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Introduction to Dynamic Simulation in Matlab via Transfer Functions 

(tbco 3/2/2019) 

 Motivation:   

- Transfer functions allow for modular block representation of the dynamic behavior of a 

process from input variables to the output variables 

- They also allow for efficient modeling, analysis and design of complex networks of 

containing given blocks and blocks designed to achieve improved controlled response. 

Initializing a Simulink run 

- In a Matlab command window enter:  simulink.  (Alternatively, you may click the 

[Simulink] button in the “Home” tab menu. 

- Create a blank model or open an existing *.mdl file.  A simulink model window should 

appear. 

- To view available blocks for a simulink model, select [View][Library Browser] to open 

another window that contains several menu choices. 

Example 1.   Simulating a first order process.   

 

Consider the following first order ODE model 

𝜏
𝑑𝑥

𝑑𝑡
+ 𝑥 = 𝐾𝑝𝑢 (1) 

Assuming zero initial conditions, the transfer function from input 𝑢 to output 𝑥 is given 

by 

𝑥 = (
𝐾𝑝

𝜏𝑠 + 1
) 𝑢 (2) 

 

and the transfer function is given by 

𝐺𝑝(𝑠) = (
𝐾𝑝

𝜏𝑠 + 1
) (3) 

 

Note:  the form given in (3), i.e. with the standard form in which the 

denominator has “1” as the coefficient of 𝑠0, is technically referred to as a “first-

order lag with a gain of 𝐾𝑝 with time constant 𝜏 ”, or if 𝐾𝑝 = 1 it is called a “first-

order lag with time constant 𝜏”.   

 

  



2 
 

Next, suppose we want to simulate the process in which the input 𝑢 is given by the step 

function given by 

𝑢 = {
2 if 𝑡 > 10

0 otherwise
   (4) 

Also, let the parameters of the process be set as 𝐾𝑝 = 4 and 𝜏 = 7. 

 

Next, include the following blocks:  (click the mouse on a empty spot in the window, 

then typing-and-select the block names as follows) 

o Step 

o Transfer Fcn 

o Scope 

Alternatively, you can drag blocks from the Library browser:  a) [Sources][Step],  b) 

[Continuous][Transfer Fcn],  c) [Sinks][Scope]. 

 

Next, connect the [Step] block to the [Transfer Fcn] block, then connect the [Transfer 

Fcn] block to the [Scope] block. 

 

Double-click on the [Step] block and the [Transfer Fcn] block to change their properties 

(be sure to click [OK] to accept changes): 

o For the [Step] block,  enter 10 for “Step Time” and 2 for “Final Value” to satisfy 

(4). 

o For the [Transfer Fcn] block, enter [4] for “Numerator Coefficients” and [7,1] for 

the “Denominator Coefficients” to represent the transfer function (3) with 

𝐾𝑝 = 4 and 𝜏 = 7. 

Label the blocks (click on existing labels to edit) or lines (double-click on connections 

then enter label) as appropriate.  The final model is shown in Figure 1. 

 

Figure 1. Simulink model for first order process given in example 1. 

Simulation Time Start Simulation 
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Change the “Simulation Time” (see Figure 1) from 10 to 50.  Then click on “Start 

Simulation” button (see Figure 1).  

Double-click on the [Scope] block (which we renamed “output” in Figure 1) to access the 

resulting plot of the simulation as shown in Figure 2. 

 

Figure 2. Plot of the simulation run. 

Note the following:  

o The process starts changing at the 𝑡 = 10 which is when the input initiate a step 

change. 

o The process gain is given by 𝐾𝑝 = (8 − 0)/(2 − 0) = 4.   

o The time when 𝑥 = 8 ⋅ (0.632) ≈ 5.08 occurs at 𝑡 ≈ 17, which when subtracted 

from the  𝑡𝑠𝑡𝑒𝑝 = 10, yields a time constant 𝜏 = 17 − 10 = 7. 

 

 

 

Example 2.  Three-tank process (Open-loop, i.e. no feedback control) 

Consider the three buffer-tanks in series shown in Figure 3.   
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Figure 3. Three buffer tanks in series. 

Assuming constant flow and tank liquid volume operation (together with the 

assumption of constant density and heat capacity of the liquid and well-mixed tanks), 

the model of the temperatures in each tank is given by 

𝜏1

𝑑𝑇1

𝑑𝑡
+ 𝑇1 = 𝑇𝑖𝑛 + 𝐾𝑝𝑞 

𝜏2

𝑑𝑇2

𝑑𝑡
+ 𝑇2 = 𝑇1 

𝜏3

𝑑𝑇3

𝑑𝑡
+ 𝑇3 = 𝑇2 

(5) 

Let the variables described in (5) already be deviation variables so that we can assume 

that all initial conditions to be zero.  The transfer function representation of (5) is then 

given by 

𝑇1 = [𝐺1]𝑇𝑖𝑛 + [𝐺2]𝑞 

𝑇2 = [𝐺3]𝑇1 

𝑇3 = [𝐺4]𝑇2 

(6) 

where 𝐺𝑖’s are the corresponding transfer functions given by 

𝐺1 =
1

𝜏1𝑠 + 1
 

𝐺2 =
𝐾𝑝

𝜏1𝑠 + 1
 

𝐺3 =
1

𝜏2𝑠 + 1
 

𝐺4 =
1

𝜏3𝑠 + 1
 

(7) 
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Let the parameters of the process be set as follows:  𝐾𝑝 = 5,  𝜏1 = 7, 𝜏2 = 6, 𝜏3 = 4.  

