Using Spreadsheets to Simulate Process Dynamics - A Short Tutorial

I. Euler Method for Solving Initial Value Problems

Given: a differential equation

$$\frac{dx}{dt} = f(t, x, u)$$

the function u(t), and initial condition x(0).

Required: a series of number-pairs,

 $(t_0, x_0), (t_1, x_1), (t_2, x_2), \dots, (t_N, x_N)$

such that for $0 \le k \le N$

$$x_k = x (t = t_k)$$

approximate the solution of the given differential equation.

Method:

- 1. Let $t_0, t_1, ..., t_N$ be evenly spaced, i.e. $t_k = k\Delta t$.
- 2. If Δt is sufficiently small, the derivative dx/dt could be approximated by the finite difference

$$\frac{dx}{dt} \approx \frac{\Delta x}{\Delta t}$$

where $\Delta x = x_{k+1} - x_k$.

3. Now substitute these approximations to the original differential equation to obtain

$$\frac{dx}{dt} \approx \frac{\Delta x}{\Delta t} = f(t_k, x_k, u_k)$$
$$x_{k+1} - x_k = \Delta t f(t_k, x_k, u_k)$$
$$x_{k+1} = x_k + \Delta t f(t_k, x_k, u_k)$$

where we have set the evaluation of the function f at $t = t_k$, and so $u_k = u(t = t_k)$.

The last equation above is known as the recursion equation, also known as the finite difference approximation. All terms on the left-hand side of the recursion equation are known (current values used). Evaluating the left-hand side yields (predicts) the next value of x in the series.

4. Start the simulation by using the initial conditions, i.e. k = 0,

$$x_1 = x_0 + \Delta t \, f(0, x_0, u_0)$$

5. Continue until we get x_N , i.e.

$$x_{2} = x_{1} + \Delta t f(\Delta t, x_{1}, u_{1})$$

$$x_{3} = x_{1} + \Delta t f(2\Delta t, x_{2}, u_{2})$$

$$\vdots$$

$$x_{N} = x_{N-1} + \Delta t f((N-1)\Delta t, x_{N-1}, u_{N-1})$$

(you can then plot x_k vs. t_k)

II. Spreadsheet Implementation

For discussion purposes, suppose we have the process model for liquid level change in a cylindrical tank.

$$\frac{dh}{dt} = \frac{F_{in} - F_{out}}{A}$$

where F_{in} is the volumetric flow rate into the tank, $F_{out} = k_v \sqrt{h}$, is the volumetric flow rate out of the tank (behaving according to Torricelli's law) with k_v as valve coefficient, and A is the cross-sectional area.

The main purpose of a simulation is to observe changes in the behavior when certain parameters of the system are tweaked.

For our scenario, let us choose the following settings:

$$F_{in} = 1 \text{ ft}^3/\text{sec}$$

 $k_v = 1.25 \text{ ft}^{2.5}$
 $A = 0.75 \text{ ft}^2$

and we will treat k_v and A as parameters. For our initial condition, let h(0) = 1 ft.

To compare our case with the discussion of Euler's method above, we have x = h, $u = F_{in}$, and

$$f(t, x, u) = f(t, h, F_{in}) = \frac{\left(F_{in} - k_v \sqrt{h}\right)}{A}$$

so the recursion equation is given by

$$h_{k+1} = h_k + \Delta t \frac{\left(F_{in,k} - k_v \sqrt{h_k}\right)}{A}$$

Now, let us implement this in a spreadsheet (figures below were generated using Microsoft Excel):

1. First, lay out the constants (say $\Delta t = 0.1$) and parameters, and fill-in the time column. Also, you can fill-in F_{in} values and the h_0 value.

