CM3450 Fall 2008 Drill 16

- 1. Redo example 2.
- 2. Redo example 2, but example how the responses are affected by using different values for residence time: $\tau = 0.25 \, hr$, 0.50 hr and 0.75 hr as shown in Figure 1 below.

Ordinary Differential Equation in MathCad

(Dr. Tom Co 10/23/2008)

Introduction

Several chemical engineering processes are modeled using differential equations. Ordinary differential equations are often described in an explicit form given by

$$\frac{d}{dx}\mathbf{y} = D(x, \mathbf{y}; \alpha_1, ..., \alpha_k) \qquad \mathbf{y}(0) = \mathbf{y}_0$$

where x is the independent variable, \mathbf{y} is the dependent variable/vector of variables, $\alpha_1, \dots, \alpha_k$ are parameters and $\mathbf{y_0}$ is the initial value of \mathbf{y} .

Example 1:

$$\frac{d}{dt}C = \frac{1}{\tau}(C_{A0} - C_A) - k_0 e^{-\frac{\beta}{T}}C_A$$

$$\frac{d}{dt}T = \frac{1}{\tau}(1 + \kappa)(T - T_C) + \left(\frac{-\Delta H_R}{c_{ps}}\right)\left(\frac{k_0 e^{-\frac{\beta}{T}}C_A}{C_{A0}}\right)$$

$$T(0) = T_{init}$$

$$C(0) = C_{init}$$

Then C and T are dependent variables, while t is the independent variable, and ΔH_R , k_0 , β , c_{ps} , C_{A0} , κ and C_{A0} are process parameters.

In several cases, the analytical solutions may be too difficult to solve. Numerical solutions often yield acceptable approximate solutions. One of the most popular is the Runge-Kutta method (see Appendix for a more detailed description).

MathCad Procedure: (for Rkadapt())

1. Rewrite equations such that it contains only first order derivatives.

$$\frac{d}{dx}y_1 = f_1(x, y_1, \dots, y_n; \alpha_1, \dots, \alpha_k)$$

$$\vdots$$

$$\frac{d}{dx}y_n = f_1(x, y_1, \dots, y_n; \alpha_1, \dots, \alpha_k)$$

2. Gather the initial conditions into an array.

$$\mathbf{y}_{init} \coloneqq \begin{pmatrix} y_{10} \\ \vdots \\ y_{n0} \end{pmatrix}$$

3. Gather the functions $f_1(), ..., f_n()$ into an array.

$$D(\alpha_1, \dots, \alpha_k, x, \mathbf{y}) \coloneqq \begin{pmatrix} f_1(x, y_1, \dots, y_n; \alpha_1, \dots, \alpha_k) \\ \vdots \\ f_n(x, y_1, \dots, y_n; \alpha_1, \dots, \alpha_k) \end{pmatrix}$$

4. Solve the differential equations using **Rkadapt()**,

$$soln := \mathbf{Rkadapt}(y_{init}, x_{init}, x_{final}, \#steps, D)$$

5. Extract the columns to the appropriate variables: x is the first column, y_1 is the second column, ..., y_n is the $(n+1)^{th}$ column.

Example 2: (Using equations given in example 1)

FIXED PARAMETERS & FUNCTIONS:

$$\tau := 0.2hr \qquad k_0 := 450 \cdot \frac{1}{hr} \qquad \beta := 1400K \qquad \kappa := 80 \qquad c_{ps} := 30 \frac{J}{mol \cdot K}$$

$$\Delta H_R(T) := \left[-151000 + 2 \cdot \left(\frac{T}{K} - 298.15 \right) \right] \cdot \frac{J}{mol} \qquad C_{A0} := 0.5 \frac{mol}{cm^3} \quad T_c := 273.15K$$

ARRAY OF DERIVATIVE EQUATIONS:

$$D(t,y) := \begin{bmatrix} \frac{1}{\tau} \left[C_{AO} - \left(y_0 \cdot \frac{mol}{cm^3} \right) \right] - \left[k_0 \cdot exp \left(\frac{-\beta}{y_I \cdot K} \right) \cdot \left(y_0 \cdot \frac{mol}{cm^3} \right) \right] \\ \frac{\frac{mol}{cm^3 \cdot hr}}{\frac{1}{\tau} \cdot (1 + \kappa) \cdot \left[T_c - \left(y_I \cdot K \right) \right] + \frac{-\Delta H_R(y_I \cdot K)}{c_{ps}} \cdot \left[k_0 \cdot exp \left(\frac{-\beta}{y_I \cdot K} \right) \cdot \left(\frac{y_0 \cdot \frac{mol}{cm^3}}{C_{AO}} \right) \right] \\ \frac{\frac{K}{hr}}{\frac{K}{hr}} \end{bmatrix}$$

INITIAL CONDITIONS:

$$C_{A_init} := 0.3 \frac{mol}{cm^3}$$

$$T_{init} := 500K$$

$$y_{init} := \begin{bmatrix} \frac{C_{A_init}}{mol} \\ \frac{mol}{cm^3} \\ \frac{T_{init}}{K} \end{bmatrix}$$

RUNGE-KUTTA SOLUTION:

$$soln := Rkadapt(y_{init}, 0, 0.5, 200, D)$$

		0	1	2
soln =	0	0	0.3	500
	1	2.5·10-3	0.284	469.572
	2	5.10-3	0.273	430.841
	3	7.5 10-3	0.266	392.363
	4	0.01	0.262	360.465
	5	0.013	0.259	337.413
- 1	6	0.015	0.258	322.312

200 0

0. I

$$t := soln^{\langle 0 \rangle} \cdot hr$$

$$C_A := soln^{\langle 1 \rangle} \cdot \frac{mol}{cm^3}$$

$$T := soln^{\langle 2 \rangle} K$$

0.2

 $\frac{t}{hr}$

0.3

0.4

0.5

Appendix A: 4th Order Runge-Kutta Method

For a differential equation given by

$$\frac{dy}{dx} = f(x, y)$$

evaluate the following terms:

$$\begin{split} \delta_1 &= \Delta x \cdot f(x_k, y_k) \\ \delta_2 &= \Delta x \cdot f\left(x_k + \frac{1}{2}\Delta x, y_k + \frac{1}{2}\delta_1\right) \\ \delta_3 &= \Delta x \cdot f\left(x_k + \frac{1}{2}\Delta x, y_k + \frac{1}{2}\delta_2\right) \\ \delta_4 &= \Delta x \cdot f(x_k + \Delta x, y_k + \delta_3) \end{split}$$

then the next iterated value of y is given by

$$y_{k+1} = y_k + \frac{1}{6}(\delta_1 + 2\delta_2 + 2\delta_3 + \delta_4)$$

(For an Excel implementation,

link to: http://www.chem.mtu.edu/~tbco/cm416/RKTutorial.html)