane. A
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front diagonal is a set of array entries (i, j) satisfying i − j ≡ b (mod n) for b a constant and i, j ∈ Zn.
Similarly, a back diagonal satisfies i + j ≡ b (mod n).

An RCF design of order n is a set of n+1
3 arrays, each n × n and containing n2 symbols once. Every

pair of symbols occurs together once in a row, column, or front diagonal in exactly one of the arrays, and
does not appear together in a row, column, or front diagonal elsewhere. Here is an RCF design of order 5
defined on Z5 × Z5: 


00 10 20 30 40
01 11 21 31 41
02 12 22 32 42
03 13 23 33 43
04 14 24 34 44

 ,


00 12 24 31 43
34 41 03 10 22
13 20 32 44 01
42 04 11 23 30
21 33 40 02 14




.

RCF designs also arise from affine planes in the following manner. Form the affine plane from the finite
field as follows(see [?] for relevant background). Let X = {(x, y) : x, y ∈ GF(n)} be the n2 points. Define
for each M, b ∈ GF(n) the line LM,b = {(x, Mx + b) : x ∈ GF(n)}. Further define for each b ∈ GF(n) the
line L∞,b = {(b, y) : y ∈ GF(n)}. Let Pn = GF(n) ∪ {∞} denote the projective line. Then the (n + 1)n
lines LM,b with M ∈ Pn and b ∈ GF(n) are the blocks of the affine plane of order n. They form a resolvable
2-(n2, n, 1) design. The parameter M ∈ Pn of the line LM,b is called the slope of LM,b. For each M ∈ Pn,
the setR(M) = {LM,b : b ∈ GF(n)} contains n lines which partition the n2 points in X . We say thatR(M)
is the resolution class of lines with slope M. The n + 1 resolution classes R(M), M ∈ Pn, partition the
(n + 1)n lines of the affine plane.

If n is a prime, then n ≡ 5 (mod 6), and it is easy to construct an RCF design from the affine plane.
Partition Pn into classes of size three, X1, . . . , X(n+1)/3 so that X1 = {∞, 0, 1}. The lines with slopes in
X1 lead directly to an array in which the parallel classes form rows, columns, and front diagonals. Now the
group PGL2(n) acts 3-transitively on the set of slopes Pn, and hence there is a group element mapping Xi

to X1 for each i, 2 ≤ i ≤ n+1
3 . Applying this automorphism places the parallel classes corresponding to the

slopes in Xi in the roles of rows, columns, and front diagonals in an n × n array, and hence produces the
arrays required. This establishes the following.

Theorem 1.1 If n≡5 (mod 6) is a prime, then there exists an RCF design of order n.

Primality of n is employed here to ensure that the lines of slope one in the field are genuine front
diagonals when interpreted in the n×n array. When n is a prime power but not a prime, this is not guaranteed;
the prime power case is discussed in the last section.

2 Union Jack Designs of Prime Order

Simultaneous consideration of rows, columns, front diagonals, and back diagonals underlies the following
combinatorial definition. A union jack design of order n is a collection of n×n arrays with distinct entries
from a set X of n2 points such that every pair of points appears exactly once among the rows, columns,
front diagonals, and back diagonals of the arrays. Thus, the number of arrays in a union jack design is
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(
n2

2

)
/4n

(
n
2

)
= n+1

4 . For example, here is a union jack design of order 7 defined on Z7 × Z7:



00 01 02 03 04 05 06
10 11 12 13 14 15 16
20 21 22 23 24 25 26
30 31 32 33 34 35 36
40 41 42 43 44 45 46
50 51 52 53 54 55 56
60 61 62 63 64 65 66


,



00 15 23 31 46 54 62
56 64 02 10 25 33 41
35 43 51 66 04 12 20
14 22 30 45 53 61 06
63 01 16 24 32 40 55
42 50 65 03 11 26 34
21 36 44 52 60 05 13




.

When n is a prime and n ≡ 3 (mod 4), we give a construction using the blocks of the affine plane
arising from the finite field on the set X = Zn × Zn. Given M, D ∈ Pn with M 6=D, define LM,D,i to be the
unique line inR(M) that intersects the line LD,0 in the pair{

(i, Di) if D 6=∞
(0, i) if D =∞

}
Let R, C, D ∈ Pn and define M = MR,C,D to be the n by n matrix whose [i, j]-entry is

M [i, j] = LR,D,i ∩ LC,D,j = (Xij , Yij)

where i, j ∈ Zn. Observe that

(1) every element of Zn × Zn appears in some cell of M ,
(2) the rows of M are the lines inR(R), and
(3) the columns of M are the lines inR(C).

Theorem 2.1 Let R, C, D ∈ Pn, R 6=C 6=D 6=R. Then the front diagonals of M=MR,C,D, contain the lines in
R(D) and the back diagonals contain the lines inR(B), where

B = BR,C,D =
RD + CD− 2RC

2D− R− C
.

