Introduction to Resistor Circuits

(Tom Co 1/17/2008)

I. Voltage and Current

A. Definitions and Units

1. Current (I) = amount of electrical charge flowing per unit time

Units: 1 ampere (A) = 1 coulomb/second

2. Voltage (*V*): potential energy per unit charge (also known as electromotive force, emf)

Units: 1 volt (V) = 1 joule/coulomb

3. Power (P): power (energy per unit time)

Units: 1 watt (W) = 1 joule/second

P = VI

B. Conventions

Figure 1. Electrical Loop

II. Resistors and Ohm's Law:

Resistance (R) =
$$\frac{V}{I}$$

Units: 1 ohm (Ω) = 1 volt/ampere

					- XX-	
	Fixed				Variable	
	Resistor				Resistor	
••	• •	1	1	6	D ! .	

Figure 2. Symbols for Resistors.

Main application of resistors: to set the current flow in a wire for a given voltage.

An Analogy with Pipe Flow:

Voltage	Differential pressure (driving force)	
Current	Volumetric flow rate	
Resistance	Flow resistance	

Main application of resistors: to set the current flow in a wire for a given voltage.

III. Kirchoff's Laws

- a) Sum of voltage around a closed loop is zero
- b) Sum of current at a junction is zero

Some conventions:

a)	V_a	=	voltage at point <i>a</i> with respect to ground.
b)	V_{ab}	=	V_a - V_b .
c)	I_{ab}	=	current flow from point a to point b .
d)	V_{ab}	=	- V _{ba}
e)	I_{ab}	=	- I _{ba}
f)	P_{ab}	=	$V_{ab} I_{ab}$

Loop A: $V_{ga} + V_{ab} + V_{bd} + V_{de} + V_{ef} + V_{fg} = 0$ Loop B: $V_{db} + V_{bc} + V_{ce} + V_{ed} = 0$ Junction a: $I_{ga} + I_{ba} = 0$ Junction b: $I_{ab} + I_{db} + I_{cb} = 0$ Junction c: $I_{bc} + I_{ec} = 0$ Junction d: $I_{bd} + I_{ed} = 0$ Junction e: $I_{de} + I_{ce} + I_{fe} = 0$ Junction f: $I_{ef} + I_{gf} = 0$ Junction g: $I_{ag} + I_{fg} = 0$

Figure 3.

Example 1:

Figure 4.

Determine: V_{ab} , V_{bc} and P_{bc}

Solution:

Step 1. Write out Kirchoff's Law for Voltage and Current

Loop 1:
$$V_{da} + V_{ab} + V_{bc} + V_{cd} = 0$$

Junction a : $I_{da} + I_{ba} = 0$
Junction b : $I_{ab} + I_{cb} = 0$
Junction c : $I_{bc} + I_{cd} = 0$
Junction d : $I_{ad} + I_{cd} = 0$

Step 2. Substitute given voltage sources, implement Ohm's law and rewrite in terms of current with subscripts in set order (e.g. alphabetical in our case).

Loop 1: $-5+100I_{ab}+50I_{bc}+0I_{cd}=0$ Junction $a: -I_{ad}-I_{ab}=0 \rightarrow -I_{ad}=I_{ab}$ Junction $b: I_{ab}-I_{bc}=0 \rightarrow I_{bc}=I_{ab}$ Junction $c: I_{bc}-I_{cd}=0 \rightarrow I_{cd}=I_{bc}=I_{ab}$ Junction $d: I_{ad}-I_{cd}=0 \rightarrow I_{ad}=I_{ab}$ Step 3. Solve for all the currents I_{ij} and calculate the desired values in the circuit.

$$I_{ab} = \frac{1}{30} \operatorname{amp} = I_{bc} = I_{cd} = I_{da}$$

$$\rightarrow \quad V_{ab} = \frac{10}{3} \operatorname{volts}, \quad V_{bc} = \frac{5}{3} \operatorname{volts}, \quad P_{bc} = \frac{5}{90} \operatorname{watts}$$

Remarks:

1. Let a circuit consists of one voltage source V_1 and a set of resistors $R_1, R_2, ..., R_n$. Then the voltage across resistor R_k is given by

$$V_{(R_k)} = \left(\frac{R_k}{R_1 + \dots + R_n}\right) V_1$$

2. At points that connect only two wires: current flow in = current flow out. Thus, at point *j*,

$$I_{ij} = I_{jk}$$

Example 2:

Figure 5.

