Assignment 2

Due: 9/19/2008, 5pm

1. A stream containing compounds a, b, c, d and e are fed to a series of distillation columns as shown in Figure 1 with corresponding stream compositions given in Table 1.

Figure 1. Distillation Train.

Table 1. Stream compositions.

Stream	Composition of Compounds (mol per cent)					
Sucam	а	B	c	d	e	
F	20	22	20	20	18	
D3	80	5	4	4	7	
В3	10	50	30	5	5	
B1	15	15	10	30	30	
D2	20	10	40	30	0	
B2	3	7	10	20	60	

Problem: Determine the molar feed flow rate F and the mixture compositions in D such that the flow rate of D3 = 20 kmol/min.

2. Given six types of crude oil with products of the following composition:

	Gasoline	Heating Oil	Jet Fuel	Lube Oil
Crude 1	55%	22%	15%	6%
Crude 2	60%	15%	20%	2%
Crude 3	40%	30%	25%	0%
Crude 4	40%	35%	20%	0%
Crude 5	50%	15%	8%	20%
Crude 6	44%	20%	10%	22%
Price	\$160/bbl	\$160/bbl	\$120/bbl	\$100/bbl
Max Weekly Demand	165,000 bbl	100,000	110,000	80,000

	Cost	Operating Cost	Availability
	(\$/bbl)	(\$/bbl)	(bbl/week)
Crude 1	110	20	80,000
Crude 2	110	17	100,000
Crude 3	115	19	100,000
Crude 4	120	15	95,000
Crude 5	120	18	75,000
Crude 6	115	17	110,000

Problem: Find the weekly processing of each crude to maximize profit per week. (Hint: compared with the drill, you need to add one more set of constraints)