CM3310 Spring 2008

(Dr. Tom Co, 4/2/2008)

Lecture 20. Bode Plots For PID Tuning

1. Recall

$$LM(H) = 20 \log (|H(i\omega)|)$$

$$\phi = \tan^{-1} \frac{Im(H(i\omega))}{Re(H(i\omega))}$$

Thus, the critical point (-1,0) of the Nyquist plot of H(s) occurs when

$$LM(H) = 20 \log(|-1|) = 0 \text{ dB}$$

 $\phi = \tan^{-1}\left(\frac{0}{-1}\right) = -180^{\circ}$

2. Crossover frequencies: (see page 231-232)

- a) The crossover frequency, ω_{co} , is the frequency where phase shift, ϕ , is equal to -180° .
- b) The phase-margin frequency, ω_{pm} , is the frequency where the amplitude ratio is 1, or when log modulus is equal to 0 dB.

3. Bode Stability Criterion (based on Nyquist Criterion)

If the log modulus of H(s) at $\omega = \omega_{co}$ is less than 0 dB, then the feedback system is stable.

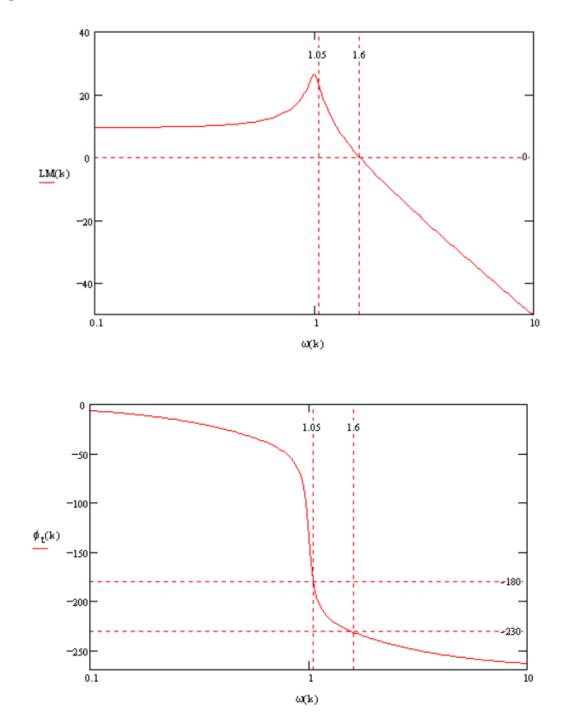
4. Stability Margins

- a) Gain Margin
 - Determine the log modulus corresponding at $\omega = \omega_{co}$, i.e. LM_{co} .
 - The gain margin can then be evaluated as

$$GM = 10^{\left(-\frac{LM_{\rm co}}{20}\right)}$$

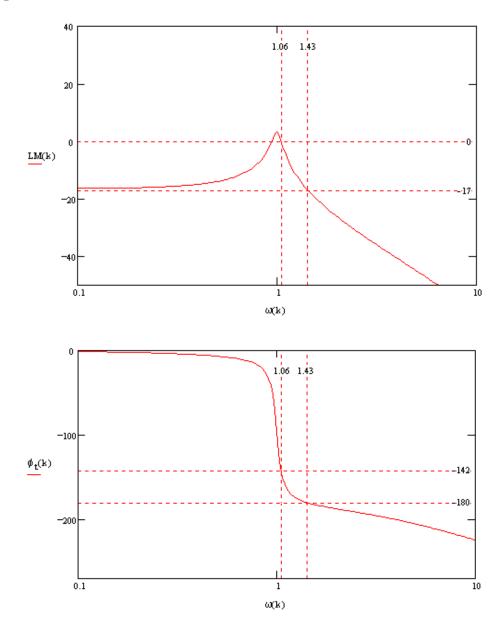
- b) Phase Margin
 - Simply measure the number of degrees above -180° for the phase shift ϕ at $\omega = \omega_{pm}$.

Example 1:



The crossover frequency is at $\omega_{co} = 1.05$ rad/sec. At this frequency the log modulus is above 0 dB. Thus the feedback process will be unstable. The phase-margin frequency is $\omega_{pm} = 1.6$ rad/sec.

