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ABSTRACT

This dissertation studies the problem of clustering objects represented by rela-

tional data. This is a pertinent problem as many real-world data sets can only be

represented by relational data for which object-based clustering algorithms are not

designed. Relational data are encountered in many fields including biology, manage-

ment, industrial engineering, and social sciences. Unlike numerical object data, which

are represented by a set of feature values (e.g. height, weight, shoe size) of an object,

relational object data are the numerical values of (dis)similarity between objects. For

this reason, conventional cluster analysis methods such as k-means and fuzzy c-means

cannot be used directly with relational data.

I focus on three main problems of cluster analysis of relational data: (i) ten-

dency prior to clustering—how many clusters are there?; (ii) partitioning of ob-

jects—which objects belong to which cluster?; and (iii) validity of the resultant

clusters—are the partitions “good”? Analyses are included in this dissertation that

prove that the Visual Assessment of cluster Tendency (VAT) algorithm has a direct

relation to single-linkage hierarchical clustering and Dunn’s cluster validity index.

These analyses are important to the development of two novel clustering algorithms,

CLODD-CLustering in Ordered Dissimilarity Data and ReSL-Rectangular Single-

Linkage clustering.

Also presented in my analysis of VAT is a recursive formulation of the improved

VAT (iVAT) algorithm. iVAT is shown to improve the visual evidence of cluster

tendency on some types of data for which VAT fails. The computational complexity

of my recursive formulation of iVAT is O(n2), as opposed to O(n3) of the original

formulation—n is the number of objects considered.

CLODD is a clustering algorithm that works on reordered dissimilarity data. Typ-

ically, the dissimilarity matrix is reordered with the VAT algorithm; although, I
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present results on data that is reordered with other methods. CLODD produces par-

titions by minimizing a novel objective function that measures the fit of a candidate

partition to the ‘blockiness’ of images of reordered dissimilarity data. Three charac-

teristics are included in the objective function: ‘blockiness’ or constrast, ‘edginess’,

and small-cluster rejection. CLODD is shown to extract good partitions of data when

the reordering method is successful in producing “good” visualizations.

A special form of relational data is rectangular data. Rectangular relational data

are dissimilarity values between a set of row objects and a set of column objects,

where the relation among row objects (or column objects) is unknown. One example

of this type of data set is ratings given by movie reviewers (the column objects) for

a set of movies (the row objects). Each rating is interpreted as a dissimilarity value

between a reviewer and a movie—high rating indicates low dissimilarity, while a low

rating indicates high dissimilarity. Additionally the relation between reviewers (or

between movies) is unknown.

I present a new formulation of the co-VAT algorithm, which a visual method for

determining the cluster tendency of rectangular data. I provide several examples for

which my new formulation is successful in showing the preferred cluster tendency and

for which the original co-VAT fails. I also extend the notions in the iVAT algorithm

to the co-VAT algorithm, which I call co-iVAT.

ReSL addresses a special form of relational data, rectangular data. ReSL extracts

five types of clusters from rectangular relational data. I present several examples that

show the behavior of ReSL in the presence of different types of rectangular data. A

comparison is made with spectral co-clustering and ReSL is shown to more effective

at elucidating the clustering structure.

Last, this dissertation addresses clustering in ontologies, a specific type of data.

These data are composed of collections of terms organized in a hierarchical tax-

xv



onomy (a directed acyclic graph); examples include the Gene Ontology, the MeSH

ontology, patient medical records, and web documents. I apply an extension to the

Self-Organizing Map (SOM) to produce a new algorithm, the OSOM-Ontological

Self-Organizing Map. OSOM provides visualization and linguistic summarization of

ontology-based data. A binary-valued vector-based network prototype is used to rep-

resent ontological objects (e.g. genes and gene products).

These algorithms and analyses are pertinent to all problems that produce rela-

tional data; however, I specifically examine these methods, especially the OSOM, for

use on bioinformatics-based data. I show results of these algorithms with data com-

posed of Gene Ontology annotations and microarray gene expression data, and with

data available from the UCI Machine Learning Repository.

xvi



Chapter 1

Introduction

John McCarthy described artificial intelligence in 1956 as “the science and engineering

of making intelligent machines.”[Skillings, 2006] In the proposal for the conference at

which he coined this term McCarthy stated, “the major obstacle is not the lack of

machine capacity but our inability to write programs taking full advantage of what

we have.”[McCarthy et al., 1955] We continue to struggle with this aspect of building

intelligent machines. This dissertation contributes to the field of artificial intelligence

by describing the development of a novel set of algorithms that perform a task that

humans perform effectively and efficiently: sorting objects into groups according to

context.

Since the 1956 Dartmouth Summer Research Project on Artificial Intelligence, at

which McCarthy created the term artificial intelligence, computer programs have be-

come the tool of choice for the development of artificial intelligence and subjects such

as neural networks, fuzzy systems, swarm intelligence, and evolutionary computation

have become popular research areas. These subjects are often lumped together into

the field of computational intelligence (CI). Noteworthy general references on CI are

the works by Engelbrecht [2007] and Pedrycz [1997]. Poole et al. [1998] defined CI as
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“the study of the design of intelligence agents,” describing an intelligent agent as a

“system that acts intelligently.” Table 1.1 contains the definitions of intelligence from

Merriam-Webster [Mer, 2009]. I argue that definition 5. is not sufficient to define an

intelligence agent as my calculator watch in grade school had the ability to “perform

computer functions”, but it could not act intelligently. As the most applicable to CI,

let us examine, in particular, definition 1.a.

Table 1.1: Definitions of intelligence [Mer, 2009].

1. a (1): the ability to learn or understand or to deal with new or trying situations;
also: the skilled use of reason, (2): the ability to apply knowledge to manipulate
one’s environment or to think abstractly as measured by objective criteria (as
tests); b: Christian Science: the basic eternal quality of divine Mind; c: mental
acuteness

2. a: an intelligent entity; b: intelligent minds or mind <cosmic intelligence>

3. the act of understanding

4. a: information, news; b: information concerning an enemy or possible enemy
or an area; also: an agency engaged in obtaining such information

5. the ability to perform computer functions

This definition states that intelligence is “the ability to learn or understand or to

deal with new or trying situations” and “the ability to apply knowledge to manipulate

one’s environment or to think abstractly as measured by objective criteria.” Hence,

an intelligent agent must have these abilities. While it could be argued that artificial

systems exist that display these traits, I believe that humans are far from creating

a truly intelligent system (I should mention that famed futurist, Raymond Kurzweil,

predicts that a computer will pass the Turing Test [Turing, 1950] in 2029 [Kurzweil,

2006]). However, we have come far since 1956: in that same year Ulam’s MANIAC I

became the first chess program to defeat a human; in 1959 a checkers program won
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against the best human player in the world; in 1962 the first commercial industrial

robots were born; in 1968 the (fictitious) artificial intelligence HAL was a leading

character in the film 2001: A Space Odyssey; in 1986 a chess program competed at the

senior master level; in 1989 Deep Thought defeated International Chess Master David

Levy; in May 1997 Deep Blue defeated chess world champion Garry Kasparov; and

currently millions of people around the world are playing video games with extremely

complex artificial intelligence components. To add additional perspective to this

timeline, on Nov. 25, 2006, chess world champion Vladimir Kramnik was defeated

by a commercially available chess program, Deep Fritz [McClain, 2006]. Professor

Monty Newborn of McGill University summed up the event, “I don’t know what one

could get out of it [computer chess] at this point. The science is done.”

CI has certainly progressed rapidly; however, the science is far from done. Two

areas of human intelligence that CI has not mastered are classification and clustering.

Humans naturally classify or group and, subsequently, name objects, situations, and

abstractions they encounter in everyday life. This ability is vitally important as it

gives humans the power to address new situations by comparing the traits of new

objects or phenomena with known traits; thus, a human can act intelligently even in

“new and trying situations” (see definition of intelligence in Table 1.1). Clustering is

the act of sorting unlabeled (or uncategorized) objects into groups according to their

traits; often the number of groups or the reason that certain objects are grouped

together is unknown (at least, before the clustering process is completed). The traits

of objects in the same group should be similar to one another, and the object traits

in different groups should be dissimilar from one another [Jain et al., 1999]. This

is in contrast to the classical classification problem in which objects are labeled as

belonging to one (or many) predefined categories.

Clustering algorithms are an integral part of both CI and pattern recognition.
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Often researchers are mired in data sets that are large and unlabeled. There are

many methods by which researchers can elucidate these data, including projection

and statistical methods. Clustering provides another tool for deducing the nature

of the data by providing labels that describe how the data separates into groups.

Clustering has also been shown to improve the performance of other algorithms or

systems by separating the problem-domain into manageable sub-groups—a different

algorithm or system is tuned to each cluster [Frigui, 2007, Bo and Nevatia, 2007].

Clustering has also been used to infer the properties of unlabeled objects by clustering

these objects together with a set of labeled objects (of which the properties are well

understood) [Khan et al., 2003, The UniProt Consotium, 2007].

The problem domains and applications of clustering are innumerable. Virtually

every field, including biology, engineering, medicine, finance, mathematics, and the

arts, have used clustering. Its function—grouping objects according to context—is a

basic part of intelligence and is ubiquitous to the scientific endeavor. This dissertation

will examine a specific, but general, form of clustering: clustering in relational data.

1.1 The Problem

Consider a set of objects O = {o1, . . . , on}. These objects can represent virtually

anything—vintage bass guitars, pure-bred cats, cancer genes expressed in a microar-

ray experiment, cake recipes, or web-pages. The object set O is unlabeled data; that

is, each object has no associated class label. However, it is assumed that there are

subsets of similar objects in O. These subsets are called clusters.

Numerical object data is represented as X = {�x1, . . . , �xn} ⊂ Rp, where each

dimension of the vector �xi is a feature value of the associated object oi. These

features can be a veritable cornucopia of numerical descriptions, i.e., RGB values,
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gene expression, year of manufacture, number of stripes, etcetera. Another way to

represent the objects in O is with numerical relational data, which consist of n2

values that represent the (dis)similarity between pairs of objects. These data are

commonly represented by a relational matrix R = [rij = relation(oi, oj)|1 ≤ i, j ≤
n]. The relational matrix can take one of two forms, a similarity matrix S or a

dissimilarity matrix D. Similarity or dissimilarity values are interchangeable with

several well-known transformations, the most famous being D = [1]−S for D ∈ [0, 1].

Dissimilarity can usually be interpreted as a distance between objects. For instance,

numerical data X can always be converted to D by dij = ‖�xi− �xj‖ (any vector norm

on Rp). As a result, relational algorithms can be used with both numerical object data

X and relational data R, viz. D or S. There are, however, similarity and dissimilarity

relational data sets that do not begin as numerical object data; for these, there is no

choice but to use a relational algorithm. Hence, relational data represent the “most

general” form of input data. This dissertation will pose most problems in terms of

the dissimilarity D; however, there are some situations where discussion of similarity

S is more intuitive.

Another form of relational data is rectangular. These data are represented by an

m× n dissimilarity matrix D, where the entries are the pair-wise dissimilarity values

between m row objects Or and n column objects Oc. An example of a rectangular

relational data set is a movie review database, where row objects are m movies and

column objects are n movie reviewers. A real-world example is the Netflix Prize

data (http://www.netflixprize.com). Another example comes from web-document

analysis, where the row objects are m web-pages, the columns are n words, and the

(dis)similarity entries are occurrence measures of words in web-pages [Kummamuru

et al., 2003, Dhillon et al., 2003, Dhillon, 2001]. In each case, the row and column

objects are non-intersecting sets, such that the pair-wise relation among row (or
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column) objects is unknown. Conventional relational clustering algorithms are ill-

equipped to deal with rectangular data. Additionally, the definition of a cluster as

a group of similar objects takes on a new meaning. There can be groups of similar

objects that are composed of only row objects (movies that get good reviews), of

only column objects (reviewers that like the same movies), or of mixed objects (the

movies that received good reviews and the reviewers that gave them). In all, there

are five types of clusters in rectangular data. Rectangular clustering, often called co-

clustering or bi-clustering, is described in more detail in Section 2.3 and in references,

[VanMechelen et al., 2004] and [Kriegel et al., 2009].

A wide array of algorithms exists for clustering unlabeled object data O. Descrip-

tions of many of these algorithms, both relational and not, can be found in the follow-

ing general references on clustering: Duda et al. [2000], Theodoridis and Koutroumbas

[2009], Bezdek [1981], Bezdek et al. [1999], Hartigan [1975], Xu and Wunsch II [2009],

Jain et al. [1999], and Jain and Dubes [1988]. Clustering in unlabeled data X or

D is defined as the assignment of labels to groups of similar (unlabeled) objects O.

In other words, objects are sorted or partitioned into groups such that each group

is composed of objects with similar traits. There are two important factors that all

clustering algorithms must consider: 1) the number (and, perhaps, type) of clusters

to seek and, 2) a mathematical way to determine the similarity between various ob-

jects (or groups of objects). Let c denote the integer number of clusters. The number

of clusters can take the values c = 1, 2, . . . , n, where c = 1 results in the universal

cluster (every object is in one cluster) and c = n results in single-object clusters.

