1. Linear Programming using Excel

(based on H. Adidharma and V. Temyanko, p.99)

Given five types of crude oil with products of the following composition:

	Gasoline	Heating Oil	Jet Fuel	Lube Oil
Crude 1	60%	20%	10%	0%
Crude 2	50%	20%	20%	0%
Crude 3	30%	30%	30%	0%
Crude 4	40%	30%	20%	0%
Crude 5	40%	10%	20%	20%
Price	\$105/bbl	\$95/bbl	\$61/bbl	\$140
Max Weekly Demand	170,000 bbl	85,000 bbl	75,000 bbl	30,000 bbl

	Cost	Operating Cost	Availability
	(\$/bbl)	(\$/bbl)	(bbl/week)
Crude 1	45	12	80,000
Crude 2	43	20	100,000
Crude 3	40	17	100,000
Crude 4	52	7.50	100,000
Crude 5	65	6.50	65,000

Problem: Find the weekly production of each crude to maximize profit per week.

Solution:

1. Set up the spreadsheet as in Figure 1.

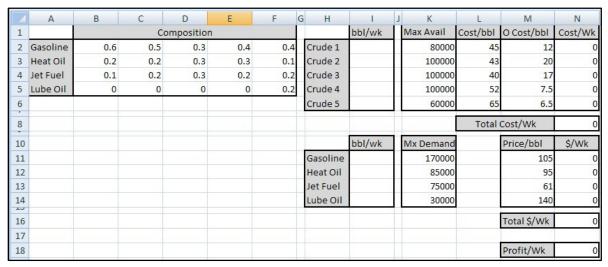


Figure 1. Setup for Crude Oil optimization.

- 2. Name the matrices:
 - a) **B2:F5** as Comp
 - b) I2:I6 as Crude
 - c) K2:K6 as MaxAvail
 - d) I11:I14 as Products
 - e) K11:K14 as MaxDemand
 - f) N18 as Profit

3. Fill in the necessary formula: both normal formulas and matrix formulas

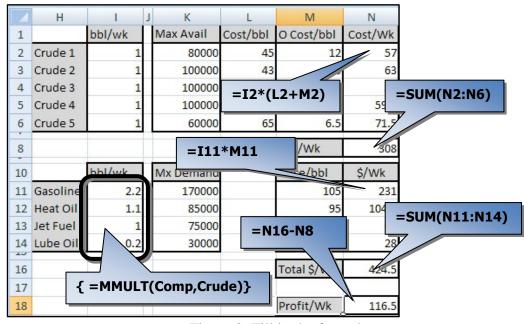


Figure 2. Fill in the formulas

4. Use SOLVER to maximize Profit.

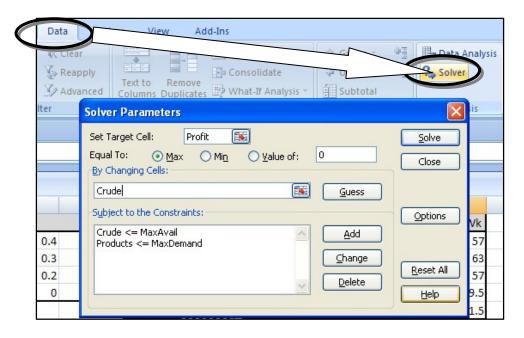


Figure 3. Implement SOLVER.