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Runge Kutta Method for Solving ODE 

T.B.Co, 2018 

 

1. Problem setup 

 

- There are 𝑛 first order differential equations written in the form 

𝑑𝑥𝑖
𝑑𝑡
= 𝑓𝑖(𝑡, 𝑥1, … , 𝑥𝑛)        ;        𝑖 = 1,… , 𝑛 (1) 

in 𝑛 dynamic variables: 𝑥1, … , 𝑥𝑛 (also known as “states”) and independent variable 𝑡.  

- These functions can then be arranged as column vector 𝐟. Thus, the set of ODEs can be 

written as1 

𝑑

𝑑𝑡
𝐱 = 𝐟(𝑡, 𝐱) (2) 

(also known as the “state space formulation”)  

- If all the conditions are given at 𝑡 = 0:  𝐱(0) = 𝐱0, then it is referred to as “initial value 

problem”.  Otherwise, if some conditions are given at other points, say 𝑡 = 𝑡𝑎, then the 

problem becomes a “multi-point boundary value problem”.2   

 

2. Main Method 

 

Numerical methods3 for solving initial value problems essentially invokes a “marching forward” 

approach.  For a uniform time-increment ∆𝑡, then at some 𝑡 = 𝑡𝑘 = 𝑘∆𝑡, the values at 

𝐱(𝑡𝑘) = 𝐱𝑘 is moved forward by some incremental change 

𝐱𝑘+1 = 𝐱𝑘 + ∆𝑘 (3) 

For the simplest case, the algorithm known as Euler method, this update is given by 

(∆𝑘)𝐸𝑢𝑙𝑒𝑟 = 𝐟(𝑡𝑘 , 𝐱𝑘)∆𝑡 
 

(4) 

 

  

                                                           
1
 A high order differential equation can often be put into the needed form of (2).  See appendix A.  

2
 We will focus only on solving the initial value problems (IVP). 

3
 We will restrict our approach only to methods known as “explicit methods” that yield the form in (3). 
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A significant improvement can be achieved by having some additional calculation at 

intermediate values between 𝑡𝑘 and 𝑡𝑘+1, i.e. before implementing the change to 𝐱𝑘. One of 

the most popular extension is known as the 4th order Runge-Kutta method.4 First, we evaluate 

four intermediate update calculations: 

𝛅1 = ∆𝑡 𝐟( 𝑡𝑘 ,  𝐱𝑘  ) 

𝛅2 = ∆𝑡 𝐟 ([𝑡𝑘 +
1

2
∆𝑡] , [ 𝐱𝑘 +

1

2
𝛅1]) 

𝛅3 = ∆𝑡 𝐟 ([𝑡𝑘 +
1

2
∆𝑡] , [ 𝐱𝑘 +

1

2
𝛅2]) 

𝛅4 = ∆𝑡 𝐟 ([𝑡𝑘 + ∆𝑡], [ 𝐱𝑘 + 𝛅3]) 

(5) 

Then we combine the four updates via the following weighted average: 

(∆𝑘)𝑅𝐾 =
1

6
(𝛅1 + 2𝛅2 + 2𝛅3 + 𝛅4) 

 
(6) 

and,  

𝐱𝑘+1 = 𝐱𝑘 + (∆𝑘)𝑅𝐾 

Thus, starting with 𝐱𝑘 = 𝐱0 at 𝑡 = 0, the update will yield 𝐱1 corresponding to 𝑡 = 𝑡1 = 𝑡0 + ∆𝑡. 

Then with 𝐱𝑘 = 𝐱1, the update will yield 𝐱2 corresponding to 𝑡 = 𝑡2 = 𝑡1 + ∆𝑡, and so forth, 

until the final time 𝑡 = 𝑡𝑓𝑖𝑛𝑎𝑙 is reached.5 

 

  

                                                           
4
 The term “fourth order” refers to the fact that the error will be in the order of magnitude of ∆𝑡4. 

5
 Note that the requirement of uniform ∆𝑡 can easily be removed by simply replacing ∆𝑡 by ∆𝑡𝑘  in (5), which means 

the forward marching increment can either be lengthened or shortened. 
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3. Matlab Implementation 

 

function [tsoln,xsoln] = runge_kutta(fcn,tinit,tfinal,xinit,npts) 

% 

% function [tsoln,xsoln] = runge_kutta(fcn,tinit,tfinal,xinit,npts) 

