Newton Method for Solution of Nonlinear Equations

(Dr. Tom Co 9/6/2008)

Problem: Given function f(x), we want to find a root x_* such that $f(x_*) = 0$.

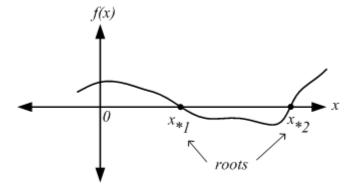


Figure 1. Roots of f(x).

Main Idea: Assume that the initial guess x_{guess} is close to a root such that the function f(x) can be approximated by a line as shown in Figure 2.

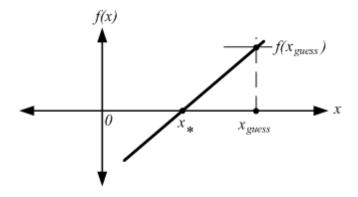


Figure 2. Approximate line.

then

$$\left. \frac{df}{dx} \right|_{x=x_{guess}} = \frac{\text{rise}}{\text{run}} = \frac{f(x_{\text{guess}}) - 0}{x_{\text{guess}} - x_*}$$

Rearranging,

$$x_* = x_{\text{guess}} - \frac{f(x_{\text{guess}})}{\frac{df}{dx}\Big|_{x=x_{\text{guess}}}}$$

Since the assumption may not be true, multiple iterations are needed. The Newton method is then given by

$$x_{k+1} = x_k - \frac{f(x_k)}{\frac{df}{dx}\Big|_{x=x_k}}$$

with $x_0 = x_{\text{guess}}$ and the iterations ends when $|x_{k+1} - x_k| < \text{tolerance}$.

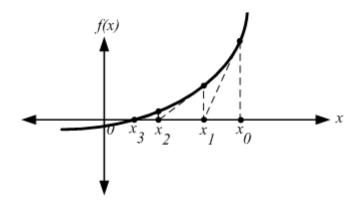


Figure 3. Newton method.

Remarks:

- 1. If the function is too complicated, an approximate derivative is often used.
- 2. If the derivative is close to zero, then the method may diverge.
- 3. If the function is highly nonlinear, the method may diverge unless the guess is very close to the root.
- 4. Multiple roots are possible in general. One needs to choose initial guesses carefully to obtain the desired roots.

Example:

