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Stability Analysis via Linearization Examples 

(tbco 2/16/2021) 

Motivation:  Several process models used in chemical engineering are nonlinear and 

multivariable.   Further, some important cases include those where there are 

multiple steady states that are possible.  Unfortunately, some of the steady states 

might be an unstable point, thus requiring a control system to both stabilize and 

control the process at and around that chosen operating point.  One method to 

predict the stability of operating points is to use linearized models and apply 

multivariable analysis to assess the local behavior around these operating points.  

Example 1:    

A bioreactor was modeled with the following set of differential equation 

𝑑𝐶

𝑑𝑡
= ( [

𝜇𝑚𝑎𝑥𝑆

𝑘𝑚 + 𝑆 + 𝑘1𝑆2
 ] − 𝐷 ) 𝐶 

𝑑𝑆

𝑑𝑡
= 𝐷(𝑆𝑖𝑛 − 𝑆) − [

𝜇𝑚𝑎𝑥𝑆

𝑘𝑚 + 𝑆 + 𝑘1𝑆2
 ]

𝐶

𝑌
 

(1) 

where 𝐶 is the cell-concentration (𝑔/𝑙𝑖𝑡𝑒𝑟) and 𝑆 is the substrate-concentration 

(𝑔/𝑙𝑖𝑡𝑒𝑟).  Both 𝐶 and 𝑆 are the process variables, while the other terms are fixed 

parameters given by 

 

𝜇𝑚𝑎𝑥  0.53 ℎ𝑟−1 
𝑘𝑚 0.12 𝑔/𝑙𝑖𝑡𝑒𝑟 
𝑘1 0.454 𝑙𝑖𝑡𝑒𝑟/𝑔 
𝑌 0.4 
𝐷 0.3 ℎ𝑟−1 

𝑆𝑖𝑛 4 𝑔/𝑙𝑖𝑡𝑒𝑟 
 

(Note:  the dilution rate is a potential candidate to be the controller output while 𝑆𝑖𝑛 is a 

potential candidate to be the disturbance.  However, with both treated as parameters, 

we are essentially performing an open-loop analysis.) 
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A) Steady-state analysis 

 

By setting the time-derivatives to zero, we need to satisfy the following equations 

simultaneously: 

( [
𝜇𝑚𝑎𝑥𝑆𝑠𝑠

𝑘𝑚 + 𝑆𝑠𝑠 + 𝑘1𝑆𝑠𝑠
2

 ] − 𝐷 ) 𝐶𝑠𝑠 = 0 

𝐷(𝑆𝑖𝑛 − 𝑆𝑠𝑠) − [
𝜇𝑚𝑎𝑥𝑆𝑠𝑠

𝑘𝑚 + 𝑆𝑠𝑠 + 𝑘1𝑆𝑠𝑠
2

 ]
𝐶𝑠𝑠

𝑌
= 0 

(2) 

From the first nonlinear equation, we have two cases: either 𝐶𝑠𝑠 = 0 or 𝐶𝑠𝑠 ≠ 0. 

For 𝐶𝑠𝑠 = 0, then the second equation immediately yields 𝑆𝑠𝑠 = 𝑆𝑖𝑛.  Thus, one 

steady state is at (𝐶𝑠𝑠, 𝑆𝑠𝑠) = (0, 𝑆𝑖𝑛). 

For 𝐶𝑠𝑠 ≠ 0, we need (assuming 𝐷 ≠ 0) 

[
𝜇𝑚𝑎𝑥𝑆𝑠𝑠

𝑘𝑚 + 𝑆𝑠𝑠 + 𝑘1𝑆𝑠𝑠
2

 ] − 𝐷 = 0  →    𝑘1𝑆𝑠𝑠
2 + (1 −

𝜇𝑚𝑎𝑥

𝐷
) 𝑆𝑠𝑠 + 𝑘𝑚 = 0 

which will yield two roots, say 𝑆𝑠𝑠_2 and 𝑆𝑠𝑠_3. 

The corresponding values of 𝐶𝑠𝑠 will result from the second equation in (2), 

𝐶𝑠𝑠_2 = (𝑆𝑖𝑛 − 𝑆𝑠𝑠2
)𝑌     and    𝐶𝑠𝑠_3 = (𝑆𝑖𝑛 − 𝑆𝑠𝑠3

)𝑌 

Using the given values, we thus have 3 steady states given by: 

Steady state 1:  (𝐶𝑠𝑠, 𝑆𝑠𝑠) = (0, 4) 

Steady state 2:  (𝐶𝑠𝑠, 𝑆𝑠𝑠) = (0.994, 1.514) 

Steady state 3:  (𝐶𝑠𝑠, 𝑆𝑠𝑠) = (1.53, 0.175) 

Remarks: 

1) Steady state 1 indicates that no cells are present – a cell-extinction scenario. 

2) Steady state 2 indicates medium cell growth and medium reduction in substrate 

concentration compared to the feed. 

3) Steady state 3 indicates high cell growth together with significant reduction of 

substrate. 

 

B) Linearized models based on operating at the steady states 

We can obtain three different approximate linear models by linearizing the original 

model at the three steady states. 
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Following the procedures discussed in lecture 8, we have 

Operating around steady state 1: 

𝑑𝐶

𝑑𝑡
= −(0.1138)𝐶 

𝑑𝑆

𝑑𝑡
= −(0.4656)𝐶 − (0.3)𝑆 + 1.2 

Operating around steady state 2: 

𝑑𝐶

𝑑𝑡
= (8.563 × 10−6)𝐶 − (0.06779) 𝑆 + 0.1026 

𝑑𝑆

𝑑𝑡
= −(0.750)𝐶 − (0.1305)𝑆 + 0.9434 

Operating around steady state 3: 

𝑑𝐶

𝑑𝑡
= (2.553 × 10−4)𝐶 + (0.9016)𝑆 − 0.1578 

𝑑𝑆

𝑑𝑡
= −(0.7506)𝐶 − (2.5540)𝑆 + 1.5944 

 

C) Local Stability Analysis around Steady States 

 

We can generalize the three linearized equations to have the following indexed 

coefficient form: 

𝑑𝐶

𝑑𝑡
= 𝑎11𝐶 + 𝑎12𝑆 + 𝑏1 

𝑑𝑆

𝑑𝑡
= 𝑎21𝐶 + 𝑎22𝑆 + 𝑏2 

and can show using the method in lecture 8 to yield the following characteristic 

equation: 

𝜆2 − (𝑎11 + 𝑎22)𝜆 + (𝑎11𝑎22 − 𝑎12𝑎21) = 0 
 

  



4 
 

Thus, we have the following characteristic equations and eigenvalues associated with 

the three different steady states: 

 

Steady state 1: 

𝜆2 + 0.4138𝜆 + 0.0341 = 0 

→   𝜆 = −0.3, −0.114 

 

Steady state 2: 

𝜆2 + 0.1305𝜆 − 0.0508 = 0 

→   𝜆 = 0.1695, −0.3 

 

Steady state 3: 

𝜆2 + 2.554𝜆 + 0.6760 = 0 

→   𝜆 = −2.2538, −0.2999 
 

D) Summary of example 1 

 

Steady state 1:  (𝐶𝑠𝑠, 𝑆𝑠𝑠) = (0, 4),  𝜆 = −0.3, −0.114 

Steady state 2:  (𝐶𝑠𝑠, 𝑆𝑠𝑠) = (0.994, 1.514), 𝜆 = 0.1695, −0.3 

Steady state 3:  (𝐶𝑠𝑠, 𝑆𝑠𝑠) = (1.53, 0.175), 𝜆 = −2.2538, −0.2999 

 

Remarks: 

 

1) Steady state 2 is unstable.  Any initial conditions starting around this operating 

point will either get attracted towards steady state 1 or steady state 3. 

2) Steady state 1 is undesirable since it means a depletion of cells towards extinction 

even if it initially had starter population. 

3) If steady state 3 is the desirable operating situation, initial charging of the 

bioreactor has to be between steady state 2 and steady state 3 so that extinction 

is avoided. 

4) If for some reason (for academic purposes perhaps) one desires to operate at the 

steady state 2, a feedback control should be set-up to stabilize the process by 

manipulating, for instance, the dilution rate to keep cell and substrate 

concentrations close to steady state 2.  Once stabilized, a cascaded PID control 

set-up could be included to control the system to setpoints around this operating 

point. 
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Example 2:    

A CSTR undergoes a non-isothermal second order reaction from a compound 𝐴 to form 

product 𝐵 is modeled with the following set of differential equation 

𝑑𝐶

𝑑𝑡
= (

𝐹

𝑉
) (𝐶𝑖𝑛 − 𝐶) − 𝑘𝑜 exp (−

𝐸

𝑅(𝑇 + 273)
) 𝐶2 

𝑑𝑇

𝑑𝑡
= (

𝐹

𝑉
) (𝑇𝑖𝑛 − 𝑇) −

𝑘𝑜 exp (−
𝐸

𝑅(𝑇 + 273)
) 𝐶2 ∆𝐻𝑟𝑥𝑛

𝜌𝐶𝑝𝑉
+

𝑈𝐴

𝜌𝐶𝑝𝑉
(𝑇𝐽 − 𝑇) 