% ================================================================= 

%   4th order Runge Kutta 

%   input: fcn=function handle for derivatives 

%          tinit,tfinal= initial and final time 

%          xinit= initial value 

%          (optional) dt= time increment (default=200) 
    

    if nargin<5 

        npts    = 200; 

    end 

    dt          = (tfinal-tinit)/(npts-1); 

    tsoln       = linspace(tinit,tfinal,npts)'; 

    Nt          = length(tsoln); 

    n           = length(xinit); 

    xsoln       = zeros(Nt,n); 

    t           = tinit; 

    x           = xinit(:);  

    tsoln(1)    = tinit; 

    xsoln(1,:)  = x'; 
     

    for k=2:Nt  

        delta1      = dt*feval( fcn, t      , x          ); 

        delta2      = dt*feval( fcn, t+dt/2 , x+delta1/2 ); 

        delta3      = dt*feval( fcn, t+dt/2 , x+delta2/2 ); 

        delta4      = dt*feval( fcn, t+dt   , x+delta3   ); 

        dx          = (delta1 + 2*delta2 + 2*delta3 + delta4)/6; 

        x           = x + dx; 

        t           = t + dt; 

        tsoln(k)    = t; 

        xsoln(k,:)  = x'; 

    end 

end 
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4. Test Example: Multiple Linear ODE 

Consider the 5th order linear ODE given by: 

𝑑

𝑑𝑡

(

 
 

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5)

 
 
=

(

 
 

−0.6 −3.1 −3.2 −0.5 −1.2
−0.1 0.5 1.3 0.9 −1.3
−2.1 −0.9 −2.0 −0.1 −2.8
0.0 −3.6 −4.4 −1.9 −0.9
−0.6 1.5 1.3 0.4 −1.3)

 
 

(

 
 

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5)

 
 
+

(

 
 

0.0
−0.2
−0.1
0.1
0.0)

 
 

 (7) 

Subject to the initial condition: 

𝐱(0) = 𝐱0 =

(

 
 

−4
3
−2
0
1)

 
 

 

First, we need to code the “model” the derivative functions given in (7), 

function dx = rktest2(~,x) 
  

    A = [   -0.6, -3.1, -3.2, -0.5, -1.2 

            -0.1,  0.5,  1.3,  0.9, -1.3 

            -2.1, -0.9, -2.0, -0.1, -2.8 

             0.0, -3.6, -4.4, -1.9, -0.9 

            -0.6,  1.5,  1.3,  0.4, -1.3  ]; 

    b = [ 0; -0.2; -0.1; 0.1; 0]; 

    dx = A*x + b; 
     

end 

 

Since the Runge Kutta program we coded earlier anticipates 𝑡 as the first argument of the 

function, we should have put in 𝑡 in the first line.  However, we did not use 𝑡 in the model, so 

Matlab suggests using the symbol  “ ~ ” as a placeholder.6 

Using this test model and the given initial conditions, the following command lines can be used 

to run the model from 𝑡 = 0 to 𝑡 = 100 with npts=5000 : 

>> [tsoln,xsoln]=runge_kutta(@rktest2,0,100,[-4;3;-2;0;1],5000); 

>> plot(tsoln,xsoln,'linewidth',2); 

>> xlabel('Time (secs)');ylabel('x_i'); 

>> legend('x_1','x_2','x_3','x_4','x_5') 

>> shg 

  

This yields the plots given in Figure 1. 

                                                           
6
 Matlab operations will still proceed even If one had included t instead.  
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Figure 1. Plot of the numerical solution of (7). 

 

5. Matlab ODE solvers 

There are several ODE solvers available in Matlab.  One particular solver called “ODE45” 

implements a Runge-Kutta variation known as the Dormand-Prince algorithm.  This version 

simultaneously solves a pair of 4th order and 5th order Runge-Kutta updates.  If the difference 

between these updates is above a prescribed tolerance, the time increment ∆𝑡𝑘 will be 

decreased and the updates are recalculated.  Likewise, if the difference is smaller than a 

satisfactory value, the time increment ∆𝑡𝑘 will be increased.   This is known as an “error-

correcting” implementation, which will then yield a 𝑡 vector that has variable increments. 

The most basic format is given by:  [tsoln, xsoln]=ode45(@fcn, [tinit, tfinal], xinit).  Thus, for our 

test example, we could use the following command lines: 

>> [tsoln,xsoln]=ode45(@rktest2,[0,100],[-4;3;-2;0;1]); 

>> plot(tsoln,xsoln,'linewidth',2); 

>> xlabel('Time (secs)');ylabel('x_i'); 

>> legend('x_1','x_2','x_3','x_4','x_5') 

>> shg 

This would yield a very similar plot shown in Figure 1. 

