1. A stream containing compounds a, b, c and d are fed to a series of distillation columns as shown in Figure 1 with corresponding stream compositions given in Table 1.

Figure 1. Distillation Train.

Table 1. Stream compositions.

Stroom	Composition of Compounds (mol per cent)								
Stream	а	b	С	D					
F	26	25	24	25					
D1	90	3	5	2					
B1	15	40	30	15					
D2	10	42	40	8					
B2	2	10	20	68					

Problem: Determine the molar flow rates of streams D1, B1, D2 and B2, if F=100 kmol/min.

Solution: Set up the spreadsheet shown in Figure 2.

	Α	В	С	D	E	F	G	Н	1	J	K	L	M
2			Compos	ition			Stream	Flow Rate	ı	Feed comp	F		flow in
3	а	0.9	0.15	0.1	0.02	1	D1		2 9	0.26	100	2	26
4	b	0.03	0.4	0.42	0.1	X	B1		=	0.25	100	=	25
5	С	0.05	0.3	0.4	0.2	1	D2			0.24	100		24
6	d	0.02	0.15	0.08	0.68		B2			0.25	100		25

Figure 2. Spreadsheet setup.

- a) Name the range **B3:E6** as **Comp**
- b) Name the range M3:M6 as FlowIn
- c) Mark (collect) the cell range **H3:H6**
- d) Enter the formula: **=MMULT(MINVERSE(Comp), FlowIn)** then press **[CTRL-SHIFT-ENTER]**

Additional question: what is the molar flow rate of D and ?

2. Multi-linear regression of Antoine equation.

The Antoine equation is given by

$$\log_{10} P_v = A - \frac{B}{T + C}$$

where A, B and C are known as the Antoine coefficients, P_v is the vapor pressure in mm Hg and T is the temperature in ${}^{\circ}C$.

The experimental data for vapor pressure at different temperatures are given in Table 2.

Table 2. Vapor Pressure Data.

Т	Р				
29	20				
30.5	21				
40	35				
45.3	46				
53.6	68				
60.1	92				
72	152				
79.7	206				

Т	Р				
83.5	238				
90.2	305				
105.2	512				
110.5	607				
123.2	897				
130	1092				
132	1152				

Problem: Using the data given in Table 2, use multilinear regression to obtain the Antoine coefficients.

Solution:

First, transform the original equation into a multi-linear formulation as follows

$$\log_{10} P_{v} = A - \frac{B}{T+C}$$

$$(T+C)\log_{10} P_{v} = A(T+C) - B$$

$$T\log_{10} P_{v} + C\log_{10} P_{v} = AT + AC - B$$

$$T\log_{10} P_{v} = -C\log_{10} P_{v} + AT + (AC - B)$$

Rename the group of variables and parameters as follows:

$$y = T \log_{10} P_v$$
 $x = \log_{10} P_v$ $w = T$
 $a_1 = -C$ $a_2 = A$ $a_3 = AC - B$

Then,

$$y = a_1 x + a_2 w + a_3$$

which is multilinear. Once the parameters a_1 , a_2 and a_3 have been estimated, recover the original coefficients,

$$C = -a_1$$
 ; $A = a_2$; $B = AC - a_3 = -a_1a_2 - a_3$

a) Prepare the following spreadsheet:

4	В	С	D	E	F	G	Н	1	J	K	L
2	Raw I	Data									
3	Т	Р	7 9	log(P)	Т	1	28				T log(P)
4	29	20	7	1.30103	29	1	2	a1			37.72987
5	30.5	21		1.322219	30.5	1		a2			40.32769
6	40	35	9	1.544068	40	1	- 2	a3			61.76272
7	45.3	46		1.662758	45.3	1					75.32293
8	53.6	68	1 6	1.832509	53.6	1					98.22248
9	60.1	92		1.963788	60.1	1	x			=	118.0236
10	72	152		2.181844	72	1					157.0927
11	79.7	206		2.313867	79.7	1					184.4152
12	83.5	238		2.376577	83.5	1					198.4442
13	90.2	305		2.4843	90.2	1					224.0838
14	105.2	512	1 0	2.70927	105.2	1				100	285.0152
15	110.5	607		2.783189	110.5	1					307.5424
16	123.2	897		2.952792	123.2	1					363.784
17	130	1092		3.038223	130	1					394.9689
18	132	1152	S 8	3.061452	132	1				73	404.1117

Figure 2. Setup for multilinear regression.

- b) Name the range **E4:G18** as A, and range **L4:L18** as b.
- c) Select range J4:J6 and input the formula below and then press [ctrl-shift-enter]: =MMULT(MINVERSE(MMULT(TRANSPOSE(A), A)), MMULT(TRANSPOSE(A), b))
- d) Recover the original parameters.

4	N	0				
3	Antoine C	oefficient				
4	С	223.4209				
5	Α	7.400909				
6	В	1541.979				

Figure 3. Recover the Antoine coefficients.

e) Create a range of values for T, then calculate for P_{ν} using the coefficients.

Figure 4. Generate new data using model equation.

f) Plot the predicted values together with raw data.

Figure 5. Compare model data with raw data.