(3) 

where 𝐶 is the cell-concentration (𝑔/𝑙𝑖𝑡𝑒𝑟) and 𝑆 is the substrate-concentration 

(𝑔/𝑙𝑖𝑡𝑒𝑟).  Both 𝐶 and 𝑆 are the process variables, while the other terms are fixed 

parameters given by 

 

𝐹/𝑉 50 𝑠 
𝐸/𝑅 2600 𝐾 
𝑘𝑜 1750 𝑙𝑖𝑡𝑒𝑟/(𝑔 ⋅ 𝑠 ) 

𝛽 = ∆𝐻𝑟𝑥𝑛/(𝜌𝐶𝑝𝑉) −1530 𝑙𝑖𝑡𝑒𝑟 ⋅ °𝐶/𝑔 

𝛾 = 𝑈𝐴/(𝜌𝐶𝑝𝑉) 3 𝑠−1 

𝑇𝑖𝑛 25 °𝐶 
𝐶𝑖𝑛 1 𝑔/𝑙𝑖𝑡𝑒𝑟 
𝑇𝐽 25°𝐶 

 

(Note:  the heat rate 𝑞 is a potential candidate to be the controller output while 𝑇𝑖𝑛 and 

𝐶𝑖𝑛 are potential candidates to be the disturbance.  However, with both treated as 

parameters, we are essentially performing an open-loop analysis.) 

 

A) Steady-state analysis 

 

By setting the time-derivatives to zero, we need to satisfy the following equations 

simultaneously: 

(
𝐹

𝑉
) (𝐶𝑖𝑛 − 𝐶𝑠𝑠) − 𝑘𝑜 exp (−

𝐸

𝑅(𝑇𝑠𝑠 + 273)
) 𝐶𝑠𝑠

2 = 0 

(
𝐹

𝑉
) (𝑇𝑖𝑛 − 𝑇𝑠𝑠) −

𝑘𝑜 exp (−
𝐸

𝑅(𝑇𝑠𝑠 + 273)
) 𝐶𝑠𝑠

2 ∆𝐻𝑟𝑥𝑛

𝜌𝐶𝑝𝑉
+

𝑈𝐴

𝜌𝐶𝑝
(𝑇𝐽 − 𝑇𝑠𝑠) = 0 

(4) 
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Let 𝜎 = 𝑘𝑜 exp(−𝐸/(𝑅(𝑇 + 273))) be the Arhenius rate constant, then from the 

first nonlinear equation, we can obtain the positive solutions for 𝐶𝑠𝑠, 

𝐶𝑠𝑠(𝑇𝑠𝑠) = ℎ1(𝑇𝑠𝑠) =

(− (
𝐹
𝑉) + √(

𝐹
𝑉)

2

+ 4𝜎(𝑇𝑠𝑠) (
𝐹
𝑉) 𝐶𝑖𝑛)

2𝜎(𝑇𝑠𝑠)
 

(5) 

Next, from (4), solving for 𝜎 from the first equation and then substituting it to the 

second equation, we get 

𝐶𝑠𝑠(𝑇𝑠𝑠) = ℎ2(𝑇𝑠𝑠)

= (
𝑈𝐴

∆𝐻𝑟𝑥𝑛
(

𝑉

𝐹
) +

𝜌𝐶𝑝𝑉

∆𝐻𝑟𝑥𝑛
) 𝑇𝑠𝑠 + (𝐶𝑖𝑛 −

𝑈𝐴

∆𝐻𝑟𝑥𝑛
(

𝑉

𝐹
) 𝑇𝐽 −

𝜌𝐶𝑝𝑉

∆𝐻𝑟𝑥𝑛
𝑇𝑖𝑛) 

(6) 

 

By plotting ℎ1 and ℎ2 in the same graph as shown in Figure 1, the intersections will be 

the steady states.  Using initial guesses close to the intersection points, a nonlinear 

solver should be able to yield the steady states. 

 

Figure 1. Plot of ℎ1(𝑇) and ℎ2(𝑇) to reveal steady states at the intersection points. 