 

There are several capabilities that accompany ODE45. We discuss a few of these in Appendix B. 
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Appendix A.  State-space Formulation of High Order ODE 

 

The main approach is to first define a vector of variables, 𝑥1, … , 𝑥𝑛, where 𝑛 is the order of the 

original ODE.  The first variable, 𝑥1, is set to the original variable, say 𝑦.  The derivatives of first 

set of variables from 𝑥𝑘 (𝑘 = 1,… , 𝑛 − 1) are used to define 𝑥𝑘+1.  This means (𝑑𝑥𝑘/𝑑𝑡 =

𝑑𝑘𝑦/𝑑𝑡𝑘).  The derivative of the last variable, 𝑥𝑛, is then algebraically arranged from the 

original ODE such that (𝑑𝑥𝑛/𝑑𝑡) is the single term on the left hand side, while the right hand 

contains terms in which original variable and variable derivatives are substituted by 𝑥1, … , 𝑥𝑛.  

Suppose we are given a second-order differential equation such as the van der Pol given by 

𝑑2𝑦

𝑑𝑡2
− 𝜇(1 − 𝑦2)

𝑑𝑦

𝑑𝑡
+ 𝑦 = 0  (8) 

 With 𝑛 = 2, we define 𝑥1 = 𝑦 and 𝑥2 = 𝑑𝑥1/𝑑𝑡, the original equation can then be rearranged 

as 

𝑑2𝑦

𝑑𝑡2
= 𝜇(1 − 𝑦2)

𝑑𝑦

𝑑𝑡
− 𝑦 

→   
𝑑𝑥2
𝑑𝑡

= 𝜇(1 − 𝑥1
2)𝑥2 − 𝑥1 

Thus, collecting the other derivatives, we have 

𝑑𝑥1
𝑑𝑡

= 𝑥2 

𝑑𝑥2
𝑑𝑡

= 𝜇(1 − 𝑥1
2)𝑥2 − 𝑥1 

(9) 

which is in the required state-space formulation (1). 
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Appendix B.  Additional Capabilities of Matlab ODE solvers. 

There are several solvers available in Matlab.  These include the most commonly used solvers: ode23, 

ode45, ode23s and ode15s.7  The first two are considered as “explicit non-stiff solvers”, while the latter 

two are used to solve “stiff” problems.  Often, “stiff” problems occur when the system contains extreme 

range of characteristic times, i.e. some variables changes very fast while others are very slow.  Thus, 

when non-stiff methods are used, they can often appear to “hang”, sometimes due to significant 

reduction in time increments during the error-correcting process, other times due to the enhanced 

sensitivity to round-off errors. 

In this section we will describe a few of the extended capabilities of Matlab solvers. 

1. Adjustable Options 

 

Users can adjust some of the options of the Matlab ODE solvers via passing a structure 

parameter.  Thus, the odeset command will create this parameter with the pre-defined fields 

that are queried inside the Matlab solvers.  For example, 

>> opt1 = odeset 

opt1 =  

  struct with fields: 

              AbsTol: [] 

                 BDF: [] 

              Events: [] 

         InitialStep: [] 

            Jacobian: [] 

           JConstant: [] 

            JPattern: [] 

                Mass: [] 

        MassSingular: [] 

            MaxOrder: [] 

             MaxStep: [] 

         NonNegative: [] 

         NormControl: [] 

           OutputFcn: [] 

           OutputSel: [] 

              Refine: [] 

              RelTol: [] 

               Stats: [] 

          Vectorized: [] 

    MStateDependence: [] 

           MvPattern: [] 

        InitialSlope: []    

 

 

                                                           
7
 Another solver, bvp4c, is available and used to solve boundary value problems. Since it has additional setup and 

conditions, we have not included with these sets of ODE solvers. 
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Among these fields, the relevant options for oder45 are  ‘AbsTol’, ’Refine’, ’RelTol’ 

‘MaxStep’ and ‘InitialStep’ 8 These adjusts the accuracy of the output by allowing the user 

to:  set the absolute tolerance,  increase the refinement of the time increments (e.g. for 

smoother results in some cases) ,  set the relative tolerance,  set the maximum step size or set 

the initial step size.  These fields can be changed directly by either the command:   

 

opt1.AbsTol=1e-8, if opt1 has already been defined via odeset,  

or   

opt1=odeset(‘Abstol’,1e-8), if opt1 has not yet been defined. 