Determine: V_{ab}, V_{bd}, V_{ce}, I_{bd}, I_{ce}, P_{ce}

Solution:

Loop 1:
$$V_{fa} + V_{ab} + V_{bd} + V_{df} = 0$$

Loop 2: $V_{bc} + V_{ce} + V_{ed} + V_{db} = 0$
Junction $b: I_{ab} - I_{bd} - I_{bc} = 0$
Junction $d: I_{bd} - I_{de} - I_{df} = 0$
Junction a and $f: I_{df} = I_{fa} = I_{ab}$
Junction c and $e: I_{bc} = I_{ce} = I_{ed}$

Step 2. Substitute given voltage sources and implement Ohm's law

Loop 1: $-5+100I_{ab}+100I_{bd} = 0$ Loop 2: $50I_{ce}-100I_{bd} = 0$ Junction b: $I_{ab}-I_{bd}-I_{ce} = 0$ Junction d: $I_{bd}-I_{ce}-I_{ab} = 0$

Step 3. Solve for all the currents I_{ij} and calculate the desired values in the circuit.

$$I_{bd} = \frac{1}{80} \operatorname{amp}$$

$$I_{ce} = I_{bc} = I_{ed} = \frac{2}{80} \operatorname{amp}$$

$$I_{ab} = I_{fa} = I_{df} = \frac{3}{80} \operatorname{amp}$$

$$\rightarrow V_{ab} = \frac{300}{80} \operatorname{volts}; \quad V_{bd} = \frac{100}{80} \operatorname{volts}; \quad V_{ce} = \frac{100}{80} \operatorname{volts}$$

Consequence of Kirchoff's law:

 $\begin{array}{c} \bullet & \bullet \\ a & R1 & R2 \\ \hline Figure 6. \end{array} = \begin{array}{c} \bullet & \bullet \\ B & R3 \\ \hline \end{array}$

$$R3 = R1 + R2$$

b) Parallel

a) Series

$$\overrightarrow{R1} \qquad \overrightarrow{b} = \overrightarrow{a} \qquad \overrightarrow{R3} \qquad \overrightarrow{b}$$
Figure 7.
$$\boxed{\frac{1}{R3} = \frac{1}{R1} + \frac{1}{R2}}$$

$$\rightarrow V_{(R_1)} = V_{(R_2)} = \frac{R_1 R_2}{R_1 + R_2} I_{ab}$$

$$I_{(R_1)} = \frac{R_2}{R_1 + R_2} I_{ab}$$

$$R_{1} + R_{2} = \frac{R_{1}}{R_{1} + R_{2}} I_{ab}$$

Example 2 (revisited) :

Using the parallel circuit formula above,

$$V_{bd} = \frac{100 \cdot 50}{100 + 50} I_{ab}$$

Substituting into Loop 1:

$$\begin{aligned} & -5 + 100I_{ab} + V_{bd} = 0 \\ & 100I_{ab} + \left(\frac{5000}{150}\right)I_{ab} = 5 \quad \rightarrow \quad I_{ab} = \frac{5}{100 + \frac{5000}{150}} = \frac{3}{80} \text{ amp} \end{aligned}$$

Drills:

1. Find V_{ab} and V_{bc} for the circuit in Figure 8.

Figure 8.

Answer: $V_{ab}=2$ volts, $V_{bc}=5$ volts

2. Find V_{be} and V_{ef} for the circuit in Figure 9.

Figure 9.

Answer: $V_{be}=1.5$ volts, $V_{ef}=1.75$ volts