	A	В	С	D	E	F	
1							
2	Simulatio	n Exan	n <mark>ple fo</mark> r	r Tank I	_evel D	ynamics	s
3							
4			Constar	nts:			
5							
6				delta_t =	0.1		
7							
8			Parame	ters:			
9				.			
10				Case 1			
12				Δ =	0.75		
12				л- I	0.75		
13				KV =	1.25		
14							
15	lter. No.(k)	Time		Fin	h		
16	0	0		1	1		
17	1	0.1		1			
18	2	0.2		1			
19	3	0.3	=A18*	*\$E\$6 1			
20	4	0.4		1			
21	5	0.5		1			
22	6	0.6		1			
		↓ _{Co}	ntinue to sa	r t= 20 (′k= 20	0)		

Continue to say t=20 (k=200)

2. Plug in the recursion formula for h_1 and copy the formula to the cells below.

	В	С	D	E														
5																		
6			delta_t =	0.1														
7																		
8		Parame	ters:															
9						-												
10			Case 1															
11						-												
12			A =	0.75														
13			kv =	1.25														
14																		
15	Time		Fin	h														
16	0		1	1		-												
17	0.1		1	0.966667														
18	0.2		1	0.936135										- .				
19	0.3		1	0.908211	=	E16+\$E\$6*(E)16-E	2\$13	C\$13*SQI	E\$13*SQRT(1	E\$13*SQRT(E1	E\$13*SQRT(E16)	E\$13*SQRT(E16))/E	E\$13*SQRT(E16))/E\$	E\$13*SQRT(E16))/E\$1	E\$13*SQRT(E16))/E\$1	E\$13*SQRT(E16))/E\$12	E\$13*SQRT(E16))/E\$12
20	0.4		1	0.882711		_												
21	0.5		1	0.859457		_												
22	1 N6		1	0 838278														

Take note of the absolute and relative cell addressing. We chose to use the address E\$12 for A and address E\$13 for k_v because we are planning to copy the block from cell D10 to E216 to a location to the left, to begin another case study.

3. Plot h vs time.

You could actually change the value of *A* in cell E12 and then observe how the response will change accordingly.

4. As mentioned earlier, to investigate how the response will behave to a set of parameter changes, we can collect several cases by copying the block from cell D10 to E216 to another location and then change one of the parameters, say *A* below

	D	E	F	G	Н		J	K
	Case 1			Case 2			Case 3	
_								
	A =	0.75		A =	1.5		A =	2.25
	kv =	1.25		kv =	1.25		kv =	1.25
_								
	Fin	h		Fin	h		Fin	h
	1	1		1	1		1	1
	1	0.96666		Í	0.000000		1	0.988889
	1	0.93613	Effor	te of Varvin	a Area		1	0.978087
	1	0.90821	LIIC	cs or varyin	y Area		1	0.967588
	1	0.88271	1.2 🔒				1	0.957385
	1	0.85945	1 -				1	0.94747
	1	0.83827	0.0				1	0.937838
	1	0.81901	0.0 -				1	0.928481
	1	0.80151	h(t) 0.6 -		0 1		1	0.919394
	1	0.78563	0.4 -		- Case 1		1	0.910569
	1	0.77124	0.2 -	_	— Case 2		1	0.902
	1	0.7582	0		Case 3		1	0.893681
	1	0.74641			10	20	1	0.885606
	1	0.73575	0	-		20	1	0.877769
	1	0.72613			lime		1	0.870164
		0.74744		-		_		0.000705

5. As another example, suppose instead of $F_{in}(t)=1.0$, we decide to investigate a case where

B
 M
 N
 O
 P
 Q
 R

 10

$$Case 4$$

$$F_{in} = 1$$
 when $t < 10$, and $F_{in} = 2$ when $t \ge 10$

III. Higher Order Differential Equations

We will limit the discussion to second order, but the pattern should hold for orders greater than 2.

$$\frac{d^2x}{dt^2} = f\left(t, x, \frac{dx}{dt}, u\right)$$

We first need to introduce new variables to denote the derivatives. Let v = dx/dt, then we can reduce the original second order equation to a set of 2 first order equations given by

$$\frac{dx}{dt} = v$$
$$\frac{dv}{dt} = f(t, x, v, u)$$

Following the same approach as before of approximating derivatives by finite differences, we get two recursion equations

$$x_{k+1} = x_k + \Delta t \ v_k$$
$$v_{k+1} = v_k + \Delta t \ f(t_k, x_k, v_k, u_k)$$

The simulation will be initialized by conditions $x_0 = x(0)$ and $v_0 = \frac{dx}{dt(0)}$.

Page maintained by Dr. Tom Co (tbco@mtu.edu)

Last revised 1/11/2010