CM3310 Spring 2008

(Dr. Tom Co, 2/10/2008)

Lecture 9. PID Tuning and Introduction to Laplace Transforms

1. PID Tuning Methods

- a.) Cohen-Coon Method (Open-loop Test)
 - Step 1: Perform a step test to obtain the parameters of a FOPTD (first order plus time delay) model
 - i. Make sure the process is at an initial steady state
 - ii. Introduce a step change in the manipulated variable
 - iii. Wait until the process settles at a new steady state

Figure 1. Step Test for Cohen-Coon Tuning.

Step 2: Calculate process parameters: t_1 , τ , τ_{del} , K, r as follows

$$t_1 = \frac{t_2 - (\ln(2))t_3}{1 - \ln(2)}$$

$$\tau = t_3 - t_1$$

$$\tau_{del} = t_1 - t_0$$

$$K = \frac{B}{A}$$

$$r = \frac{\tau_{del}}{\tau}$$

Step 3: Using the process parameters, use the prescribed values given by Cohen and Coon.

Table 1. Cohen-Coon Tuning Rules

	K_c	$ au_{Int}$	$ au_{Der}$
P	$\frac{1}{rK}\left(1+\frac{r}{3}\right)$		
PI	$\frac{1}{rK} \left(0.9 + \frac{r}{12} \right)$	$\tau_{del} \frac{30 + 3r}{9 + 20r}$	
PID	$\frac{1}{rK}\left(\frac{4}{3} + \frac{r}{4}\right)$	$\tau_{del} \frac{32 + 6r}{13 + 8r}$	$\tau_{del} \frac{4}{11 + 2r}$

b.) Ziegler-Nichols Method (Closed-loop P-ControlTest)

- Step 1: Determine the sign of process gain (e.g. open loop test as in Cohen-Coon).
- Step 2: Implement a proportional control and introducing a new set-point.
- Step 3: Increase proportional gain until sustained periodic oscillation.
- Step 4: Record ultimate gain and ultimate period: K_u and P_u .
- Step 5: Evaluate control parameters as prescribed by Ziegler and Nichols

Table 2. Ziegler Nichols Tuning Rules

	K_c	$ au_{Int}$	$ au_{Der}$
P	$\frac{K_u}{2}$		
PI	$\frac{K_u}{2.2}$	$\frac{P_u}{1.2}$	
PID	$\frac{K_u}{1.7}$	$\frac{P_u}{2}$	$\frac{P_u}{8}$

c.) Tyreus-Luyben Method (Closed-loop P-Control test)

Step 1-4: Same as steps 1 to 4 of Ziegler-Nichols method above

Step 5: Evaluate control parameters as prescribed by Tyreus and Luyben

Table 2. Tyreus-Luyben Tuning Rules for PI and PID

	K_c	$ au_{Int}$	$ au_{Der}$
PI	$\frac{K_u}{3.2}$	$2.2P_u$	
PID	$\frac{K_u}{2.2}$	$2.2P_u$	$\frac{P_u}{6.3}$

d.) Autotune Method (Closed-loop On-Off test)

Step 1: Let process settle to a steady state

Step 2: Move the setpoint to the current steady state

Step 3: Implement an on-off (relay) controller

If process gain is positive,
$$u = \begin{cases} u_0 + h & \text{if } e \ge 0 \\ u_0 - h & \text{if } e < 0 \end{cases}$$

If process gain is negative, $u = \begin{cases} u_0 - h & \text{if } e \ge 0 \\ u_0 + h & \text{if } e < 0 \end{cases}$

Step 4: Let the process settle to a sustained periodic oscillation

Step 5: Evaluate ultimate gain using autotune formulas (P_u can be obtain from the plots)

$$K_u = \frac{4}{\pi} \frac{h}{a}$$

Step 6: Use either Ziegler-Nichols or Tyreus-Luyben prescribed tunings

II. Introduction to Laplace Transforms

A. Motivation

- 1. Can convert linear differential equations into algebraic equations
- 2. Allow for modular design and analysis via transfer function blocks

B. Definition/Procedure

Given: a function in time, f(t)

Step 1: Multiply f(t) by another function e^{-st} .