 

The 3 steady states are then found to be: 

Steady state 1:  (𝐶𝑠𝑠, 𝑇𝑠𝑠) = (0.992 𝑔/𝑙𝑖𝑡𝑒𝑟, 36.0°𝐶) 

Steady state 2:  (𝐶𝑠𝑠, 𝑇𝑠𝑠) = (0.864 𝑔/𝑙𝑖𝑡𝑒𝑟, 221.8°𝐶) 

Steady state 3:  (𝐶𝑠𝑠, 𝑇𝑠𝑠) = (0.4 𝑔/𝑙𝑖𝑡𝑒𝑟, 891°𝐶) 
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Remarks: 

1) Steady state 1 has a very low conversion (almost none). 

2) Steady state 2 has a low conversion as well, around 14%. 

3) Steady state 3 has the highest conversion of around 60%.  However, this occurs at 

𝑇 = 891°𝐶, a very high and potentially dangerous temperature.  

 

B) Linearized models based on operating at the steady states 

We can obtain three different approximate linear models by linearizing the original 

model at the three steady states. 

Following the procedures discussed in lecture 8, we have 

Operating around steady state 1: 

𝑑𝐶

𝑑𝑡
= −50.77𝐶 − 0.010𝑇 + 50.76 

𝑑𝑇

𝑑𝑡
= 1179.2𝐶 − 37.07𝑇 + 165.98 

Operating around steady state 2: 

𝑑𝐶

𝑑𝑡
= −(65.76)𝐶 − (0.07238)𝑇 + 72.85 

𝑑𝑇

𝑑𝑡
= (2.411 × 104)𝐶 + 57.74𝑇 − 3.363 × 104 

Operating around steady state 3: 

𝑑𝐶

𝑑𝑡
= −(199.6)𝐶 − (0.05761)𝑇 + 131.2 

𝑑𝑇

𝑑𝑡
= (2.290 × 105)𝐶 + (35.15)𝑇 − 1.230 × 105 

 

C) Local Stability Analysis around Steady States 

 

We can generalize the three linearized equations to have the following indexed 

coefficient form: 

𝑑𝐶

𝑑𝑡
= 𝑎11𝐶 + 𝑎12𝑆 + 𝑏1 

𝑑𝑇

𝑑𝑡
= 𝑎21𝐶 + 𝑎22𝑇 + 𝑏2 

and can show using the method in lecture 8 to yield the following characteristic 

equation: 
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𝜆2 − (𝑎11 + 𝑎22)𝜆 + (𝑎11𝑎22 − 𝑎12𝑎21) = 0 

 

Thus, we have the following characteristic equations and eigenvalues associated with 

the three different steady states: 

 

Steady state 1: 

𝜆2 + 87.84𝜆 + 1894 = 0 

→   𝜆 = −49.84, −37.99 
 

Steady state 2: 

𝜆2 + 8.02𝜆 − 2052 = 0 

→   𝜆 = −49.49, 41.47 

 

Steady state 3: 

𝜆2 + 164.4𝜆 + 6177 = 0 

→   𝜆 = −106.4, −58.05 
 

D) Summary of example 2 

 

Steady state 1:  (𝐶𝑠𝑠, 𝑇𝑠𝑠) = (0.992 𝑔/𝑙𝑖𝑡𝑒𝑟, 36.0°𝐶), 𝜆 = −49.84, −37.99 

Steady state 2:  (𝐶𝑠𝑠, 𝑇𝑠𝑠) = (0.864 𝑔/𝑙𝑖𝑡𝑒𝑟, 221.8°𝐶), 𝜆 = −49.49, 41.47 

Steady state 3:  (𝐶𝑠𝑠, 𝑇𝑠𝑠) = (0.4 𝑔/𝑙𝑖𝑡𝑒𝑟, 891°𝐶), 𝜆 = −106.4, −58.05 

 

Remarks: 

 

1) Steady state 2 is unstable.  Any initial conditions starting around this operating 

point will either get attracted towards steady state 1 or steady state 3. 

2) Steady state 1 is not desirable since it has a very low conversion. 

3) Steady state 3 is not desirable either because the temperature is getting 

dangerously hot. 

4) Steady state 2 might need to be explored further.  Recycling of unreacted 

material may be needed to increase overall conversion.  However, since it is 

unstable, a feedback control is needed to stabilize the process. 

5) This occurs only for exothermic reactions, although some exothermic reactions 

can still operate with a higher conversion but not too high of a temperature 

condition.     

6) The main point is this:  if one relies only on steady-state calculations and 

arbitrarily decided on any of these points without testing for stability, the design 

may end up missing important and significant safety and control costs. 