Proof: To simplify calculations, observe that

B∞,C,D = 2C− D

BR,∞,D = 2R− D

BR,C,∞ =
R + C

2

Case 1: R 6=∞, C 6=∞, and D 6=∞. In this case,

LR,D,i = {(X, Y ) : Y = RX + (D− R)i}

and

LC,D,j = {(X,Y ) : Y = CX + (D− C)j}.
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The intersection of these two lines is (Xij , Yij) where

Xij =
(D− C)j − (D− R)i

R− C

Yij = RXij + (D− R)i = CXij + (D− C)j

Observe that

∆Y

∆X
=

Yi+1,j+1 − Yi,j
Xi+1,j+1 −Xi,j

=
R∆X + (D− R)

∆X
= R +

(D− R)
∆X

= R +
(D− R)(R− C)

(D− C)− (D− R)
= R +

(D− R)(R− C)
R− C

= D.

Thus, the ordered pairs that appear on any front diagonal are on a line that has slope D. They account for all
of the lines inR(D) since every ordered pair in Zn×Zn occurs exactly once among the cells of M . Observe
that

∆Y

∆X
=

Yi−1,j+1 − Yi,j
Xi−1,j+1 −Xi,j

=
R∆X − (D− R)

∆X
= R− (D− R)

∆X

= R− (D− R)(R− C)
−(D− C)− (D− R)

= R +
(R− D)(R− C)

2D− R− C

=
RD + CD− 2RC

2D− R− C
= B.

Thus the ordered pairs that appear on any back diagonal are on a line that has slope B. They account for all
of the lines inR(B) since every ordered pair in Zn × Zn occurs exactly once among the cells of M .

Case 2: R =∞. In this case,

LR,D,i = {(i, Y ) : Y ∈ Zn} and

and

LC,D,j = {(X,Y ) : Y = CX + (D− C)j}.

The intersection of these two lines is (Xij , Yij) where

Xij = i

Yij = CXij + (D− C)j = Ci + (D− C)j

Observe that

∆Y

∆X
=

Yi+1,j+1 − Yi,j
Xi+1,j+1 −Xi,j

=
C∆X + (D− C)

∆X
= C + (D− C) = D.

Thus the ordered pairs that appear on any front diagonal are on a line that has slope D. They account for all
of the lines inR(D) since every ordered pair in Zn×Zn occurs exactly once among the cells of M . Observe
that

∆Y

∆X
=

Yi−1,j+1 − Yi,j
Xi−1,j+1 −Xi,j

=
C∆X − (D− C)

∆X
= C− D− C

∆X
= 2C− D = B.
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Thus the ordered pairs that appear on any back diagonal are on a line that has slope B. They account for all
of the lines inR(B) because every ordered pair in Zn×Zn occurs exactly once among the cells of M .

Case 3: C =∞. This case is the transpose of Case 2 (interchange R and C and repeat the argument in Case
2).

Case 4: D =∞. In this case,
LR,D,i = {(X, Y ) : Y = RX + i}

and
LC,D,j = {(X,Y ) : Y = CX + j}.

The intersection of these two lines is (Xij , Yij) where

Xij =
j − i

R− C

Yij = RXij + j =
R(j − i)
R− C

+ j

Observe that

∆Y

∆X
=

Yi+1,j+1 − Yi,j
Xi+1,j+1 −Xi,j

=
1

∆X
=

1
0

= D.

Thus the ordered pairs that appear on any front diagonal are on a line that has slope D. They account for all
lines inR(D) since every ordered pair in Zn × Zn occurs exactly once among the cells of M . Observe that

∆Y

∆X
=

Yi−1,j+1 − Yi,j
Xi−1,j+1 −Xi,j

=
R∆X − 1

∆X
= R− 1

∆X

= R− R− C

2
=

R + C

2
= B.

Thus the ordered pairs that appear on any back diagonal are on a line that has slope B. They account for all
lines inR(B) because every ordered pair in Zn × Zn occurs exactly once among the cells of M .

To construct a union jack designs of prime order n, we need matrices Mi = MRi,Ci,Di for i=1, 2, . . . , (n +
1)/4 so that {{Ri, Ci, Di, Bi}: i = 1, 2, . . . , (n + 1)/4} partitions Pn, where Bi = BRi,Ci,Di . For each
A ∈ Pn, B−A, 1

A
, A+1
A−1

= 1−A
1+A . Thus for each A ∈ Pn, MA = M−A, 1

A
, A+1
A−1

handles the set of slopes SA =

{−A, 1
A , A+1

A−1 , 1−A
1+A}. The condition that n ≡ 3 (mod 4) implies that −1 is not a square modulo n. Thus,

SA consists of four distinct elements. When A =∞, this set is S∞ = {∞, 0, 1,−1}. Consider the subgroup
H=

{
fM(X)= MX+1

−X+M : M ∈ Pn
}

of PGL2(n). This subgroup is transitive on Pn, because f−A(∞) = A.
Furthermore,

fA(S∞) = {fA(∞), fA(0), fA(1), fA(−1)}

=
{
−A,

1
A

,
A + 1
A− 1

,
1− A

1 + A

}
= SA.