Step 2: Integrate the product with respect to t from t = 0 to $t = \infty$:

$$L[f(t)] = \int_0^\infty f(t)e^{-st}dt = \hat{f}(s)$$

Remarks:

- 1. *s* is known as the Laplace transform variable which is a complex variable constrained to have positive real parts.
- 2. Integration by parts are often implemented during evaluation of the integral.

C. Table of Laplace Transform (see pages 89-90 for a larger table)

	f(t)	$L[f(t)]$ or $\hat{f}(s)$
Step function	$S(t) = \begin{cases} 0 & \text{if } t \le 0 \\ 1 & \text{if } t > 0 \end{cases}$	$\frac{1}{s}$
Exponential	e^{-at}	$\frac{1}{s+a}$
Sine	sin (at)	$\frac{a}{s^2 + a^2}$
Cosine	cos (at)	$\frac{s}{s^2 + a^2}$
Power	t^n	$\frac{n!}{s^{n+1}}$
Delta Impulse	$\delta(t) = \frac{dS(t)}{dt}$	1

D. Properties of Laplace Transform

Linearity	$L[\alpha f(t) + \beta g(t)] = \alpha L[f(t)] + \beta L[g(t)]$	
1 st Shifting Theorem	$L[e^{-at}f(t)] = L[f(t)] _{s \to s+a}$	
2 nd Shifting Theorem (delayed functions)	$L[f(t-a)] = e^{-as}L[f(t)]$ (Note: valid only if $f(t < 0) = 0$)	
Transform of Derivatives	$L\left[\frac{d^n f}{dt^n}\right] = s^n L[f(t)] - \sum_{k=0}^{n-1} s^{n-k-1} \frac{d^k f}{dt^k} \bigg _{t=0}$	
Transform of Integral	$L\left[\int_0^t f \ d\tau\right] = \frac{1}{s}L[f(t)]$	
Final Value Theorem	$\lim_{t \to \infty} f(t) = \lim_{s \to 0} s L[f]$	

E. Drills

1. Take the Laplace transforms of the following functions:

a)
$$f(t) = 10e^{-2t} + 5\sin(3t)$$

b)
$$f(t) = e^{-2.5t} \cos(2t)$$

c)
$$f(t) = \cos(2.5t - 3)$$
 (Hint: use formula for cosine of sums.)

d)
$$f(t) = e^{-5t}t^3$$

e)
$$f(t) = \begin{cases} 5 & \text{if } t \le 4 \\ -2 & \text{if } t > 4 \end{cases}$$

(Hint: rewrite the function first as a sum of delayed step functions)

2. Determine the inverse Laplace transforms of the following using the tables above:

a)
$$\hat{f}(s) = \frac{4}{s} + \frac{2}{s+3} - \frac{1}{s^2+4}$$

b) $\hat{f}(s) = \frac{12}{(s+2)^2+25}$

b)
$$\hat{f}(s) = \frac{12}{(s+2)^2+25}$$

c)
$$\hat{f}(s) = \frac{2}{s^2 + 2s + 2}$$
 (Hint: convert the denominator to a form $(s + a)^2 + b^2$)

3. Use the theorem of transforms of derivatives to obtain the Laplace transform of

$$\frac{d^2}{dt^2}(e^{-2t})$$

Answers:

1. a)
$$\frac{10}{s+2} + \frac{15}{s^2+9}$$

b)
$$\frac{s+2.5}{(s+2.5)^2+4}$$

1. a)
$$\frac{10}{s+2} + \frac{15}{s^2+9}$$

b) $\frac{s+2.5}{(s+2.5)^2+4}$
c) $\frac{s\cos(3)+2.5\sin(3)}{s^2+2.5^2}$
d) $\frac{6}{(s+5)^4}$

d)
$$\frac{6}{(s+5)^4}$$

e)
$$-\frac{2}{s} + \frac{7}{s}e^{-4s}$$

2. a)
$$4S(t) + 2e^{-3t} - \frac{1}{2}\sin(2t)$$

b)
$$\frac{12}{5}e^{-2t}\sin{(5t)}$$

c)
$$2e^{-t}\sin(t)$$

3.
$$s^2 \frac{1}{s+2} - (s + (-2)) = \frac{4}{s+2}$$