
Obtaining the Roots of a Cubic Equations

Given a cubic equation,
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then we obtain a 6th order polynomial equation in y given by
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whose roots are:
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Now let the discriminant ∆ be the term inside the square root above, i.e.
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then we will have two cases that will depend on whether the discriminant is
positive or negative.

Case 1: ∆ 0> Then we will have one real root and a complex conjugate pair

The first root is given by
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The other roots can then be obtained by using the values of the first root:
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Case 2: ∆ 0< There will be three real roots. 

The first root will be obained as follows (whose proof is given below):
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And the two remaining roots can be determined by the following equations:
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Proof for formula to obtain the first root:
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whose magnitude and angle are given by
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allowing one to evaluate the cube root of the polar representation:

y h

1

3
=

p−

3
e

i
θ
3
⋅

⋅=

from which we obtain
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