A partition of the objects is defined as the set of cn values, where each value

{uik} represents the degree to which an object ok is in (or represented by) the ith

cluster. The c-partition is often arrayed as a c× n matrix U = [uik], where each row

represents a cluster and each column represents an object. There are three types of
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partitions (to date), crisp, fuzzy (or probabilistic), and possibilistic [Bezdek, 1981,

Krishnapuram and Keller, 1993]. Crisp partitions of the unlabeled objects are non-

empty mutually-disjoint subsets of O such that the union of the subsets cover O. The

set of all non-degenerate (no zero rows) crisp c-partition matrices for the object set

O is:

Mhcn = {U ∈ Rcn|uik ∈ {0, 1} ∀i, k;
c∑

i=1

uik = 1 ∀k;
n∑

k=1

uik > 0 ∀i}, (1.1)

where uik is the membership of object ok in cluster i; the partition element uik = 1 if

ok is labeled i and is 0 otherwise.

Fuzzy (or probabilistic) partitions are more flexible than crisp partitions in that

each object can have membership in more than one cluster. Note, ifU is probabilistic,

the partition values are interpreted as a probability p(i|ok) that ok is in the i-th class.

This dissertation will assume that fuzzy and probabilistic partitions are essentially

equivalent from the point of view of clustering algorithm development. The set of all

fuzzy c-partitions is:

Mfcn = {U ∈ Rcn|0 ≤ uik ≤ 1 ∀i, k;
c∑

i=1

uik = 1 ∀k;
n∑

k=1

uik > 0 ∀i}. (1.2)

Each column of the fuzzy partition U must sum to 1, thus ensuring that every object

is completely partitioned (
∑

i uik = 1).

Possibilistic partitions relax this condition, allowing partition columns that do not

necessarily sum to 1. Possibilistic clustering has been shown to be especially effective

in partitioning data that has outliers and intersecting clusters [Krishnapuram and

Keller, 1993]. The set of all possibilistic c-partitions is:

Mpcn = {U ∈ Rcn|0 ≤ uik ≤ 1 ∀i, k; ∀k∃i � uik > 0}, (1.3)
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where uik is the possibility that ok is in cluster i (this has also been described by

Krishnapuram and Keller [1993] as the typicality of ok to cluster i). Notice that the

possibilistic partition ensures that there is at least one object that has a non-zero

possibility of being in each cluster (the empty cluster cannot exist). An interesting

property of these three types of partitions is that all crisp partitions are fuzzy parti-

tions and all fuzzy partitions are possibilistic partitions. Equations (1.1), (1.2), and

(1.3), show that Mhcn ⊂Mfcn ⊂Mpcn.

All cluster analyses address the same questions, independent of the type of par-

tition. The three main questions are: i) cluster tendency—how many clusters are

there?; ii) partitioning—which objects belong to which cluster and to what degree?;

and iii) cluster validity—are the partitions “good”? There are many algorithms that

attempt to answer these questions. I focus on all three of these problems for the case

in which the objects are described by (dis)similarity data.

1.2 Contributions

Clustering objects described by relational data represent a crucial and pertinent

problem. Numerous real-world data sets, including ontologies, web documents, pa-

tient records, and many forms of bioinformatics data can only be represented as

(dis)similarity data. Most of the discussion in this dissertation is tailored to square

dissimilarity data; however, Sections 2.3 and 4.3 will specifically address clustering in

rectangular relational data.

1.2.1 Analysis

Chapter 3 begins with a thorough description of a special subset of crisp partitions,

called aligned partitions. A proof is presented that shows that the cardinality of the
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set of all crisp c-partitions Mhcn is much greater than the cardinality of the set of all

aligned c-partitions M∗
hcn. This leads to an analysis that shows that there is a direct

relationship between the Visual Assessment of cluster Tendency (VAT) algorithm,

single-linkage (SL) hierarchical clustering, and Dunn’s cluster validity index. I also

develop and prove a recursive formulation of the iVAT path-based distance transform.

This formulation reduces the complexity of the iVAT algorithm from O(n3) to O(n2).

These analyses provide a basis for the algorithms presented in Chapter 4.

1.2.2 Clustering in Ordered Dissimilarity Data

In Chapter 4, two novel algorithms are developed that attempt to answer the three

important clustering questions for relational data. The CLustering in Ordered Dis-

similarity Data (CLODD) algorithm computes aligned c-partitions in ordered dissim-

ilarity data. A fitness function is developed on the basis of three heuristics of cluster

validity: i) contrast between on-diagonal and off-diagonal blocks in the ordered dis-

similarity matrix; ii) “edginess” at the boundaries of the on-diagonal blocks; and,

iii) minimum allowable cluster size. Particle Swarm Optimization (PSO) is used to

optimize the fitness function to find the “best” aligned c-partition of the VAT-ordered

dissimilarity data. CLODD performs the operations of cluster tendency, partitioning,

and cluster validity simultaneously to produce, for the case of VAT-ordered data,

SL-type clusters.

1.2.3 New Formulation of co-VAT

The VAT algorithm adapted to rectangular relational data is called co-VAT [Bezdek

et al., 2007]. The first step of co-VAT is to estimate a square dissimilarity matrix.

I propose new statistics-based estimation method. I also present a new reordering
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formulation of co-VAT in Chapter 4. The iVAT path-based distance transform [Wang

et al., 2010, Fisher et al., 2001] is shown to improve the contrast in VAT images.

I adapt this transform to co-VAT which shows dramatic improvement in showing

clustering tendency of “tough” cases. I call this algorithm co-iVAT.

1.2.4 Rectangular Single-Linkage

The second algorithm developed in Chapter 4 is Rectangular Single-Linkage (ReSL)

clustering. CLODD (and other algorithms) is extended to partition the objects rep-

resented by rectangular data. ReSL clustering finds four types of partitions in these

data: partitions of the row objects, partitions of the column objects, partitions in the

union of the two sets of objects, as well as what we call co-clusters. To date, ReSL

is the only algorithm that does this. And I show that ReSL is more effective than a

leading co-clustering algorithm for a number of example data sets.

1.2.5 Ontological Self-Organizing Map

Chapter 5 presents a novel extension to Kohonen’s Self-Organizing Map (SOM) that

allows one to use SOMs with ontological data. The Ontological Self-Organizing Map

(OSOM) uses a fuzzy prototype, where each dimension of the prototype vector rep-

resents a single term. Hence, each prototype element is the membership of the corre-

sponding term in the prototype “sentence”. Given a set of ontological training data,

the OSOM produces a two-dimensional map of the high-dimensional data. This map-

ping is used to visualize the cluster tendency of the training data and to classify new

inputs. The OSOM can also be used to produce summarizations of the mapped on-

tological data. The OSOM is demonstrated on sets of genes that are annotated by

the Gene Ontology (GO). Comparisons with other SOM-based algorithms are also
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shown.

1.3 Dissertation Outline

This chapter has given an introduction to the problem. Additionally, my dissertation’s

contributions to clustering in relational data were introduced and a perspective on

the difficulties was presented.

Chapter 2 presents previous work on relevant approaches to relational clustering.

A broad review of relational clustering work is given and an in-depth look at similar

work is presented. Specifically described are techniques that address cluster tendency,

partitioning, and cluster validity for relational data. Also discussed are clustering in

rectangular data and ontological data.

Chapters 3, 4, and 5 present the novel contributions of this dissertation. In Sec-

tion 3.1, aligned partitions are presented. Sections 3.2 and 3.3 prove the relationship

between VAT, SL, and Dunn’s index. Also presented are illustrative numerical exam-

ples. In Section 3.4, a recursive formulation of the iVAT algorithm is presented. The

analysis performed in Chapter 3 is important as it provides a basis for the algorithms

developed in subsequent chapters.

Section 4.1 presents the framework of the CLODD algorithm. This clustering

method combines visual clustering techniques, swarm optimization, and image pro-

cessing to extract partitions from ordered dissimilarity data. Several experiments,

with both simulated and real data, are shown that reveal the motivation behind

CLODD as well as its strengths and limitations. The methodology behind CLODD

is the underpinning of ReSL, which is presented in Section 4.3. The ReSL algorithm

computes SL partitions of rectangular relational data. This claim is supported with

analysis based on the results of the analysis in Chapter 3. Additionally, several nu-
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merical examples are shown that illustrate the results of ReSL and compare it to

existing rectangular clustering algorithms. A preprocessing step of ReSL is co-VAT.

Section 4.2 presents new formulations of coVAT, including co-iVAT.

Clustering in ontologies is a special case of relational clustering. Section 5.1 dis-

cusses the development of the ontological self-organizing map, OSOM. This algorithm

is a novel extension of the SOM and is designed to provide visualization and sum-

marization of ontological clusters. We apply the OSOM to genes annotated by GO

terms and present results for various data sets.

Chapter 6 concludes this dissertation with a summary of open problems and ideas

for future work.

1.4 List of Relevant Publications

The research described in this dissertation is based on material from the following

publications:

1. T.C. Havens, J.M. Keller, and M. Popescu (2010). Computing with words with
the ontological self organizing map. IEEE Trans. Fuzzy Systems.

2. T.C. Havens, J.C. Bezdek, and J.M. Keller (2010). A new implementation of
the co-VAT algorithm for visual assessment of clusters in rectangular relational
data. Proc. ICAISC.

3. T.C. Havens, J.C. Bezdek, J.M. Keller, M. Popescu, and J.M. Huband (2010).
Is VAT really single linkage in disguise?. Annals of Mathematics and Artificial
Intelligence, 55 (3), 237-251.

4. T.C. Havens, J.C. Bezdek, J.M. Keller, and M. Popescu (2009). Clustering in
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504-528.

5. T.C. Havens, J.C. Bezdek, J.M. Keller, and M. Popescu (2008). Dunn’s cluster
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tion optimization. Proc. IEEE SIS, 1-7.
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Schultz, and J.C. Bezdek (2008). Fuzzy cluster analysis of bioinformatics data
composed of microarray data and Gene Ontology annotations. Proc. NAFIPS,
1-6.

13



Chapter 2

State of the Art

Clustering is the process of grouping objects or patterns in a sensible manner. This

process is often performed to elucidate the similarity and dissimilarity among and

between the grouped objects. Clustering has also been called unsupervised learn-

ing, numerical taxonomy, typology, and partitioning [Theodoridis and Koutroumbas,

2009]. Although clustering is typically thought of as only the act of separating objects

into the proper groups, cluster analysis actually consists of three concise questions:

i) cluster tendency—how many clusters are there? ii) partitioning—which objects

belong to which cluster and to what degree? iii) cluster validity—are the partitions

“good”? Although most clustering work concentrates on the question of partitioning,

I focus on all three of these issues.

Context plays an important part in clustering as the following example shows.

Consider a set of objects O = {o1, . . . , on}. In this example, the objects are the

Ford Mustangs shown in Fig. 2.1. One can imagine that these cars can be grouped

according to any number of criterion. For example, if one grouped the cars accord-

ing to model year, the partition is {o1, o2}, {o3}, {o4, o6}, {o5}. The cars could also be

grouped by the number of engine cylinders, yielding the partition {o1, o2, o3, o4, o5}, {o6},
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where o6, the Green 1978 Mustang II, is the only car pictured that does not have a

V8 engine (it has a paltry, by comparison, V6). Figure 2.2 shows other example

partitions of the cars, each based on a different cluster criterion. Moreover, all the

cars shown in Fig. 2.1 could be grouped together according to Make-Model, albeit

this grouping, which only produces one group, is trivial and reveals little about the

set as a whole.

As Fig. 2.2 shows, the partitioning is directly dependent on the cluster criterion.

The partitions shown in Fig. 2.2 are crisp partitions and are, hence, in Mhcn, which

is constructed in eq.(1.1). The crisp partition U that would represent the partition

shown in Fig. 2.2(a) is

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where uik = 1 indicates that the kth object is in the ith cluster. For this example, the

first row of U is the cluster that represent the model-year 1966, the second row is the

cluster that represent the model-year 1968, the third row represent the model-year

1973, and the last represent 1978. This example shows that the results of clustering

depends on how one chooses to measure similarity between the objects. Hence, the

context of the clustering problem is encapsulated in the distance or similarity measure

chosen to measure the object-to-object relations.

There are many algorithms that extract crisp partitions from unlabeled object sets;

K-means [Hartigan, 1975, Hartigan andWong, 1979] and hierarchical clustering [John-

son, 1967] being, arguably, the most popular. In general, there are three main types of

partitioning algorithms [Theodoridis and Koutroumbas, 2009]: sequential—clusters

are produced by sequentially iterating through the data; hierarchical—partitions are
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(a) o1 - Black 1966 Coupe (b) o2 - Black 1966 Coupe

(c) o3 - Red 1968 Convertible (d) o4 - White Red-Striped 1978 II Cobra

(e) o5 - Red Black-Striped 1973 Mach 1 (f) o6 - Green 1978 II

Figure 2.1: Which Ford Mustangs belong together?
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1966 1968 1973 1978
o1 o3 o5 o4
o2 o6

(a) Model Year

6 Cylinders 8 Cylinders
o6 o1

o2
o3
o4
o5

(b) Number of Engine Cylinders

60’s 70’s
o1 o4
o2 o5
o3 o6
(c) Model
Decade

Coupe Fastback Convertible
o1 o4 o3
o2 o5
o6

(d) Body Style

Black Red White Green
o1 o3 o4 o6
o2 o5

(e) Body Color

60’s, 8 Cylinders 70’s, 8 Cylinders 70’s, 6 Cylinders
o1 o4 o6
o2 o5
o3
(f) Model Decade and Number of Cylinders

Figure 2.2: Resulting partitions of Ford Mustangs for different cluster criterions

agglomerated or divided to produce a hierarchy of clusters; and partitional—typically

an objective function is optimized to produce a partition. Other types of partitioning

algorithms include swarm-based algorithms [Handl et al., 2005, 2003, Chen et al.,

2004], genetic clustering [Sheikh et al., 2008], and graph-theoretic methods [Hubert,

1974, Harary, 2004]. Partitioning algorithms are described in more detail in Section

2.2.