Further, assume that 𝑞 and 𝑇𝑖𝑛 undergo step changes given by 

𝑞 = {
2 if 𝑡 > 10

0 otherwise
   (8) 

𝑇𝑖𝑛 = {
−4 if 𝑡 > 70

0 otherwise
   (9) 

Include blocks as shown in Figure 4 and change the settings to reflect the appropriate 

transfer functions and step functions.  For the summing block, type “sum” (or drag block 

item [Commonly used blocks][sum]) and enter “|++” when requested.  (Alternatively, 

double-click to change the “list of signs” property to “|++”.)  Connect the blocks as 

shown in Figure 4. 

  

Figure 4. Transfer function network representation for the three-tank system. 
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Change the simulation time to 150 and run the simulation.  The plot should resemble 

that shown in Figure 5. 

 

Figure 5. The result of the three-tank simulation. 

 

Note the following:  

- The process responds to the step increase in 𝑞 the occurs at 𝑡 = 10.  The 

response is sluggish (slow initial change) compared to a first order process 

because 𝑇3 undergoes a third order process response to the stimulus initiated in 

tank 1 by 𝑞. 

- Another third process response is initiated at 𝑡 = 70 due to the stimulus 

initiated in tank 1 by the decrease in 𝑇𝑖𝑛. 
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 Example 3.  Three-tank process with proportional control 

 

Figure 6. Three tank system with temperature control. 

We extend example 2 to include a feedback control using proportional control as given 

by 

𝑞 = 𝐾𝑐(𝑇3
𝑠𝑒𝑡 − 𝑇3) (10) 

We will use the following step change in set point to observe the controlled 

response: 
 

𝑇3
𝑠𝑒𝑡 = {

1 if 𝑡 > 10

0 otherwise
   (11) 

  

The block diagram shown in Figure 4 will be modified by including two more blocks:  a 

“sum” block ( for “list of signs”, enter “|+-“ to change it to a difference )  and a “gain” 

block ( type “gain” or insert from library browser the element [Commonly used 

blocks][Gain]).   Then connect and label as given in the block diagram shown in Figure 

7. 
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Figure 7.  The block diagram for three-tank process with proportional control. 

Using a proportional gain of 𝐾𝑐 = 1, the performance is shown in Figure 8. 

 

Figure 8.  Performance of proporitonal control with 𝐾𝑐 = 1 on three-tank process. 

Note the following:  

- Recall that the setpoint was stepped up to 𝑇3
𝑠𝑒𝑡 = 1 at 𝑡 = 10.  The steady-state 

will be about 0.8, yielding an offset error of about 0.2.  This shows the major 

limitation of using plain proportional control.  

- The response is stable but oscillating.  Decreasing 𝐾𝑐 will reduce the oscillations 

but will result in worse steady state error offset. 

- At 𝑡 = 70, the effects of the step change in disturbance 𝑇𝑖𝑛has moved 𝑇3 even 

further from the set-point showing that the compensation to reject disturbance 

effects was not satisfactory. 
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Example 4.  Three-tank process with proportional-integral control 

Now let us use a PI control for the three-tank system, described by the control law 

𝑞 = 𝐾𝑐 [𝑒 +
1

𝜏𝑖𝑛𝑡
∫ 𝑒 𝑑𝑡] (12) 

where 𝑒 = 𝑇3
𝑠𝑒𝑡 − 𝑇 is the error signal. 

The transfer function representation of the PI control becomes  

𝑞 = (𝐺𝑐)𝑒 (13) 

With 𝐺𝑐 as the transfer function of the PI controller from 𝑒 to manipulated variable 𝑞 

given by 

𝐺𝑐 = 𝐾𝑐 ⋅ (1 +
1

𝜏𝑖𝑛𝑡𝑠
) =

𝐾𝑐𝜏𝑖𝑛𝑡𝑠 + 𝐾𝑐

𝜏𝑖𝑛𝑡𝑠
 (14) 

Let us use the following PI tune values:  𝐾𝑐 = 0.2 and 𝜏𝑖𝑛𝑡 = 10.  Note that we simply 

replaced the “Gain” block by the PI transfer function given in (14).  (This is the 

advantage of design modularity within transfer function block diagram analysis - the 

other parts of the block diagram do not need to be modified when trying out different 

controllers.)   The modified block diagram is shown in Figure 9. 

 

Figure 9. The block diagram for three-tank process with proportional-integral control.  

 

Note:  For the transfer function in 𝐺𝑐, the entry for the “denominator coefficients” 

should be “[10,0]”. 

The response of the PI control with :  𝐾𝑐 = 0.2 and 𝜏𝑖𝑛𝑡 = 10 is shown in Figure 10. 
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Figure 10.  Performance of PI control with 𝐾𝑐 = 0.2, 𝜏𝑖𝑛𝑡 = 10, on three-tank process. 

 

Note the following:  

- The oscillations decreased for using 𝐾𝑐 = 0.2, as compared to using 𝐾𝑐 = 1 in 

example 3.  There is still an overshoot but the percent overshoot is quite 

acceptable. 

- The error eventually goes to zero as expected from the inclusion of an integral of 

error term.  

- At 𝑡 = 70, the step decrease in disturbance 𝑇𝑖𝑛initially moves 𝑇3 down.  

However, the integral mode of the PI controller performed much better by 

successfully compensating for disturbance effects and moving 𝑇3 back to the 

desired set-point. 

 