 

Once the option structure parameter has been defined, then it can be passed to the solver as 

the argument after the initial conditions, i.e. 

 

>> opt1=odeset('AbsTol',1e-8); 

>> [tsoln,xsoln]=ode45(@rktest2,[0,100],[-4;3;-2;0;1],opt1); 

 

 

2. Passing  parameters to the model function. 

 

Sometimes the parameters of a model need to be unspecified inside the model.  Instead, they 

may originate externally and need to be passed on to the model function via the Matlab solver.  

These parameters could either be an array or a structure variable.  

 

Let us modify the model rktest2 given in section 4 to allow external specification of matrix 𝐴 and 

vector 𝑏 via a structure param with fields A and b. 

 

function dx = rktest3(~,x,A,b) 

    dx = A*x + b; 

end 

 

First, we need to define matrix A and vector b.  Then we need to pass them through the model 

function via the entries following the placeholder for the ‘options’.  If no options are being 

modified, a null entry is used for options.  Thus, 

 

                                                           
8
 The fields ‘Jacobian’, ‘JConstant’ and ‘JPattern’ allow the users to specify how the Jacobians are supplied or used 

by some solvers. The fields ‘Mass’, ‘MassSingular’, ‘MStateDependence’, ‘MvPattern’ and ‘InitialSlope’ are used 

when solving highly stiff and/or differential-algebraic equations (also known as DAEs).  The fields ‘BDF’, and  

‘MaxOrder’ has specific relevance to oder15s. 
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>> A=[-0.6000   -3.1000   -3.2000   -0.5000   -1.2000 

   -0.1000    0.5000    1.3000    0.9000   -1.3000 

   -2.1000   -0.9000   -2.0000   -0.1000   -2.8000 

         0   -3.6000   -4.4000   -1.9000   -0.9000 

   -0.6000    1.5000    1.3000    0.4000   -1.3000]; 

>> b=[0;-0.2;-0.1;0.1;0]; 

>> [tsoln,xsoln]=ode45(@rktest3,[0,100],[-4;3;-2;0;1],[],A,b); 

>> plot(tsoln,xsoln,'linewidth',2); 

>> xlabel('Time (secs)');ylabel('x_i'); 

>> legend('x_1','x_2','x_3','x_4','x_5') 

>> shg   

 

3. Evaluation at specified points of the independent variable 

The Matlab solvers will most likely have non-uniform step sizes. Thus, the values at specified 

points of independent variable, say 𝑡, will need to be interpolated.  To do so, two steps are 

needed.  First, the output will have to be in the form of a structure, which is recognized by 

Matlab when only a single output is specified, i.e. 

>> soln1=ode45(@rktest3,[0,100],[-4;3;-2;0;1],[],A,b); 

>> soln1 

 

soln1 =  

 

  struct with fields: 

 

     solver: 'ode45' 

    extdata: [1×1 struct] 

          x: [1×70 double] 

          y: [5×70 double] 

      stats: [1×1 struct] 

      idata: [1×1 struct]  

 

 

The independent variable array can be accessed as soln1.x while the state variable array can 

be accessed as soln1.y.  Note however that these results are transposed versions, i.e. they 

are stored row-wise instead of column-wise. 

Suppose we want the values to be specified at 15 evenly spaced points from 0 to 100, then we 

can use the function: deval().  Thus, 

>> newt=linspace(0,100,15); 

>> newx=deval(soln1,newt); 
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This will yield the required interpolated values.  For instance, we could use this to include 

markers as follows: 

>> plot(soln1.x,soln1.y,'linewidth',2); 

>> hold on 

>> plot(newt,newx(1,:),'o','linewidth',2,'MarkerFaceColor','w'); 

>> plot(newt,newx(2,:),'s','linewidth',2,'MarkerFaceColor','w'); 

>> plot(newt,newx(3,:),'d','linewidth',2,'MarkerFaceColor','w'); 

>> plot(newt,newx(4,:),'v','linewidth',2,'MarkerFaceColor','w'); 

>> plot(newt,newx(5,:),'^','linewidth',2,'MarkerFaceColor','w'); 

>> hold off 

>> xlabel('Time (secs)');ylabel('x_i'); 

>> shg 

 

This interpolation capability can be used together with the parameter passing capability 

discussed in the previous item to obtain estimates of the model, i.e. if the fitness of the model is 

based on an error index such as sum of squared errors between the predicted values and raw 

data at the corresponding raw 𝑡-data.  Thus, the optimum parameters can be determined using 

optimizers such as fminsearch or fminbnd to minimize the error index. 