The color-based partition, in particular, in Fig. 2.2(e) outlines the strength of

non-crisp partitions. The Mustangs in Figs. 2.1(d,e) are multi-colored; hence, the red

with black-stripe Mustang in (e) could be considered to be part of the black partition

and the white with red-stripe Mustang in (d) could be considered to be part of the

red partition. However, it is clear that these two cars should not completely belong to

either partition. Fuzzy and possibilistic partitions solves this conundrum by allowing

objects to belong to more than one partition.
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Figure 2.3: Flower stand in Hong Kong, China. By what criteria would you group
these objects?

2.0.1 Fuzzy and Possibilistic Clustering

Figure 2.3 shows an image of a flower stand in Hong Kong, China. As the example

shown in Figs. 2.1 and 2.2 illustrated, the number of clusters and partitions of the

flowers in this image depend on the question asked. One could imagine that there are

numerous crisp partitions of the flowers, based on the criteria such as type, number of

petals, etc. However, there are criteria that result in ambiguous partitioning choices.

For example, consider that the clustering criteria for these flowers is color. Color is a

continuous spectrum and even flowers of the same type are not all exactly the same

color. Thus, crisp partitions of the flowers on the basis of color could be misleading.

Does a magenta flower belong in the red-cluster or the purple-cluster (or perhaps

partially to the blue-cluster)? Fuzzy clustering allows the magenta flower to belong

to more than one cluster to a certain degree.
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Fuzzy and possibilistic clustering addresses the problem of ambiguity in clustering

criteria by assigning a membership or typicality to each object. For fuzzy clustering,

this membership indicates the degree to which an object belongs to each cluster. In

possibilistic clustering, each object is assigned a typicality of belonging to a cluster.

2.0.2 Other Clustering Questions

There are other questions that are important to clustering including [Theodoridis

and Koutroumbas, 2009]: feature selection—which features are important and how

do features relate to each other?; proximity measure—what is the similarity or dis-

similarity between features?; partition interpretation—what does the partition say

about the data? Although these concerns are important to consider when applying

clustering algorithms, I do not generally address them in this dissertation. I do,

however, consider proximity measures for ontological data in Section 2.4.1. Good

general resources on the topics of feature selection, proximity measures, and partition

intrepretation include [Liu and Motoda, 1998, Liu and Yu, 2005, Guyon and Elisseeff,

2003, Theodoridis and Koutroumbas, 2009].

2.1 Visual Approaches to Clustering

For object data, visual clustering was initially performed by inspecting scatter-plots

in p = 1, 2, and 3 dimensions. For p > 3, scatter-plots cannot be made. Many

computational schemes have been devised to represent higher dimensional object

data so that it can be visualized (and hence, possibly formed into clusters from visual

representations). Interesting examples include Interactive Visual Clustering (ICV)

[desJardins et al., 2007], HC-Enhanced [Tejada and Minghim, 2005], Andrews plots

[Andrews, 1972], Chernoff faces [Chernoff, 1973], and Trees and Castles [Kleiner and
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Hartigan, 1981]. There are many other approaches and the references [Tryon, 1939,

Tukey, 1977, Everitt, 1978, Cleveland, 1993] contain informative introductions on

many of these approaches.

For relational data D, scatter-plots are unavailable. Tryon [1939] apparently pre-

sented the first method for extracting clusters from dissimilarity data by use of a

visual approach. Here is a rough description of his method; (i) plot a graph of each

row in the data—a matrix of pair-wise correlation coefficients, (ii) visually aggregate

subsets of the graphs into clusters, (iii) reorder the input data matrix D so that sim-

ilar profiles have adjacent representations in the rows and columns of the reordered

data set D∗, (iv) find the mean profile (a prototype graph representing the elements

of a group) for each cluster of correlation profiles, and (v) present the final results

as a set of clustered profile graphs with their prototypes. This procedure—almost 70

years old—contains all the elements of the current work on visual clustering: create

a visual representation of D, reorder it to D∗, create a visual representation D∗, and

finally, extract clusters from D∗ using the visual evidence. Tryon did this by hand

in 1939 for a 20 × 20 data set collected at the University of California, Berkeley.

For tiny data sets, methods such as these are useful. But for the data sets typically

encountered today, automation is essential.

In the decades subsequent to Tryon’s work, the literature has included many

visual schemes for each of the three main problems in cluster analysis: tendency,

partitioning, and validity. Using D and D∗ in various ways for any of the three

clustering problems involves two basic principles: finding D∗ (how shall we reorder

D → D∗?), and displaying D∗ (how shall we “see” the information in D∗?). These

three issues and two principles have appeared in almost every combination.

Sneath [1957] introduced the idea of visual representation of D∗ by an image.

Sneath’s paper contains an image I(D∗) of D∗ created by hand-shading the pixels
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of a matrix with one of eight “intensities”—reordering was done by an algorithm

that had both computer and manual components. Subsequent refinements of his idea

followed the general evolution of computers themselves. Floodgate and Hayes [1963]

presented a hand rendered image similar to Sneath’s, but reordering of D was done

computationally using single-linkage clustering. Apparently Ling [1973] was the first

to automate the creation of the image I(D∗) of D∗ with an algorithm called SHADE,

which was used after application of the complete linkage hierarchical clustering scheme

and served as an alternative to visual displays of hierarchically nested clusters via

the standard dendrogram. SHADE used 15 level halftone intensities (created by

over-striking standard printed characters) to approximate a digital representation of

the lower triangular part of the reordered dissimilarity matrix. SHADE apparently

represents the first completely automated approach to finding D∗ and viewing I(D∗).

Closely related to SHADE, but presented more in the spirit of finding rather than

displaying clusters found with a relational clustering algorithm, is the “graphical

method of shading” described in Johnson and Wichern [2007]. They provide this

informal description: (i) arrange the pair-wise distances between points in the data

into several classes of 15 or fewer, based on their magnitudes, (ii) replace all distances

in each class by a common symbol with a certain shade of gray, (iii) reorganize the

distance matrix so that items with common symbols appear in contiguous locations

along the main diagonal (darker symbols correspond to smaller distances), and (iv)

identify groups of similar items by the corresponding patches of dark shadings. A

more formal approach to this problem is the work of Tran-Luu [1996], who proposed

reordering the data into an “acceptable” block form based on optimizing several

mathematical criteria of image “blockiness”. The reordered matrix is then imaged

and the number of clusters is deduced visually by a human observer.

Software for visualizing distance data is available at the GENLAB toolbox website
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[van Someren et al., 2000]. Similarity-based intensity images, formed using kernel

functions, have been use in Girolami [2002] and Zhang and Chen [2003] to provide

guidance in determining the number of clusters (tendency assessment, in spirit of

the VAT algorithm), but no useful ordering scheme is offered there to facilitate the

approach. Other representative studies include Baumgartner et al. [2001, 2000], Strehl

and Ghosh [2000a,b], and Dhillon et al. [1998]. Visual cluster validity includes the

work presented in Hathaway and Bezdek [2003] and Huband and Bezdek [2008].

An algorithm that is provided with Matlab is the Reverse Cuthill-Mckee (RCM)

algorithm [George and Liu, 1981]. This algorithm attempts to minimize the band-

width of a symmetric matrix to move non-zero elements closer to the diagonal. This is

essentially the goal of cluster tendency visualization. However, RCM only works with

binary matrices—e.g., graph connection matrices. Dissimilarity matrices can easily

be converted to binary matrices by thresholding. However, RCM is very sensitive

to this threshold value and, for this reason, it is not a good method for determining

cluster tendency.

The main difference between the algorithms and methods described in this section

and CLODD is that CLODD is a completely autonomous method for determining

cluster tendency, extracting clusters from the image of the reordered dissimilarity

data, and providing a cluster validity metric, as well. To my knowledge, there are no

other methods, at the time of this dissertation, that attempt this trifecta. Further-

more, this leads to a distinct advantage of CLODD; namely, that CLODD is not tied

directly to any one distance metric or reordering scheme. CLODD requires as input

only an image of reordered dissimilarity data, such that the clusters appear as dark

blocks along the diagonal.
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2.1.1 Visual Assessment of cluster Tendency (VAT)

The VAT algorithm displays an image of reordered and scaled dissimilarity data

[Bezdek and Hathaway, 2002]. Each pixel of the grayscale VAT image I(D∗) displays

the scaled dissimilarity value of two objects. White pixels represent high dissimilarity,

while black represents low dissimilarity. Each object is exactly similar with itself,

which results in zero-valued (black) diagonal elements of I(D∗). The off-diagonal

elements of I(D∗) are scaled to the range [0, 1]. A dark block along the diagonal of

the I(D∗) is a sub-matrix of “similarly small” dissimilarity values; hence, the dark

block represents a cluster of objects that are relatively similar to each other. Thus,

the cluster tendency is shown by the number of dark blocks along the diagonal of the

VAT image.

The VAT algorithm is based on Prim’s algorithm for finding theMinimal Spanning

Tree (MST) of a weighted connected graph [Bezdek and Hathaway, 2002]. Algorithm

2.1.1 illustrates the steps of the VAT algorithm; notice the almost line-for-line similar-

ity to Prim’s algorithm, outlined in Algorithm 2.1.2. VAT reorders the dissimilarity

matrix in the same order in which PA adds vertices to the MST. Already, it can

be seen that there is a direct relation between VAT and the MST, which is further

addressed in Section 3.2. The only differences between VAT and Prim’s algorithm is

the choice of the starting object (although Prim’s algorithm could be initialized with

the VAT starting object) and the end result; VAT produces an image, while Prim’s

algorithm produces a spanning tree.

The resulting VAT-reordered dissimilarity matrixD∗ can be normalized and mapped

to a gray-scale image with black representing the minimum dissimilarity and white

the maximum. Figure 2.4 is an example of the VAT image for a set of five clusters.

The five dark blocks along the diagonal of the VAT image suggest that the object

data seen in Fig. 2.4(a) possesses five clusters, but the clusters are not identified.
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Algorithm 2.1.1: VAT Ordering Algorithm [Bezdek and Hathaway, 2002]

Input: D - dissimilarity matrix
Data: K = {1, 2, . . . , n}; I = J = ∅; P = (0, 0, . . . , 0).
Select

(i, j) ∈ argmax
p∈K,q∈K

Dpq. (2.1)

Set P (1) = i; I = {i}; and J = K− {i}.
for r = 2, . . . , n do

Select
(i, j) ∈ argmin

p∈I,q∈J
Dpq. (2.2)

Set P (r) = j; Replace I← I ∪ {j} and J← J− {j}.
Obtain the ordered dissimilarity matrix D∗ using the ordering array P as:
D∗

pq = DP (p),P (q), for 1 ≤ p, q ≤ n.

Algorithm 2.1.2: Prim’s Algorithm [Prim, 1957]

Input: D - dissimilarity matrix
Data: I = ∅; J = {o1, . . . , on}
Pick a starting object om
I← {om}, J← J− {om}
for r = 2, . . . , n do

Select
(i, j) ∈ argmin

op∈I,oq∈J
Dpq. (2.3)

Create an edge between oi and oj.
I← I ∪ {oj} and J← J− {oj}.

(a) Numerical object data - X (b) Unordered image - I(D) (c) VAT image - I(D∗)

Figure 2.4: Example of how VAT image suggests cluster tendency by the number of
dark blocks along diagonal
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There are many VAT-based algorithms that either extend the functionality of

VAT or perform the functions of VAT automatically. These algorithms include, but

are not limited to, scalable VAT (sVAT) [Hathaway et al., 2006], bigVAT [Huband

et al., 2005], revised VAT (reVAT) [Huband et al., 2004], co-VAT [Bezdek et al., 2007],

Visual Cluster Validity (VCV) [Hathaway and Bezdek, 2003, Huband and Bezdek,

2008, Ding and Harrison, 2007], Correlation Cluster Validity (CCV) [Popescu et al.,

2008], Dark Block Extraction (DBE) [Wang et al., 2009], and Cluster Count Extraction

(CCE) [Sledge et al., 2009a].

A VAT-based algorithm that is directly relevant to this dissertation is improved -

VAT (iVAT) [Wang et al., 2010]. The iVAT algorithm uses a path-based distance

measure from [Fisher et al., 2001]. Consider D to represent the weights of the edges

of a fully-connected graph. The path-based distance is defined as

D′
ij = min

p∈Pij

max
1≤h<|p|

Dp[h]p[h+1], (2.4)

where p ∈ Pij is an acyclic path in the set of all acyclic paths between vertex i (oi)

and vertex j (oj), p[h] is the index of the hth vertex along path p, and |p| is the

number of vertexes along the path. Hence, Dp[h]p[h+1] is the weight of the hth edge

along path p. Essentially the cost of each path p is the maximum weight of its |p|
edges. The distance between i and j is the cost of the minimum-cost path in Pij.

The authors of [Wang et al., 2010] first transform D into D′ with (2.4), then they use

VAT on the transformed dissimilarity matrix. The iVAT images show considerable

improvement over VAT images in showing the cluster tendency for “tough” cases.

