Obtaining the Roots of a Cubic Equations

Given a cubic equation,
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then we obtain a 6th order polynomial equation in y given by
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whose roots are:



Now let the discriminant A be the term inside the square root above, i.e.

then we will have two cases that will depend on whether the discriminant is
positive or negative.

Case 1: 4 > 0 Then we will have one real root and a complex conjugate pair

The first root is given by
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where,
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The other roots can then be obtained by using the values of the first root:
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Case2: A< 0 There will be three real roots.

The first root will be obained as follows (whose proof is given below):
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And the two remaining roots can be determined by the following equations:
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Proof for formula to obtain the first root:

whose magnitude and angle are given by
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allowing one to evaluate the cube root of the polar representation:
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from which we obtain

Wl

P
3

i
X = _p.e + -
.0
I-—
3

_-e

3



or