Thus the orbit of S∞ under H is {SA : A ∈ Pn}. The stabilizer of S∞ in H is

K = {f∞, f0, f1, f−1} =
{

X 7→ X, X 7→ −1
X

, X 7→ 1 + X

1−X
, X 7→ X − 1

X + 1

}
.
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Hence the number of distinct items in the orbit {SA : A ∈ Pn} is |H|/|K| = (n + 1)/4. The transitivity of
H shows that they partition Pn. As a result, we may choose (n+1)/4 elements A1, A2, . . . ,A(n+1)/4∈Pn so
that the (n+1)/4 matrices MA form a union jack design of order n, when n ≡ 3 (mod 4). Consequently,
we have:

Theorem 2.2 If n ≡ 3 (mod 4) is a prime, then there exists a union jack design of order n.

3 A Dual Formulation

Suppose a lattice square, RCF, or union jack design of order n exists. Each defines a set of n + 1 resolution
classesR0, . . . ,Rn on n2 points so that every pair of points occurs in exactly one block of exactly one class;
hence the design is an affine plane. The association of resolution classes with the arrays from which they
arose partitions the set of resolution classes R0, . . . ,Rn into n+1

s sets of s resolution classes each, where
s = 2, 3, or 4, depending on whether the underlying design is a lattice square, RCF, or union jack design.

Given the affine plane on elements X with linesB, define a dual design (V ,D) where V = {vB : B ∈ B}
and D={Dx: x ∈ X}, by placing vB in block Dx whenever x ∈ B. (Elements of the affine plane become
lines of the dual and lines of the plane become elements of the dual.) So |Dx| = n + 1 for all x ∈ X .
Moreover, from each resolution class Ri, we can define a group of points Gi = {vB : B ∈ Ri}. Two
points from the same group do not appear together in a block of D, but two points from different groups
appear together in exactly one block of D. Hence (V,D) is a transversal design TD(n + 1, n) (see [?] for
an extensive discussion of transversal designs).

The partition of resolution classes into sets of size s corresponds to a partition of the groups of a
TD(n+1, n), and hence to a collection of TD(s, n)s. Each such TD(s, n) must be obtained by apply-
ing the same dualization to a single array from the lattice square, RCF, or union jack design.

There is essentially only one TD(2, n), and hence every TD(n+1, n) admits a partition into appropriate
TD(2, n)s. However, when we turn to RCF and union jack designs, the picture is more complex. For RCF
designs, a careful examination of the dual of a single array shows that it is a TD(3, n) isomorphic to one
with points Zn × {0, 1, 2}; groups Zn×{i} for i∈{0, 1, 2}, and blocks {{(i, 0), (j, 1), (i − j, 2)}: i, j ∈
Zn}. Equivalently, this transversal design is the one obtained from the addition table of the cyclic group
Zn. In the same manner, the dual of a single array in a union jack design is isomorphic to one with points
Zn × {0, 1, 2, 3}, groups Zn × {i} for i ∈ {0, 1, 2, 3}, and blocks {{(i, 0), (j, 1), (i − j, 2), (i + j, 3)} :
i, j ∈ Zn}.

If an affine plane is to underlie an RCF or union jack design, a necessary condition is that the corre-
sponding TD(n + 1, n) contain a TD(3, n) isomorphic to the cyclic one. Immediately we see that the
planes arising from the finite field cannot underlie such designs when their order is a prime power but not a
prime. Indeed, in this case, every TD(3, n) in the TD(n + 1, n) when n = pα is isomorphic to that arising
from Zp × Zp × · · · × Zp, the elementary Abelian group, rather than from the cyclic group Zpα .

There exist numerous planes of prime power order which do not arise from the finite field, and so it is
possible that some other class of affine planes could be used to produce RCF or union jack designs. We do
not know of any other examples of affine planes that can be used, but we cannot exclude the possibility since
the classification of all such planes is not complete. Nevertheless, one natural class of planes to explore,
the translation planes, can be eliminated from consideration using basic facts about the relation between
translation planes and ‘quasifields’ (see [?]). All translation planes arise from quasifields, and all quasifields
have an additive group which is elementary Abelian. It follows directly that the corresponding TD(n+1, n)
cannot contain a TD(3, n) of the cyclic type, and hence that translation planes do not underlie RCF or union
jack designs.
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