Computing D′ directly from (2.4) can be thought of as a shortest path problem.

The Floyd-Warshall algorithm [Cormen et al., 2009] is an algorithm that solves for

all n2 pairs of lowest-cost pathes in a connected graph with n nodes. The Floyd-
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Warshall algorithm has a complexity of O(n3). The complexity of the VAT algorithm

is O(n2); thus, the total complexity of iVAT as proposed in [Wang et al., 2010] is

O(n3 + n2) = O(n3). I show in Section 3.4 that i) the iVAT dissimilarity matrix D′

can be computed recursively from the VAT-reordered data D∗ in O(n2).

Figure 2.5 illustrates the ability of iVAT to show correct cluster tendency for two

cases where VAT “fails”. Views (a,b) show object data from which a standard Eu-

clidean norm is used to compute dissimilarity data D. Views (c,e) show the respective

VAT images of the 3 Lines and Boxes and Line data. The VAT image of the 3 Lines

data clearly does not show the preferable tendency of 3 clusters. Although the VAT

image of the Boxes and Line data shows the four tightly grouped clusters as 4 distinct

dark blocks in the lower-right of the image, the large wavy cluster is not distinctly

shown. In both cases, the iVAT images, shown in views (d,f), show the preferred

cluster tendency—3 clusters in the 3 Lines data and 5 clusters in the Boxes and Line

data.

2.1.2 Other Block Reordering Methods

The reordering problem can be thought of as solving the Traveling Salesman Problem

(TSP). Essentially, the ordering of the dissimilarity matrix is analogous to the permu-

tation of the travel-plan that minimizes the distance a salesman would have to travel

for a given set of connected map points. Map points that are close to one another

should be visited together to minimize travel costs. There are a virtually uncount-

able number of proposed solutions to the TSP, from the most expensive, exhaustive

methods, to more efficient methods.

Rosenkrantz et al. [1977] and Reinelt [1994] compare several methods for solving

the TSP. The descriptions of some of these schemes (translated into the context of

matrix reordering) are outlined in Table 2.1 as well as the ratio of the trip cost to the
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Figure 2.5: VAT and iVAT images of dissimilarity data where VAT “fails”
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Table 2.1: Traveling salesman-based solutions to the matrix reordering problem.
E/E∗ indicates the ratio of the trip cost to the optimal trip cost. [Tran-Luu, 1996]

Method Description
Furthest Insertion (FI) The element that is most dissimilar to the current ordered

set is inserted in the “best” location that minimizes E.
E/E∗ ≤ 1.25

Cheapest Insertion (CI) The element that minimizes E given the current ordered
set is inserted in the “best” location that minimizes
E. The complexity of this algorithm is O(N2 logN).
E/E∗ ≤ 2(1− 1/N)

Nearest Insertion (NI) The element most similar to any element in the current
ordered set is inserted in the “best” location. The com-
plexity of this algorithm is O(N2). E/E∗ ≤ 2(1− 1/N)

Nearest Neighbor (NN) The element most similar to the last added element in the
ordered set is added. The complexity is O(N2). E/E∗ ≤
0.5 (ceil(logN) + 1)

optimal trip cost, E/E∗. Notice that the initializations of the TSP-based algorithms

are undefined. Hence, for comparison purposes, I will use the initial object chosen

by VAT as the initial object for each of these reordering methods. How is the trip

cost measured in the context of matrix reordering? Tran-Luu [1996] examined this

problem.

The work of Tran-Luu [1996] focuses on reordering the dissimilarity matrix into

an “acceptable block form” with the end goal of visualizing the clustering structure

of these data. He proposes two measures of “blockness”, the Bond Energy (BE) and

the Linear Placement (LPm). However, as the author points out, the problems of

optimizing these measures are NP-complete. Thus, the author continues by defin-

ing two heuristic solutions, linearization of the Minimum Spanning Tree (MST) and

linearization of the dendogram generated by SL. The author’s experimental results

show that the LPm measure produces the best results when used with the lineariza-

tion reordering methods as well as with the TSP-based solutions presented in Table

2.1. However, the LPm measure is computed for a dissimilarity matrix D by first
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thresholding D to obtain a binary matrix B, Bij = {1|Dij ≤ σ, 0|else}. Like Matlab’s

RCM method, the performance of this measure is very sensitive to the choice of the

threshold. It should be noted that Tran-Luu [1996] did not specify or offer a method

for setting the threshold of the LPm measure.

BE is computed as

EBE(D) =
N∑
i=1

M∑
j=1

Dij · (Di−1,j +Di+1,j +Di,j−1 +Di,j+1) , (2.5)

where D0,j = DN+1,j = Di,0 = Di,M+1 = 0. Equation 2.5 can be quickly computed in

Matlab as

EBE(D) =
∑
∀i,j

Dij · (D ∗A)ij ,

A =

⎡
⎢⎢⎢⎢⎣

0 1 0

1 0 1

0 1 0

⎤
⎥⎥⎥⎥⎦ ,

where (∗) indicates convolution.
Figure 2.6 shows the reordered dissimilarity images (RDIs) computed using the

methods described in this section on 100 objects that have a preferred (by me) cluster

tendency of 5 clusters. Views (b-d) show that the VAT, NN, and FI algorithms

show this preferred tendency, while the cluster tendency shown by the NI and CI

algorithms in views (e,f) is unclear. Because the NI and CI algorithm are unable to

effectively show the cluster tendency for this (seemingly) simply example, I will not

show additional results for these algorithms.
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Figure 2.6: Reordered dissimilarity images of 5 Gaussian clouds

2.2 Partitioning Relational Data

There are many types of relational data. Figure 2.7 illustrates a few of these types.

Figure 2.7(a) illustrates the type of object data that most clustering algorithms are

designed for. For this datatype, the objects in A are described by a set of features,

where FA ∈ Rd×n denote the d-dimensional features of the n objects O. In contrast

to this type of problem, Fig. 2.7(b) illustrates the most well-known of relational data,

square-relational, where only the relation between all pairs of objects are known.

These data are denoted RA ∈ Rn×n, where RA = [rij = relation(oi, oj)|1 ≤ i, j ≤
n]. This dissertation will primarily focus on relational data. These data are called

homogeneous relations [Long et al., 2007]. As stated in Section 1.1, such relations

typically represent the dissimilarity (or distance) of each pair of objects.
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Figure 2.7: Different types of relational data. (a) Objects described by features
(object data); (b) objects described by pair-wise relations (square relational data);
(c) objects described by the relations to another set of objects (rectangular relational
data); (d) and (e) show objects that are described by a combination of the types
shown in (a), (b), and (c) [Long et al., 2007].

Figure 2.7(c) illustrates typical rectangular relational data. There are two sets of

objects, OA and OB (often called the row and column objects), and only the relation

is known between the row-column pairs, {o1,A, o1,B}, {o1,A, o2,B}, etc. The relational

data among the row (or column) objects is not known. These data are denoted

RAB ∈ RnA×nB , where RAB = [rij = relation(oi,A, oj,B)|1 ≤ i ≤ nA, 1 ≤ j ≤ nB].

If the objects in A and the objects in B are different types of objects (e.g. movies

and reviewers, or genes and treatments), these data are called heterogeneous relations

[Long et al., 2007]. Rectangular relational data are specifically addressed in Secs. 2.3

and 4.3.

Figures 2.7(d,e) show other types of relational data. View (d) illustrates that

the data are composed of a set of feature vectors that describe OA and a set of

hetergeneous relations that describe the relationship between OA and OB. View (e)

illustrates a case where the date are composed of all types, including feature vectors,

homogeneous relations, and heterogeneous relations. Although the data-types shown

in Figs. 2.7(d,e) are interesting, I do not study these specifically herein. Another

31



good reference on clustering mixed types of relational data is the work by Zhang

et al. [2006].

2.2.1 Sequential Clustering

Sequential clustering algorithms are the most simple of all clustering algorithms. Es-

sentially, the objects are presented sequentially and each object is either, i) partitioned

into an existing cluster or ii) is partitioned into a new cluster. The Basic Sequential

Algorithmic Scheme (BSAS) is perhaps the most basic of all clustering algorithms.

BSAS is outlined in Algorithm 2.2.1. The cluster-to-object distance can be any chosen

distance, e.g. SL, average-linkage, or complete-linkage (these distances are defined in

Section 2.2.2).

Many variants exist to the BSAS, including modified BSAS (MBSAS) and the two-

threshold scheme (TTSAS). The results of BSAS, in particular, are very dependent

on the order in which the data are presented. MBSAS and TTSAS attempt to reduce

this effect by deferring partition decisions for certain objects.

Sequential clustering algorithms are an attractive option for very-large data sets

as these algorithms only iterate through the training data once; hence, they are very

computationally inexpensive.

2.2.2 Hierarchical Clustering

Hierarchical clustering algorithms fall into two categories, agglomerative and divisive.

Agglomerative algorithms create partitions by beginning with each object in its own

cluster, or, in other words, with the singleton clusters, then partitions are built by

combining clusters until all the objects are in one cluster. Divisive algorithms start

with all objects in one cluster, the universal set, and then divide clusters until each
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Algorithm 2.2.1: Basic Sequential Algorithmic Scheme [Theodoridis and
Koutroumbas, 2009]

Data: Objects O = {o1, . . . , on}
Choose distance threshold Θ.
Start with c = 1 and C1 = {o1}.
for i = 2 to n do

j = argmink d(oi, Ck)
if d(oi, Cj) ≤ Θ then

Cj = {Cj, oi}
else

c← c+ 1
Cc = {oi}

object is in its own cluster (the singletons). Hierarchical clustering algorithms produce

a partition for each value of c = 1, . . . , n, where n is the total number of objects being

partitioned.

Single-linkage

SL hierarchical clustering can be used on both numerical object data X and (square)

relational data D. I emphasize that D is square here to distinguish this problem

from the case of rectangular relational data. Section 4.3 presents a rectangular SL

algorithm (ReSL). In order to simplify the discussion of SL, I assume that numerical

data has been converted to relational data by a vector norm distance measure. In

terms of the dissimilarity matrix D, the SL (set) distance between two clusters C1

and C2 is defined as

dSL(C1,C2) = min
op∈C1,oq∈C2

Dpq. (2.6)

Figure 2.8 illustrates the SL distance between two clusters composed of two-dimensional

numerical object data. This distance measure is used at each step of the SL agglom-

erative clustering algorithm to determine which two clusters are joined. Algorithm

2.2.2 outlines the steps of SL agglomerative clustering.
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Figure 2.8: SL distance between two clusters

Algorithm 2.2.2: SL Agglomerative Clustering [Duda et al., 2000]

Input: D - dissimilarity matrix, dpq = dissimilarity(op, oq), 1 ≤ i, j ≤ n
Data: C(n) = {{o1}, {o2}, . . . , {on}}
for c = n, . . . , 2 do

Sij = dSL(C
(c)
i ,C

(c)
j ) ∀i, j (2.7)

Find closest two clusters, {l,m} = argmini,j Sij.

C(c−1) ← C(c) −C
(c)
l −C(c)

m +C
(c)
l ∪C(c)

m

SL clustering can also be expressed in terms of the MST of the connected graph

that represent the object data. The weight of the edge between two objects is the

dissimilarity value of those two objects. The MST is defined as the n− 1 edges that

fully connect the object data O and have the minimum summed edge weight [Harary,

2004]. A number of algorithms exist that compute the MST of a connected graph,

Prim’s and Kruskal’s algorithms being two of the most popular [Prim, 1957, Kruskal,

1956]. The SL distance and the MST are related in that the weight of the MST edge

between two subtrees of object data is the SL distance between them. Algorithm 2.1.2

outlines Prim’s algorithm, where (2.3) returns the indices of the two closest objects

from sets I and J according to the SL distance.

The SL clusters of the object data O can be found by cutting the high weight

edges of the MST and examining the resulting subtrees [Gower and Ross, 1969]. For

example, the 5-partition of O can be found by cutting the four highest weight edges

in the MST of O, which results in five subtrees—each containing the objects that

represent a cluster. I use this important result in Section 3.2.1 to prove that SL

34



clusters are aligned partitions of the VAT reordered objects O∗.

This dissertation will focus mostly on SL distance as it pertains to the research

discussed. However, it is important to note that there are other distance measures that

can be used with hierarchical clustering, such as average-linkage, complete-linkage,

centroid-linkage, median-linkage, and Ward’s-linkage. For the sake of completeness,

average-linkage and complete-linkage are defined below.

Average- and complete-linkage

Average- and complete-linkage hierarchical clustering can be performed in the same

manner as the SL agglomerative algorithm: Algorithm 2.2.2. However, Eq.(2.7) is

replaced by the appropriate linkage distance. For a given c-partition, average-linkage

is defined as

Sij = dAL(C
(c)
i ,C

(c)
j ) (2.8)

=
1

|Ci||Cj|
∑

op∈Ci,oq∈Cj

Dpq,

where |Ci| is the number of objects in the ith cluster. Complete-linkage is defined as

Sij = dAL(C
(c)
i ,C

(c)
j ) (2.9)

= max
op∈Ci,oq∈Cj

Dpq.