Example 2:



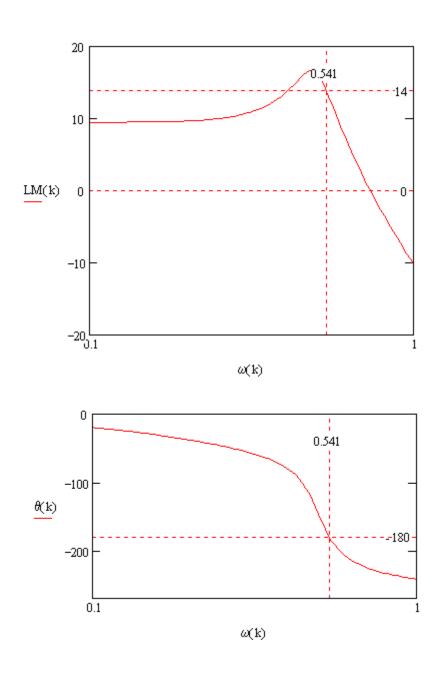
The phase crossover frequency is at 1.43 rad/sec, while the gain crossover frequency is at 1.06 rad/sec. The system is closed loop stable with the following stability margins:

$$PM = 38^{\circ}$$
 and $GM = 10^{\frac{17}{20}} = 7.08$

Bode Reshaping via PID Control (Ziegler-Nichols Design):

Suppose the process is described by the following transfer function:

$$G_{p}(s) := \frac{3}{\left[4 \cdot \left(s^{2}\right) + 0.5 \cdot s + 1\right] \cdot (3 \cdot s + 1)}$$



Using Ziegler-Nichols method, we find that the ultimate gain is given by Ultimate gain: $K_u = 10^{-14/20} = 0.2$

Ultimate period: $Pu = 2\pi/0.541 = 11.6$ sec

Based on the Ziegler-Nichols tuning of parameters, the resulting PID is given by

$$\mathbf{G}_{\mathsf{c}}(s) \coloneqq \mathbf{K}_{\mathsf{c}'} \left(\frac{\tau_{\mathsf{I}} s + 1}{\tau_{\mathsf{I}} s} \right) \cdot \left(\frac{\tau_{\mathsf{d}'} s + 1}{\alpha \cdot \tau_{\mathsf{d}'} s + 1} \right)$$

where $K_c = 0.118$, $\tau_I = 5.82$ and $\tau_d = 1.454$, with $\alpha = 0.01$. The Bode plots of this PID is given in Figure 2.

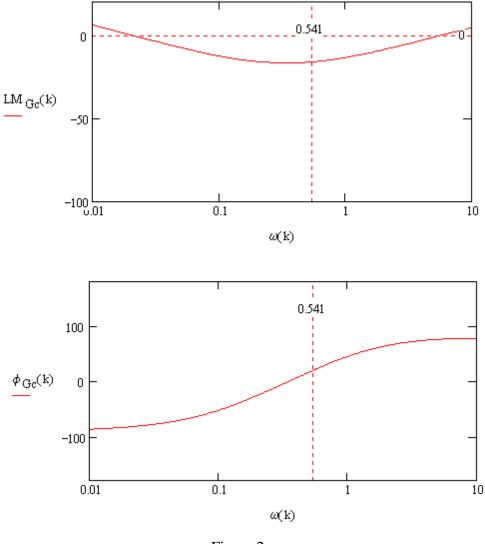
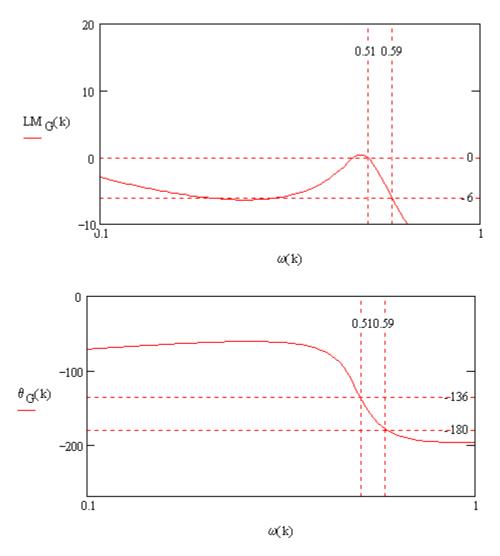


Figure 2.

Upon connecting G_c in series with G_p , the resulting Bode plots of G_cG_p are shown in Figure 3.



Note that the result of implementing Ziegler-Nichols yields a gain margin=2 and phase margin approximately 45°.