
Short Tutorial on Using Matlab ODE functions

(10/30/03 by Tomas Co)

1. Suppose we want to simulate the following set of differential equations:

2
t

yd

d

2
3

t
yd

d







⋅+ 2 y⋅+ 4 exp 2− t⋅()⋅ 5−

subject to the following initial conditions,

y 0() 2

t
y 0()d

d
1−

2. You need to convert to state space form. Let x1 = y and x2 = dy/dt, then we have

t
x1

d

d
x2

2
t

x2
d

d

2
3− x2⋅ 2 x1⋅− 4 exp 2− t⋅()⋅+ 5−

x1 0() 2

x2 0() 1−
3. Next, you need to create an m-file using either Matlab's editor or just "notepad":

function dx = tutorialEqn1(t,x)

 % x is the state vector
 % to minimize parentheses you could put them in other variables

 x1=x(1);
 x2=x(2);

 % write the state equations

 dx1 = x2;
 dx2 = -3*x2 -2*x1 +4*exp(-2*t) - 5;

 % collect the derivatives into a column vector

 dx = [dx1;dx2];

save as an m-file, e.g. tutorialEqn1.m

4. In matlab, you can now invoke the ode solvers. For example, you can use ode45 command:

>> [t ,x]=ode45(@tutorialEqn1,[0 10],[2;-1])

Remarks:
a) Use the '@' symbol followed by the filename (without the file extension)
b) [0 10] is the range of time values
c) [2;-1] is the initial condition
d) [t ,x] is the solution. t stores the time values while x stores the solution where column 1 is

x(1), etc.
5. You can now plot the solutions. For instance,

>> plot(t,x(:,1))

will plot the first column of x.

6. Additional tips: you can also pass parameters (either scalar of matrix). For instance, suppose you
want to simulate the matrix equation: dx/dt = Ax. The you can use the general function:

 function dx = lindiff(t,x,A)

 dx = A*x;

Suppose further, we have define matrix A to be

>> A = [-3 4 0 ;0 -1 2;3 3 -6];

with intial condition vector

>> x0 =[-1 ; 2 ;0.5];

then use the following command:

>> [t ,x]=ode45(@ lindiff,[0 100],x0,[],A);

Note:
the '[]' between x0 and A is required as a placeholder for different options. (See help for other
options.)