2.2.3 Partitional Clustering

In contrast to sequential and hierarchical clustering, partitional clustering directly

computes the partitions by solving for an optima of a criterion function. The crite-

ria typically involve optimizing the dissimilarity between clusters and the similarity

among clusters. The most well-known crisp partitional clustering algorithms are k-
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means and ISODATA [Ball and Hall, 1965]; the most well-known soft (fuzzy and

possibilistic) clustering algorithms are fuzzy c-means (FCM) [Bezdek, 1981] and pos-

sibilistic c-means (PCM) [Krishnapuram and Keller, 1993]. There are numerous

variants of these algorithms, some of which are described in Anderberg [1973], Hopp-

ner et al. [1999], Jain and Dubes [1988], Pal et al. [1997], Timm et al. [2004], Timm

and Kruse [2002], Pal et al. [2005], and Krisnapuram et al. [1995]. Many of these

algorithms minimize an objective function of the form,

J(U,V) =
c∑

i=1

n∑
k=1

Um
ik ‖ �xk − �vi ‖2 −P (U), (2.10)

for a partition U ∈ Mhcn, Mfcn, or Mpcn, V = {�v1, . . . , �vc} ∈ Rd×c are the cluster

prototypes, c is the assumed number of clusters, and m is a “fuzzification” parame-

ter. The function P (U) is a penalty term that is often used in possibilistic clustering

[Krishnapuram and Keller, 1993]. Equation (2.10) is often solved using an alter-

nating optimization method, where, for the case of c-means algorithms, the cluster

prototypes are computed by

�vi =
n∑

k=1

Um
ik�xk/

n∑
k=1

Um
ik , (2.11)

where m = 1 for hard k-means and is the “fuzzification” parameter for fuzzy or pos-

sibilistic methods. For the k-means algorithm, the partition matrix is then computed

by

Uik =

⎧⎪⎨
⎪⎩

0 Dik > min1≤j≤c{Dik}
1 else

. (2.12)
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Note that if there is a tie in the above equation, the object is partitioned into only

one cluster. For the FCM algorithm, the partition update is

Uik = 1/

[
c∑

j=1

(Dik/Djk)
2/(m−1)

]
. (2.13)

The prototype and partition updates are alternated until convergence (there is little

change in U). In relational data the quantity ‖ �xk−�vi ‖2 cannot be directly computed

as the object data X and prototype vectors �v are unavailable. Thus, the c-means

algorithms cannot be directly applied to relational data.

Hathaway et al. [1989] proposed relational duals of the c-means algorithms, FCM

and k-means by reformulating (2.10) as

K(U) =
c∑

i=1

(
n∑

j=1

n∑
k=1

(Um
ij U

m
ik δ

2
jk)/

(
2

n∑
t=1

Um
it

))
, (2.14)

where δ2jk is pair-wise squared-distance. The relational k-means algorithm and the

relational FCM algorithm are outlined in Algorithms 2.2.3 and 2.2.4, respectively.

Algorithm 2.2.3: Relational hard k-means [Hathaway et al., 1989]

Input: D - squared-distance matrix, dpq = dissimilarity(op, oq), 1 ≤ i, j ≤ n, c
- number of clusters

Data: U - partition matrix, where Uij is the membership of object j in cluster
i.

while ‖ Unew −Uold ‖≤ ε do
Calculate the c “prototypes” using Uold,

vi = (Ui1, Ui2, . . . , Uin)
T/

n∑
k=1

Uik. (2.15)

Update U using (2.12) with

d2ik = (D�vi)k − (�vTi D�vi)/2. (2.16)
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Algorithm 2.2.4: Relational fuzzy c-means [Hathaway et al., 1989]

Input: D - squared-distance matrix, dpq = dissimilarity(op, oq), 1 ≤ i, j ≤ n, c
- number of clusters, m - fuzzifier

Data: U - partition matrix, where Uij is the membership of object j in cluster
i.

while ‖ Unew −Uold ‖≤ ε do
Calculate the c prototypes using Uold,

vi = (Um
i1 , U

m
i2 , . . . , U

m
in)

T/
n∑

k=1

Um
ik . (2.17)

Update U using (2.13) with

d2ik = (D�vi)k − (�vTi D�vi)/2.

The relational c-means algorithms are limited to relational data that are Euclidean

distance matrices, where these matrices are defined as as a symmetric, zero-diagonal

matrix that can be expressed as

D2
ij =‖ �xi − �xj ‖22, �x ∈ RD. (2.18)

If D is not a distance matrix then the calculation of (2.16) can result in a negative

value. In relational hard k-means, this is not necessary a bad thing as one merely

compares distance values in (2.12). However, a negative distance in the calculation of

the FCM partition update, (2.13), is disastrous. Hence, Hathaway and Bezdek [1994a]

proposed Non-Euclidean Relational Fuzzy c-Means (NERFcM) as a way to generalize

RFCM to pre-distance matrices (n×n symmetric matrices with non-negative elements

and a zero-valued diagonal).

To overcome the problem of non-Euclidean data, NERFcM uses the β-spread

transform to convert the non-Euclidean matrix D into a Euclidean matrix Dβ. The
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β-spread transform is defined as

Dβ = D+ β (M− I) , (2.19)

where β is a scalar value, I ∈ Rn×n is the identity matrix, and M ∈ Rn×n is the

diagonal matrix Mij = 1, i = j and Mij = 0, i �= j. The idea is to choose a “big-

enough” value for β such that the values d2ik computed by (2.16) are all non-negative.

The NERFcM algorithm is essentially the same of the relational FCM algorithm,

except thatDβ is used in all equations. If following the distance calculation a negative

d2ik occurs, the matrix Dβ is recalculated with a value of β +Δβ, where

Δβ = max
i,k

= {−2d2ik/ ‖ �vi − �ek ‖2}, (2.20)

and �ek is the kth column of the identity matrix. Hathaway and Bezdek [1994b]

and Hathaway and Bezdek [1994a] provide a proof that the β-spread transform ac-

complishes the task of transforming a non-Euclidean distance matrix to a Euclidean

distance matrix. Note, however, that () is an approximation to this task.

2.3 Clustering in Rectangular Data

Rectangular object data (also called bi-type data) consist of m row-objects Or and

n column-objects Oc, which are disjoint sets of objects, and, thus, comprise a set of

N = m + n total objects. Unlike square relational data, rectangular relational data

only contain relation values between the disjoint object sets Or and Oc, leaving the

inter-relations of objects in either Or or Oc undefined. An example of rectangular

relational data is the reviewer-ratings of movies, where the row-objects are movies,

the column-objects are reviewers, and the ratings relate each reviewer to each movie.
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The relation between reviewers (or movies) is unknown. Another example is docu-

ment data, where the row-objects are documents, the column-objects are words or

terms, and the relational data are the frequencies of each word in each document.

Rectangular data are illustrated in Fig. 2.7(c).

VanMechelen et al. [2004] describes rectangular relational data as “proximity

type”, where in the rectangular case the data are considered incomplete because

the full set of N = m + n proximities do not exist. The reasons for the incomplete-

ness could be due to the heterogenous nature of the data, such that (dis)similarity

measures do not exist to measure the proximity between row objects and objects.

There are five types of clusters in rectangular data; Table 2.2 outlines these types

[Bezdek et al., 2007]. The three types of clusters that are composed from the the

union of the row-object and column-objects, Or∪Oc, are of special interest. Clusters

of type P3 are composed of either Or or Oc, and these clusters are not mixed. Often

the number of type P3 clusters in Or ∪ Oc is cr∪c = cr + cc. Although P3 clusters

are only composed of either row or column objects, there could be P3 clusters that

are composed of row objects that are very similar to P3 clusters composed of column

objects. If these clusters are joined, where row and column objects are mixed, these

form the P4 clusters. These clusters, often called co-clusters, are the type that most

bi-clustering or co-clustering algorithms look for. The P5 clusters are similar to P3

clusters in that they are only composed of either Or or Oc. However, these clusters

do not include the objects that are in co-clusters. Hence, cp = (cr∪c − cco).

Example 2.3.1 illustrates the five cluster types for 2D Euclidean object data.

2.3.1 co-VAT: Assessing Tendency in Rectangular Data

The VAT algorithm for rectangular dissimilarity data is called co-VAT. The “co”

prefix comes from the property of co-VAT in showing the number of co-clusters in
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Table 2.2: Types of Clusters in Rectangular Dissimilarity Data [Bezdek et al., 2007]

Type No. of Clusters Description
P1 cr Clusters in row-objects Or

P2 cc Clusters in column-objects Oc

P3 cr∪c All clusters in the union of objects Or ∪Oc

P4 cco Mixed clusters in the union of objects Or ∪Oc

P5 cp Pure clusters in the union of objects Or ∪Oc

rectangular data. The rectangular matrix D contains pair-wise dissimilarity values

between m row-objects Or and n column-objects Oc. Assume the two sets of objects

are indexed as Or = {o1, . . . , om} and Oc = {om+1, . . . , om+n}. Thus the ith row and

jth column entry of D, dij = d(oi, om+j).

co-VAT begins by creating a square matrix Dr∪c, part of which is composed of

the rectangular dissimilarity matrix D. Dr∪c is created by, first, estimating the dis-

similarity matrices Dr and Dc, which are, respectively, square dissimilarity matrices

that relate the objects in Or and Oc to themselves — i.e. [Dr]ij ≈ d(oi, oj) and

[Dc]ij ≈ d(om+i, om+j). Dr∪c is organized as

Dr∪c =

⎡
⎢⎣ Dr D

DT Dc

⎤
⎥⎦ = (2.21)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣

d(o1, o1) · · · d(o1, om)

...
. . .

...

d(om, o1) · · · d(om, om)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

d(o1, om+1) · · · d(o1, om+n)

...
. . .

...

d(om, om+1) · · · d(om, om+n)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

d(o1, om+1) · · · d(om, om+n)

...
. . .

...

d(o1, om+n) · · · d(om, om+n)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

d(om+1, om+1) · · · d(om+1, om+n)

...
. . .

...

d(om+n, om+1) · · · d(om+n, om+n)

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The elements in Dr and Dc are estimated from D using any vector norm on Rn and
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Rm,

[Dr]ij = λr||�di∗ − �dj∗||, 1 ≤ i, j ≤ m, (2.22)

[Dc]ij = λc||�d∗i − �d∗j||, 1 ≤ i, j ≤ n, (2.23)

where �di∗ is the ith row of D, �d∗j is the jth column of D, and λr and λc are scale

factors such that the mean of the off-diagonal elements of Dr and Dc match the mean

of D. The scale factors λr and λc ensure that the relative scale of the dissimilarity

values in Dr and Dc is the same as in D, which is important for the construction of

Dr∪c as this matrix is built from all three matrices, Dr, Dc, and D. Because co-VAT

is a visualization algorithm, the scale factors ensure that the imputed dissimilarity

matrices Dr and Dc can be viewed with the same gray scale as D.

Algorithm 2.3.1 outlines the steps of co-VAT, which obtains a reordered rectangu-

lar matrix D∗. By viewing the image I(D∗), one can determine the cluster tendency

of the rectangular data. However, this algorithm is fundamentally different than VAT

in that it displays the cluster tendency of the multiple types of rectangular data clus-

ters. Note that line 6 in algorithm 2.3.1 is a corrected version of the original co-VAT

definition in [Bezdek et al., 2007].

Example 2.3.1 (Three row-object clouds, Four column-object clouds). This example

shows the five types of rectangular clusters types. Figure 2.9(a) shows a plot of

50 row-objects (circles) and 80 column-objects (squares). Note that objects in this

example are Euclidean (for demonstration purposes); however, this is usually not the

case for objects represented by rectangular relational data.

The P1 clusters are the three clusters of row-objects organized at the bottom of

the plot. The P2 clusters are the four clusters of column-objects at the four corners

of the plot. There are seven clusters in the union of the objects, namely the three P1
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Figure 2.9: Rectangular relational data example. (a,b) - object data and dissimilarity
data; (c-f) - co-VAT-reordered dissimilarity data matrices.
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Algorithm 2.3.1: co-VAT Algorithm [Bezdek et al., 2007]

Input: D - m× n rectangular dissimilarity matrix
Build estimates of Dr and Dc using Eqs.(2.22) and (2.23), respectively.
Build Dr∪c using Eq.(2.21).
Run VAT on Dr∪c, saving permutation array, Pr∪c = {P (1), . . . , P (m+ n)}
Initialize rc = cc = 0; RP = CP = 0.
for t = 1, . . . ,m+ n do1

if P (t) ≤ m then2

rc = rc+ 1, rc is row component3

RP (rc) = P (t), RP are row indexes4

else
cc = cc+ 1, cc is column component5

CP (cc) = P (t)−m, CP are column indexes6

Form the co-VAT ordered rectangular dissimilarity matrix,
D∗ = [d∗ij] = [dRP (i)CP (j)], 1 ≤ i ≤ m; 1 ≤ j ≤ n

clusters and the four P2 clusters. The P4 clusters (or co-clusters) are the five groups

that are apparent if the row-objects and column-objects are mixed together. Finally,

there are two P5 clusters, the two groups that are composed of both row and column

objects at the bottom-left and bottom-right of the plot.

Figure 2.9(b) shows the rectangular dissimilarity data for the 50 row-objects and

80 column-objects in view (a). The tendency of three (P1) clusters in the row-objects

and the four (P2) clusters in the column-objects is clearly shown in the VAT images

of D∗
r and D∗

c in Figs. 2.9(c,d), respectively. The tendency of five (P4) clusters is

shown in the VAT image of D∗
r∪c in Fig. 2.9(e). Finally, the co-VAT image of the

rectangular dissimilarity data is creating using the reordering indexes of D∗
r∪c. The

co-VAT image is shown in view (f) and shows a tendency of two clusters that are

composed of both row and column objects.

