Obtaining the Roots of a Cubic Equations

Given a cubic equation,

$$z^3 + A \cdot z^2 + B \cdot z + C = 0$$

Let

$$z = x - \frac{A}{3}$$

then

$$x^{3} + \left(\frac{-1}{3} \cdot A^{2} + B\right) \cdot x + \frac{2}{27} \cdot A^{3} + C - \frac{1}{3} \cdot B \cdot A = 0$$

or

$$x^3 + p \cdot x = q$$

where,

$$p = \left(\frac{-1}{3} \cdot A^2 + B\right)$$

$$q = -\left(\frac{2}{27} \cdot A^3 + C - \frac{1}{3} \cdot B \cdot A\right)$$

Further, let

$$x = y - \frac{p}{3v}$$

then we obtain a 6th order polynomial equation in y given by

$$y^6 - q \cdot y^3 - \frac{1}{27} \cdot p^3 = 0$$

whose roots are:

$$y = \left[\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}\right]^{\frac{1}{3}}$$

Now let the discriminant Δ be the term inside the square root above, i.e.

$$\Delta = \left(\frac{q}{2}\right)^2 + \left(\frac{P}{3}\right)^3$$

then we will have two cases that will depend on whether the discriminant is positive or negative.

Case 1: $\Delta > 0$ Then we will have one real root and a complex conjugate pair

The first root is given by

$$z_{I} = sign(h) \cdot (|h|)^{\frac{I}{3}} - \frac{A}{3}$$

where,

$$h = \frac{q}{2} + \sqrt{\Delta}$$

The other roots can then be obtained by using the values of the first root:

$$z_2 = \frac{-\left(A+z_I\right) + \sqrt{\left(A+z_I\right)^2 - 4 \cdot \left[B+z_I \cdot \left(A+z_I\right)\right]}}{2}$$

$$z_{3} = \frac{-\left(A+z_{I}\right) - \sqrt{\left(A+z_{I}\right)^{2} - 4 \cdot \left[B+z_{I} \cdot \left(A+z_{I}\right)\right]}}{2}$$

Case 2: $\Delta < \theta$ There will be three real roots.

The first root will be obained as follows (whose proof is given below):

$$z_{I} = \left[2 \cdot \left(\sqrt{\frac{-p}{3}} \right) \right] \cdot cos \left(\frac{atan \left(\frac{\sqrt{-A}}{\frac{q}{2}} \right)}{3} \right) - \frac{A}{3}$$

And the two remaining roots can be determined by the following equations:

$$z_{2} = \frac{-\left(A+z_{I}\right)+\sqrt{\left(A+z_{I}\right)^{2}-4\cdot\left[B+z_{I}\cdot\left(A+z_{I}\right)\right]}}{2}$$

$$z_{3} = \frac{-\left(A+z_{I}\right)-\sqrt{\left(A+z_{I}\right)^{2}-4\cdot\left[B+z_{I}\cdot\left(A+z_{I}\right)\right]}}{2}$$

Proof for formula to obtain the first root:

Let
$$h = \frac{q}{2} + i \sqrt{-\left(\frac{q}{2}\right)^2 - \left(\frac{p}{3}\right)^3}$$

whose magnitude and angle are given by

$$|h| = \sqrt{\left(\frac{-p}{3}\right)^3}$$

$$\theta = arg(h) = atan\left(\frac{\sqrt{-\Delta}}{\frac{q}{2}}\right)$$

allowing one to evaluate the cube root of the polar representation:

$$y = h^{\frac{1}{3}} = \sqrt{\frac{-p}{3}} \cdot e^{i \cdot \frac{\theta}{3}}$$

from which we obtain

$$x = \sqrt{\frac{-p}{3}} \cdot e^{i \cdot \frac{\theta}{3}} + \frac{\frac{-p}{3}}{\sqrt{\frac{-p}{3}} \cdot e^{i \cdot \frac{\theta}{3}}}$$

$$x = \sqrt{\frac{-p}{3}} \cdot \left(e^{i \cdot \theta} + e^{-i \cdot \theta} \right) = 2 \cdot \sqrt{\frac{-p}{3}} \cdot \cos\left(\frac{\theta}{3}\right)$$

or

$$z_1 = x - \frac{A}{3} = 2 \cdot \sqrt{\frac{-p}{3}} \cdot \cos\left(\frac{\theta}{3}\right) - \frac{A}{3}$$