Example 2.3.2 (Pure rectangular relational data). This example shows the utility of

co-VAT on relational data that are not derived from object data (as was shown in the

previous example). Figure 2.10(a) shows a dissimilarity matrix of 250 row objects and
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300 column objects. Figures 2.10(b-e) show the co-VAT images of this dissimilarity

data. View (b) indicates that there are 4 (P1) clusters of row objects; view (c)

indicates that there are 4 (P2) clusters of column objects. View (d) illustrates that

in the union of the row and column objects there are 5 (P4) co-clusters. Finally, view

(e) is the co-VAT image, which shows a tendency of 3 (P5) clusters.

Next, I move on to clustering in another type of data: ontologies.

2.4 Clustering in Ontological Data

Ontological data is composed of collections of terms organized in a hierarchical tax-

onomy. I refer to these data sets as ontological data. These are typically composed

of hundreds of dimensions (individual terms) and can also be very large—on the or-

der of 10,000 samples. One example of ontological data is the Gene Ontology (GO)

[The Gene Ontology Consortium, 2004]. The GO is a hierarchical taxonomy of char-

acteristic annotations of genes. Each term in the GO is taken from a controlled

vocabulary, or corpus, and describes gene and gene product attributes. Although

the ontology-based examples presented in this dissertation are based on the GO, it

is easy to generalize any of the algorithms presented here to any ontology, of which

numerical pair-wise term similarities can be generated. Examples of such ontological

data include patient medical records, stock nomenclature, and web documents.

Suppose two genes, G1 and G2, are represented by a set of GO terms G1 =

{T11, T12, . . . , T1n} and G2 = {T21, T22, . . . , T2m}. For these sets, one can compute a

similarity value using a number of methods [see Lord et al., 2003, Jiang and Conrath,

1997, Keller et al., 2004, Popescu et al., 2006, Keller et al., 2006]. These methods are

described in detail in Section 2.4.1. Examples of GO annotations for genes that are

used in this dissertation are presented in Tables 2.3 and 2.5. Table 2.3 shows the GO
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Figure 2.10: Pure rectangular relational data example. (a) - dissimilarity data; (b-e)
- co-VAT-reordered dissimilarity data matrices.

46



Table 2.3: Example GO Annotations for GPD19412.10.03 Proteins.

GO id GO term Definition
AAC79117 GO:0004722 protein serine/threonine phosphatase activity
(MTMR1) GO:0004725 protein tyrosine phosphatase activity

GO:0016787 hydrolase activity
GO:0006470 protein amino acid dephosphorylation
GO:0008372 cellular component

AAK34949 GO:0004713 protein tyrosine kinase activity
(FGFR4) GO:0005524 ATP binding

GO:0016740 transferase activity
GO:0006468 protein amino acid phosphorylation
GO:0004872 receptor activity

AAA51844 GO:0005201 extracellular matrix structural constituent
(COL1A2) GO:0005581 collagen

GO:0008147 structural constituent of bone
GO:0001501 skeletal system development
GO:0005584 collagen type I

annotations of 3 human gene products selected from a well-studied data set, called

GPD19412.10.03. The GPD19412.10.03 data set contains 194 human gene products that

appear in the GO. Popescu et al. [2004] contains a detailed description of the con-

struction of this data. In brief, the object data are comprised of 21 gene products

from the myotublarin protein family, 87 gene products from the receptor precursor

protein family, and 86 gene products from the collagen alpha chain protein family.

Table 2.4 presents the ENSEMBL characteristics of the GPD19412.10.03 families. The

three protein families are clearly visible in Fig. 2.11, which shows images of D194

(built with various GO-based similarity measures) ordered according to family. Note

the strong substructure within the collagen alpha chain protein family, which is the

block at the bottom right of the images in Fig. 2.11. This substructure has been cor-

roborated by Myllyharju and Kivirikko [2004] and is also supported by the algorithms

in this dissertation.

Figure 2.12 shows VAT-reordered dissimilarity dataD∗ for a set of 198 Arabidopsis
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Figure 2.11: Dissimilarity data D194 of GPD19412.10.03 built with different similarity
measures, D = 1− S.
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Table 2.4: Characteristics of the GPD19412.10.03 Data Set Extracted rom ENSEMBL
[Hubbard et al., 2009].

ENSEMBL Fi = Protein Ni = No. Indices in
family ID family of sequences Fig. 2.11

339 myotubularin 21 1-21
73 receptor precursor 87 22-108
42 collagen alpha chain 86 109-194

transcription factors — proteins that bind to regulatory regions and help control gene

expression. The Gene Ontology annotations for four of these genes are shown in Table

2.5. In [Havens et al., 2008], we investigated methods for fusing the dissimilarity data

shown in Fig. 2.12 with microarray data from an experiment that examined the genetic

effects of insect and wounding stress.

2.4.1 Ontology Similarity Measures

Information about gene products and how they are similar to one another is of great

importance in bioinformatics. Traditional approaches use the the DNA sequence

as well as the expression values from microarray experiments to produce similarity

values. However, additional information, which is more symbolic in nature, is avail-

able about gene products in the GO terms and index terms in publications about

gene products [Raychaduri and Altman, 2003]. I use these symbolic data about gene

products to build visualization and functional summarization.

Each gene product, Gi, is represented by a collection of GO termsGi = {Ti1, . . . , Tini
}.

Previously developed methods of computing similarity measures for two gene prod-

ucts that are annotated by GO terms are described in detail in Keller et al. [2004],

Popescu et al. [2006], Keller et al. [2006], Jiang and Conrath [1997], Resnik [1995],

Lin [1998], and Lord et al. [2003]. Next, I give a brief overview of these similarity

measures along with commentary on the strengths and weaknesses of each.
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Figure 2.12: VAT-reordered dissimilarity data D∗
TF198 of Arabidopsis transcription-

factors built with different similarity measures, D = 1− S.
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Table 2.5: Example GO Annotations for Arabidopsis Transcription Factor-Related
Genes, TF198.

GO id GO term Definition
AT2G35700 GO:0003677 DNA binding

GO:0003700 transcription factor activity
GO:0005634 nucleus
GO:0006355 regulation of transcription, DNA-dep.

AT1G46768 GO:0003677 DNA binding
GO:0003700 transcription factor activity
GO:0005634 nucleus
GO:0006355 regulation of transcription, DNA-dep.

AT4G17710 GO:0003677 DNA binding
GO:0003700 transcription factor activity
GO:0005634 nucleus
GO:0006355 regulation of transcription, DNA-dep.

AT5G60890 GO:0000162 tryptophan biosynthesis
GO:0003677 DNA binding
GO:0003700 transcription factor activity
GO:0005634 nucleus
GO:0009651 response to salt stress
GO:0009737 response to abscisic acid stimulus
GO:0009739 response to gibberellic acid stimulus
GO:0009751 response to salicylic acid stimulus
GO:0009753 response to jasmonic acid stimulus
GO:0009759 indole glucosinolate biosynthesis
GO:0016301 kinase activity
GO:0016563 transcriptional activator activity

Set-based and vector-based similarity measures

For two gene products, G1 = {T11, . . . , T1n1} and G2 = {T21, . . . , T2n2}, one can use

set-based similarity measures to define a similarity value between G1 and G2, denoted

s(G1, G2). Two such measures are the Jaccard and Dice similarity measures,

sJ(G1, G2) =
|G1 ∩G2|
|G1 ∪G2| , (2.24)

sD(G1, G2) =
2|G1 ∩G2|
|G1|+ |G2| . (2.25)
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Figure 2.11(a,b) illustrate these similarity measures for GPD19412.10.03.

A property of set-based similarities is that if G1 ∩ G2 = ∅, then s(G1, G2) = 0.

This is an undesirable property as two genes that are annotated by GO terms that

are near to each other on the hierarchical tree (but not identical) should have a non-

zero similarity. In essence, set-based similarities under-represent the similarity values.

This problem also is present in vector-based similarity measures, such as the cosine

similarity. Vector-based methods are based on a binary vector representation of each

gene product, where �vi ∈ RNT and NT is the total number of unique terms in the

ontology. Each element of �vi has a value of 1 if the gene is annotated by the associated

term and 0, otherwise. The cosine similarity is defined as

sV C(G1, G2) =
�v1 · �v2
|�v1||�v2| , (2.26)

where �v1 · �v2 is the dot product and | · | is the vector norm. Figure 2.11(c) shows

D194 built with the cosine similarity. Notice that the cosine similarity will produce a

non-zero similarity only if the two gene products share a common annotation. Also,

NT is typically very large; thus, vector-based approaches become computationally

expensive [Popescu et al., 2006]. The vectors are also quite sparse, which is another

bad property of the use of vector-based approaches on GO data.

To address the problems of set-based and vector similarity measures, one can use

term-based similarity measures. Pair-wise term similarity values are computed for all

pairs of terms between G1 and G2 and these pair-wise similarities are aggregated to

produce a similarity s(G1, G2). Two approaches for computing the similarity between

two terms are path-based methods and information-theoretic constructs.
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Path-based similarity measures

The most standard form of the path-length similarity measure is the PATH measure

which is simply the inverse of the shortest path length between two terms. The

shortest path length in an ontology is defined as the path between the two terms and

their nearest-common-ancestor (NCA).

Two other well-known path-length similarity measures are the LCH [Leacock and

Chodorow, 1998] and the WUP [Wu and Palmer, 1994]. The LCH measure normalizes

the value of the PATH measure by the maximum path length between all pairs of

children of the NCA. Effectively, the LCH combines both the path-length similarity

between two terms as well as the specificity of the two terms into a composite measure

of similarity. The WUP measure also does this by scaling the shortest-path-length

between two terms by the sum of the path-lengths from each term to the root term

(the sum of the depths of each term).

Nagar and Al-Mubaid [2008] measure similarity between GO terms by averaging

all path-lengths between two terms and using an exponential transfer function to

compute similarity. The authors showed that this measure performed comparably to

information theoretic measures in a (very) limited empirical study.

Path-based similarity measures are more effective than set-based measures at mea-

suring similarity between ontology terms because they take into account the struc-

ture of the tree. Another type of similarity that takes this structure into account is

information-theoretic similarity.

Information-theoretic similarity measures

Information-theoretic similarity measures are based on the information content of

each term. The information content is proportional to the number of occurrences in a

corpus of each term and its children from the ontology. Often information content is
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expressed as the log of probability, such that an information content = 1 indicates that

a term appears only once in the corpus, and an information content = 0 indicates that

a term or one of its children appear in all entries. This type of representation is very

helpful as terms that have a low information content are not as useful for clustering

because they are less specific than terms with high information content. Clearly,

the corpus used for a specific problem influences the information content value; I

use Swiss-Prot-HUMAN for the GPD19412.10.03 data — which is composed of human

genes — and Swiss-Prot-ARABIDOPSIS for the Arabidopsis examples [The UniProt

Consotium, 2007]. There are many types of links in the GO, which can affect how

one defines children terms. These most predominant link types are ‘is-a’ and ‘part-

of’. I focus my discussion on the numerical techniques for clustering ontological data;

hence, I assume that all links are equivalent when computing information content.

Tailoring term-based similarity measures to handle different types of links is definitely

a pertinent research topic, but is not addressed here.

The probability of term Tk is computed by counting the number of occurrences in

the corpus of Tk and all of its children,

p(Tk) =
count(Tk + children(Tk))

count(all terms in corpus)
, 1 ≤ k ≤ |GO|. (2.27)

Let T(Ti, Tj) be the set of all possible NCAs of terms Ti and Tj. GO terms can

appear as children to more than one parent in the hierarchical taxonomy; hence, the

probability is defined as

pNCA(Ti, Tj) = min
Tk∈T(Ti,Tj)

p(Tk), (2.28)

where pNCA(Ti, Tj) is the probability of the NCA of terms Ti and Tj.
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Resnik [1995] defines the pair-wise similarity value of terms Ti and Tj as

sRES(Ti, Tj) = − log pNCA(Ti, Tj), (2.29)

where 0 ≤ sRES(Ti, Tj) ≤ − log(min∀T p(T )). Note that − log(p(T )) = ∞ for terms

that do not appear in the corpus; hence, caution must be exercised with this similarity

measure (and others based on information content). This similarity measure can be

normalized by − log(min∀T p(T )), assuming that all terms appear in the corpus. Lin

[1998] created a similarity measure that produced values on the interval [0, 1] by

normalizing by the information content of Ti and Tj,

sLIN(Ti, Tj) =
2 log pNCA(Ti, Tj)

log p(Ti) + log p(Tj)
. (2.30)

Jiang and Conrath [1997] developed a measure of dissimilarity between terms Ti

and Tj that is similar to Lin’s similarity measure. However, like Resnik’s measure,

Jiang’s dissimilarity measure is not normalized and produces values on the interval

[0, 2 log(countmin)],

dJIANG(Ti, Tj) = −2 log pNCA(Ti, Tj)− (log p(Ti) + log p(Tj)) . (2.31)

Any aggregation method can be used to fuse pair-wise term similarity values—

examples include average, maximum, minimum, and linear combinations of order

statistics (LOS) or ordered weighted-average (OWA) operators [Yager and Kacprzyk,

1997]. Consider two gene product GO represntations, G1 = {T11, . . . , T1n1} and

G2 = {T21, . . . , T2n2}. The average similarity-measure is computed as

sAV G(G1, G2) =
1

n1n2

n1∑
i=1

n2∑
j=1

s(T1i, T2j). (2.32)
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This similarity measure can also be normalized, where

sNAV G(G1, G2) =
sAV G(G1, G2)

max{sAV G(G1, G1), sAV G(G2, G2)} . (2.33)

The maximum and minimum similarity measures simply compute the maximum or

minimum of the possible pair-wise term similarities between the genes. LOS or OWA

operators are shown to be robust to data variability and outliers [Hosking, 1990, Yager

and Kacprzyk, 1997] and are calculated as

sOWA(G1, G2) =

∑n1n2

i=1 wis(i)∑n1n2

i=1 wi

, (2.34)

where s(i) is the set of pair-wise term similarities ordered from greatest to least and

wi are the associated weights. For example, if wi = 1, i ≤ 4, wi = 0, i > 4, then

this operator could be thought of as the average of “at least 4” pair-wise similarities.

The information theoretic similarity measures are useful in the cases where genes

do not share a common term. Set-based and vector-based similarity measures will

produce a zero-valued similarity; in contrast, the pair-wise term aggregations used in

information-theoretic measures will produce a non-zero-valued similarity.

Fuzzy similarity measures

Fuzzy GO similarities were first proposed by Keller et al. [2004]. The Fuzzy Measure-

based Similarity (FMS) is based on the general fuzzy measure [Sugeno, 1974, 1977]

and considers gene product similarity to be a global combination of the sets of GO

terms that represent the gene products. The fuzzy measure considers “information

sources” to compute fuzzy densities (akin to probability measures) of subsets of the

information sources. Let g : 2G → [0, 1] be the fuzzy measure, where gi = g({Ti}) is
the fuzzy density or importance of GO term Ti in determining the similarity between
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two genes. GO term information content is a direct measure of a term’s importance;

hence, gi = IC(Ti), where IC(Ti) is the normalized information content of Ti.

Restricting the fuzzy measure to a Sugeno λ-measure allows the entire fuzzy mea-

sure to be iteratively built from the individual fuzzy densities gi [Sugeno, 1974, 1977].

A λ-measure has the additional property that for A,B ⊆ G with A ∩B = ∅,

gλ(A ∪ B) = gλ(A) + gλ(B) + λgλ(A)gλ(B), for some for some λ > −1. (2.35)

The fuzzy measure for a set of GO terms that define gene product G must satisfy

gλ(G) = 1. Hence, the value of λ that satisfies this property can be found by solving

(1 + λ) =

NT∏
i=1

(1 + λgi). (2.36)

Sugeno [1974] and Tahani and Keller [1990] showed that this equation has one solution

that satisfies λ > −1. Finally, the FMS is defined as,

sFMS =
g1(G1 ∩G2) + g2(G1 ∩G2)

2
, (2.37)

where g1 is the Sugeno λ-measure defined on G1 and g2 is defined on G2. The

following example from Popescu et al. [2006] outlines the FMS calculation for two

genes in GPD19412.10.03.

Example 2.4.1 (Fuzzy similarity measure). Consider two gene products, G1 is Gen-

Bank ID AAH35609 (MTMR4 gene) and G2 is GenBank ID AAH12399 (MTMR8

gene). The GO terms for these gene products are

G1 = {T1 = GO : 0004721, T2 = GO : 0006470, T3 = GO : 0008270},
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and

G2 = {T1 = GO : 0004721, T2 = GO : 0006470, T4 = GO : 0016787}.

The fuzzy densities (normalized information contents) of these terms are {g1i} =

{0.52, 0.57, 0.54} and {g2i} = {0.52, 0.57, 0.33}. The set of common terms G1 ∩G2 =

{T1, T2}, which is the set of terms that defines the similarity of G1 and G2. The λ-

measure on G1 has λ = −0.84, from Eq.(2.36). The λ-measure on G2 has λ = −0.72.
Applying Eq.(2.35), g1({T1, T2}) and g2({T1, T2}) are calculated as,

g1({T1, T2}) = g1 + g2 + λg1g2

= 0.52 + 0.57− 0.84 ∗ 0.52 ∗ 0.57

= 0.84

g2({T1, T2}) = 0.88

The FMS similarity of G1 and G2 is

sFMS(G1, G2) =
0.84 + 0.88

2
= 0.86.

Note that G1 and G2 are in the same protein family, myotublarin; hence, a high

similarity would be expected.

The FMS shares the same problem as set-based similarities as genes that do not

share common terms have zero similarity under the FMS. Thus, the Augmented Fuzzy

Measure-based Similarity (AFMS) was proposed [Keller et al., 2004]. The AFMS

alleviates the problem of the FMS by augmenting G1 and G2 by the NCAs of all the

pairs of terms in G1 and G2, where

G′
1 = G1 ∪ {T1i,2j}, G′

2 = G2 ∪ {T1i,2j}.
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The set {T1i,2j} is the set of all NCAs of each pair of terms (T1i, T2j), where T1i are

the individual terms in G1 and T2j are the individual terms in G1. The intersection

{G1∩G2} in Eq.(2.37) is replaced by the intersection of the augmented sets {G′
1∩G′

2},
producing

SAFMS(G1, G2) =
g1(G

′
1 ∩G′

2) + g2(G
′
1 ∩G′

2)

2
. (2.38)

Note that the AFMS similarity between two genes will always be non-zero as the

augmented sets will always share the NCA terms1.

Keller et al. [2004] also present a Choquet-integral based similarity-measure. How-

ever, this measure requires an additional piece of information, the expected worth

or evidence weight of each annotating term. The authors map the GO evidence

codes, which consist of linguistic identifiers such as inferred from experiment (EXP),

traceable author statement (TAS), and non-traceable author statement (NAS) to a

set of numerical weights. These weights are then used to produce a Choquet-based

similarity-measure. This measure is effective for computing similarity between genes

and gene products, but I do not specifically address it in this dissertation because it

is dependent on the evidence codes.

2.4.2 Cluster Summarization

In general practice, cluster summarization is the act of creating a feature-summarization

of the objects within a single cluster. The objects in a cluster are summarized ac-

cording to their shared attributes or the attributes that are most common among

them.

A specific form of cluster summarization that is very pertinent to biology is the

1There is one exception to this rule. If the set of terms {T1i,2j}, the NCAs of the terms from the
two genes, only contains the root node in the GO (or a set of the root nodes, if the three GO trees
are treated independently), then the AFMS will be 0.
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functional summarization of genes and gene products. This is an important task in

bioinformatics. Often researchers wish to determine the function of a gene and to

do this they infer the function by finding genes with known function that are similar

(such as in sequence or GO annotation). The GO is a powerful tool in this exploit

because, not only can gene similarity be measured, but the GO terms themselves are

functional annotations.

There are many algorithms for summarizing genes and gene products. Kankar and

Mukherjea [2005] created a summarization of a list of genes by looking for common

MeSH [MeS] terms among PubMed [Pub] queries. Hu [2004] used ensemble meth-

ods to combine expression analysis and text summarization to compute summarizing

keywords of groups of genes. Finally, Popescu et al. [2004] provide a method by

which summarizations are computed using the results of fuzzy clustering. The parti-

tion membership values are used to compute weighted frequency measures of the GO

terms annotating the gene products. Gene products that have a high membership in

a cluster have more weight in the summarization calculation.

In essence, each of these cluster summarization methods use a counting method to

compute the most common features among a group of objects. The common features

are the summary of the function (or attributes) of the objects.

2.4.3 Self Organizing Maps (SOM)

The self-organizing map is a two-layer lateral feedback neural network that topolog-

ically maps itself to the training data. Like methods such as principle-component-

analysis (PCA) [Hotelling, 1933] and multidimensional-scaling (MDS) [Kruskal and

Wish, 1978], the SOM allows one to visualize the cluster tendency of multi-dimensional

data. The network structure is often set to a two-dimensional square, toroidal, or

hexagonal grid, where each network node, or prototype, is laterally connected to its
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1

2

Figure 2.13: 20× 20 toroidal grid SOM network.

neighbors. Figure 2.13 shows an example of a toroid network structure. This network

can be visualized in 2-dimensions by forming the network into a cylinder by cutting

along the dark line denoted ‘1’ and then cutting the cylinder along the dark line

denoted ‘2’ to form a plane.

Algorithm 2.4.1: Self-Organizing Map [Kohonen, 1981]

Data: Training data X = {�x1, . . . , �xN}
Randomly initialize prototype vectors, �wi ∈ RD, ∀i.
for t = 1 to tmax do

Randomly draw a test signal, �xd.
p = argmini{||�xd − �wi||}
�wi = �wi + ε(t) · hip(t) · (�xd − �wi), ∀i
σ(t) = σ0(σf/σ0)

t/tmax)
ε(t) = ε0(εf/ε0)

t/tmax)
t← t+ 1

Algorithm 2.4.1 outlines the SOM algorithm. Essentially, the learning procedure

draws random test signals from the training data and moves the prototypes towards

this test signal according to a neighborhood influence function hip. This function

determines the influence of each update on the network, where winning prototype
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(the one closest to the test signal) are moved more than its neighbors. Often the

neighborhood influence function hip is Gaussian, defined as

hip(t) = exp

(
−|�ai − �ap|2

σ2(t)

)
, (2.39)

where �ai is the location of the SOM prototype in the predefined neighborhood (e.g.

square or hexagonal grid) and σ2(t) is the width of the influence function. The

SOM training procedure is repeated until a maximum number of iterations (tmax)

or convergence is reached. Typically, the learning rate ε(t) and the width of the

neighborhood function σ2(t) are reduced during iteration, with the effect that late

iterations are only applying small updates to network prototypes local to the winning

prototype p. Kohonen [2001] described the process by which the prototypes align

themselves to the input data as ordering. In the early iterations, when the learning

rate σ and width of the influence function ε are large, the network is aligning itself

roughly to the distribution of the input data. In late iterations the network does

not change significantly but refines itself to the substructure of the input data. He

showed that the weight vectors order themselves according to the topology of the

network and the distribution of the input data such that the distance between the

prototypes accurately models the distance between the input data samples.

There are many variants of the SOM: over 7,500 papers are identified in the

bibliographies of Kaski et al. [1998], Oja et al. [2003], and Pöllä et al. [2006]. SOM

variants of note include growing SOMs [Fritzke, 1991], neural gas [Martinez et al.,

1993], and temporal varieties [Hammer et al., 2004]. However, the SOM implicitly is

ill-suited for ontological data or data that cannot be represented by object vectors.

62



Self Organizing Semantic Map (SOSM) and WEBSOM

Since Kohonen developed the SOM in 1981 [Kohonen, 1981], the SOM has been

adapted to many types of data, including document data. In 1989, Ritter and Ko-

honen developed the Self-Organizing Semantic Map (SOSM) [Ritter and Kohonen,

1989], which represents the semantic features of objects by a binary-valued vector.

However, the SOSM does not incorporate the similarities between the semantic fea-

tures. Hence, correlated semantic dimensions are considered to be independent.

The WEBSOM algorithm [Konkela et al., 1996] addresses this weakness of the

SOSM by first computing a word category map and then using this to create a docu-

ment map. The similarities of words or terms are encoded in the word category map

by imputing similarity from their relative placement and frequency in documents.

WEBSOM, however, is ill-suited to the ontological data in the GO or MeSH, which

are both represented by a directed-acyclic-graph (DAG).

Relational Batch SOM

Recently, Hasenfuss and Hammer [2007] developed a relational variant of the SOM

by extending the relational duals of c-means clustering algorithms [Hathaway et al.,

1989] to topographic maps. Hence, one can compute the SOM of ontological data by

using the relational SOM on the dissimilarity matrix of the objects: genes, documents,

etc. The prototypes in the relational batch SOM, denoted �α, represent the weight of

each object in defining the prototype. The standard SOM prototype �w is related to

�α by

�w =
∑
i

(�α)i�xi, (2.40)

where �xi is the ith training data vector and �α is constrained to |�α| = 1. Essentially,

the prototypes live in the convex-hull of the training data X. The distance between
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the prototype �α and the test signal �xi is computed as it is in the relational duals of

c-means clustering algorithms [Hathaway et al., 1989],

d2R(�αi, �xj) = ||�wi − �xj||2 = (D�αi)j − 0.5�αiD�αi, (2.41)

where Dkl = ||�xk − �xl|| is the pairwise dissimilarity matrix and (D�αi)j is the jth

element of the matrix-vector multiplication. Algorithm 2.4.2 outlines the relational

batch SOM.

Algorithm 2.4.2: Relational Batch SOM [Hasenfuss and Hammer, 2007]

Data: Training data X = {�x1, . . . , �xN}
Randomly initialize prototype vectors, �αi ∈ [0, 1]N , ∀i.
�αi =

�αi

|�αi| , ∀i
t← 0
while t < tmax do

�α′
i = {0}N , ∀i

for j = 1 to N do
Find closest prototype, p = argmini d

2
R(�αi, �xj).

α′
ij = α′

ij + hip(t), ∀i
�αi =

�α′
i

|�α′
i| , ∀i

σ(t) = σ0(σf/σ0)
t/tmax

t← t+ 1

The drawback of using this method is that the prototypes do not directly encode

the ontological data; hence, summarization is not as straight forward as with the

proposed OSOM method. Additionally, one must choose a pairwise gene similarity

measure, which further reduces the ability to generalize the SOM to ontological data.

This chapter summarized methods by which one can analyze relational data. The

next chapters will introduce theoretical analysis on algorithms for relational data and

new ways of grouping objects and visualizing the results.
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Chapter 3

Analysis

3.1 Aligned Partitions

As was shown in Section 2.1, there are visualization techniques, such as VAT, that

address the cluster tendency question by displaying the dissimilarity data such that

the clusters are seen as blocks along the diagonal. Assume that the dissimilarity data

has been reordered by some algorithm to produce a “VAT-like” image, as shown in

Fig. 2.4. The important property of I(D∗) is that it has, beginning in the upper left

corner, dark blocks along its main diagonal. Under this assumption, the set of crisp

c-partitions that mimic the blocky structure in I(D∗) is a proper subset of the set

of all crisp c-partitions, Mhcn. I call these partitions, U � Mhcn, aligned partitions.

Aligned c-partitions of O have c contiguous blocks of 1’s in U, ordered to begin with

the upper left corner and proceeding down and to the right. The set of all aligned

c-partitions is

M∗
hcn = {U ∈Mhcn|u1k = 1, 1 ≤ k ≤ n1 : uik = 1, ni−1 + 1 ≤ k ≤ ni, 2 ≤ i ≤ c}.

(3.1)
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For example,

[
1 1 1 0 0
0 0 0 1 1

]
and

⎡
⎣ 1 0 0 0 0 0

0 1 1 1 0 0
0 0 0 0 1 1

⎤
⎦ are aligned partitions,

while

[
0 0 0 1 0
1 1 1 0 1

]
,

[
1 0 1 0 0
0 1 0 1 1

]
, and

⎡
⎣ 0 0 0 0 1 1

1 0 0 0 0 0
0 1 1 1 0 0

⎤
⎦ are not.

The special nature of aligned partitions enables us to specify them in an alternative

form. Every member of M∗
hcn is isomorphic to the unique set of c distinct integers

(which are the cardinalities of the c clusters in U) that satisfy

{ni|1 ≤ ni; 1 ≤ i ≤ c;
∑c

i=1 ni = n}. So aligned parititions are completely specified by

{n1 : . . . : nc}. For example,

U =

⎡
⎣ 1 1 0 0 0

0 0 1 0 0
0 0 0 1 1

⎤
⎦ = {2 : 1 : 2}. (3.2)

As stated before, the set of aligned c-partitions is a proper subset of the set

of all crisp c-partitions, M∗
hcn � Mhcn. But what is the difference between the

cardinality of M∗
hcn and Mhcn? This is an important question because, as shown

later, CLODD extracts aligned partitions from reordered dissimilarity data. The

following proposition provides an answer.

Proposition 3.1.1. The cardinality of M∗
hcn, the set of aligned c-partitions of n

objects into 2 ≤ c < n crisp subsets in Mhcn, is

|M∗
hcn| =

⎛
⎜⎝ n− 1

c− 1

⎞
⎟⎠ (3.3)

Proof. Recall that aligned partitions can be completely specified by {n1 : . . . : nc}.
Hence, the cardinality of M∗

hcn is equal to the cardinality of {n1 : . . . : nc}, under the
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constraints

ni ∈ Z; 1 ≤ ni ≤ (n− c+ 1)∀i;
c∑

i=1

ni = n. (3.4)

Consider ni to be the number of marbles in a bag or container, where there are c

bags. You are given n marbles to put in those bags under the constraint that you

must place at least one marble in each bag and you cannot be left with any marbles.

How many different ways could you place the marbles in the bags? Solving this

problem is equivalent to proving Proposition 3.1.1.

Begin by placing one marble in each bag. There are (n − c) marbles left over.

Hence, the maximum number of marbles that could be in any one bag is (n− c+ 1).

Now, choose a bag at random and add one marble to its contents. Continue until all

marbles are placed. Thus, you have c objects (bags) to choose from and you choose

(n− c) times. The order does not matter and the objects (bags) can be chosen more

than once. Thus, this is a well known combinatorics problem, where one chooses an

unordered sample of size (n−c) with repetition from a population of c elements [Epp,

2004]. The number of combinations is the value of the binomial coefficient,

⎛
⎜⎝ c+ (n− c)− 1

c− 1

⎞
⎟⎠ =

⎛
⎜⎝ n− 1

c− 1

⎞
⎟⎠ , (3.5)

which is Eq.(3.3).

Remark 3.1.1. For c << n, |M∗
hcn| ≈ nc−1/(c − 1)! is a good approximation to

the exact value in Eq.(3.3). The exact cardinality of Mhcn is known, |Mhcn| =

1
c!

∑c
j=1

⎛
⎜⎝ c

j

⎞
⎟⎠ (−1)c−jjn. For c << n, the last term dominates this sum, and the

approximation |Mhcn| ≈ cn/c! can be used. It is instructive to compare the size of
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M∗
hcn to that of Mhcn, by the ratio

|M∗
hcn|

|Mhcn| ≈
nc−1/(c− 1)!

cn/c!
=

(
nc−1

(c− 1)!

)(
c!

cn

)
=

nc−1

cn−1
, c << n. (3.6)

Applying this ratio for the fairly typical problem of c = 10 and n = 10, 000 yields

|M∗
hcn|/|Mhcn| ≈ 1/109963 — a very small number. This shows that algorithms that

search for a crisp partition of D over M∗
hcn have a significantly smaller set of solutions

to examine. Note, however, that the size of M∗
hcn is still quite large: for c = 10 and

n = 10, 000, |M∗
hcn| ≈ 1036/9! = 2.7557× 1030. Hence, even though M∗

hcn is relatively

small, it is still far too big for exhaustive search. This is further discussed in Section

4.1.

The transformation UTU produces an n × n matrix with elements that are a

measure of the relationship between pairs of objects in each of c clusters Huband and

Bezdek [2008]. The ijth element ofUTU is
(
UTU

)
ij
=
∑c

k=1 ukiukj; thus,
(
UTU

)
ij
is

a measure of the binding between objects i and j over all c clusters. This dissertation

primarily addresses crisp partitions U ∈Mhcn, where all elements are 1 or 0; hence,(
UTU

)
ij
will be zero unless objects i and j are in the same cluster k, in which case

the ijth entry will have the value 1.

A property of aligned c-partitions is that the image of the transformation ([1] −
(U∗)TU∗) has dark blocks along its diagonal: black represents 0 in the image, white

represents 1. This image of the transformation is denoted as T (U∗) = ([1]−(U∗)TU∗),

where [1] is the n× n matrix of 1’s. The following example shows
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the transformation for c = 2, n = 5, and U∗ =
[
1 1 0 0 0
0 0 1 1 1

]
;

(U∗)TU∗ =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

⎤
⎥⎥⎥⎥⎦ . (3.7)

This example shows that the blocks of 1’s correspond to the grouping of the

objects according to the partition. Figure 3.4(d) shows an image of T (U∗) for the

visually-apparent aligned 3-partition of objects arranged as three parallel lines.

3.2 VAT and Single-Linkage

Consider a dissimilarity matrix D, which is then reordered by VAT with Prim’s MST

algorithm. The VAT ordering of the MST is a special subset of all possible orderings

computed by Prim’s algorithm, where VAT imposes the following property by its

initialization, (see Eq.(2.1) in Algorithm 2.1.1):

D∗
1n = D∗

n1 = max
i,j

Dij.

The discussion in this section is generalized by including all possible orderings of

the MST that result from Prim’s algorithm. O∗ = {o∗1, . . . , o∗n} represents the set

of reordered objects as a result of Prim’s algorithm (where ANY object can be the

starting object in Prim’s algorithm). Similarly, D∗ corresponds to the Prim’s algo-

rithm ordering O∗. Because the VAT ordering is a subset of the orderings imposed

by Prim’s algorithm, the discussion in this section also applies to VAT.

Let the objects in any reordered object data O∗ represent the vertices of a fully
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connected graph, where the individual vertices are denoted as o∗i , i = 1, . . . , n. The

edge weights of this graph are computed by a chosen vector norm or dissimilarity

measure d,

edge weightij = d(o∗i , o
∗
j). (3.8)

Subsequently, the total strength of the i-th MST edge, denoted as ei, has a weight

that can be computed by

wi = dSL({o∗1, . . . , o∗i }, {o∗i+1}), i = 1, . . . , n− 1. (3.9)

This is a direct result of Prim’s algorithm, which adds edges to the MST by finding

the closest safe vertex to the set of vertices previously added to the tree. Notice that

in the context of graph theory vertices (objects) are separated into c subtrees, where

in the context of clustering this corresponds to a c-partition of the (corresponding)

objects.

3.2.1 Aligned Partitions in VAT and SL

Now, consider the relation between SL clustering and the MST. As stated in Section

2.2.2, SL clustering can be performed by cutting the MST. SL divisive clustering cuts

the MST at the highest weight edge(s) and the resulting subtrees are the SL clusters

(for a given choice of c [the number of clusters]). Furthermore, if the n(n − 1)/2

off-diagonal dissimilarity values are distinct, the MST will be unique and the same

for all similarity measures that are monotonic [Gower and Ross, 1969].

Two lemmas are needed in order to prove that the SL clusters at every c de-

rived by applying Prim’s algorithm to any D with n(n − 1)/2 distinct off-diagonal

dissimilarities are aligned c-partitions of O∗.
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Lemma 3.2.1. The edge weight wi of edge ei in an MST with distinct edge weights

satisfies

wi < dSL({o∗1, . . . , o∗i }, {o∗i+2, . . . , o
∗
n}),

for reordered object data with unique dissimilarity values.

Proof. First, the dissimilarity values are unique; thus,

dSL({o∗1, . . . , o∗i }, {o∗i+2, . . . , o
∗
n}) �= wi.

Second, Prim’s algorithm states that the (i + 1)-th vertex added to the MST is the

vertex closest to the subtree {o∗1, . . . , o∗i }, namely o∗i+1. Hence, all edges that connect

the subtrees {o∗1, . . . , o∗i } and {o∗i+2, . . . , o
∗
n} must be greater in weight than edge ei,

resulting in the identity

dSL({o∗1, . . . , o∗i }, {o∗i+2, . . . , o
∗
n}) > wi,

which proves the lemma.

Next, Lemma 3.2.1 is used to prove

Lemma 3.2.2. If wm = maxj wj, then cutting the associated MST edge em produces

the two subtrees, {o∗1, . . . , o∗m} and {o∗m+1, . . . , o
∗
n}.

Proof. Lemma 3.2.1 shows that

wm < dSL({o∗1, . . . , o∗m}, {o∗m+2, . . . , o
∗
n}). (3.10)

Also, because em is the highest weight edge it follows that

wm > wi ∀i �= m. (3.11)
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Hence, if there exists an MST edge, other than em, that connects the two subtrees

{o∗1, . . . , o∗m} and {o∗m+1, . . . , o
∗
n}, this edge must satisfy both Eq.(3.10) and Eq.(3.11).

These two conditions cannot be met simultaneously. Thus, there is no edge in the

MST that connects the two subtrees, {o∗1, . . . , o∗m} and {o∗m+1, . . . , o
∗
n}, if em is cut.

Please note that the subtrees that result from cutting the MST at its maximum

weight edge are analogous to an aligned 2-partition of the ordered object data O∗.

Now I am ready to state and prove the main result by applying lemma 3.2.2 to divisive

clustering.

Proposition 3.2.1. For a set of object data for which unique dissimilarity values

can be computed (or chosen) from a monotonic dissimilarity measure, the SL clusters

will be aligned c-partitions of the Prim’s algorithm reordered object data O∗ for every

value of c.

Proof. Sort the edges of the MST according to their weight in decreasing order, where

e(1) > e(2) > . . . > e(n−1) are the sorted edges. The (c = 2) SL clusters can be com-

puted by cutting the MST at the highest weighted edge em = e(1). Lemma 3.2.2

proves that the resulting subtrees correspond to the aligned 2-partition, {o∗1, . . . , o∗m}
and {o∗m+1, . . . , o

∗
n}. Furthermore, {e1, . . . , em−1} are the MST edges (in Prim’s al-

gorithm order) of the subtree {o∗1, . . . , o∗m}, and {em+1, . . . , en−1} are the MST edges

(in Prim’s algorithm order) of the subtree {o∗m+1, . . . , o
∗
n}. The (c = 3) SL clusters

are found by cutting the subtrees at edge e(2). Note that this results in only one of

the subtrees being cut, which occurs at its maximum weight edge. Hence, recursive

application of lemma 3.2.2 for each of the n− 1 steps from c = n to c = 1 shows that

the resulting subtrees of this cut will also represent aligned partitions. Thus, each SL

c-partition of the Prim’s algorithm ordered object data is aligned.

Remark 3.2.1. Proposition 3.2.1 only applies to relational data that have a unique
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MST (which includes most real-world data sets). However, if needed, a small pertur-

bation of any data set (i.e., adding a small random noise to each element in the data)

will transform it into one that does have a unique MST. Furthermore, these small

perturbations will not affect the cluster structure in the data as they are negligible,

in practice. Hence, the analysis, thus far, does apply to most, if not all, real-world

data sets.

3.2.2 Numerical Examples

This section contains three examples that illustrate the relationship of SL and VAT

explained in the previous section. The dissimilarity data is computed from numerical

data by the Euclidean norm for all examples, except the Bioinformatics example

(which is a pure relational data set). In order to quantize the compact, separated

(CS) property of the visually apparent partition in the first two examples, I use

Dunn’s validity index [Dunn, 1974]. Dunn’s index is described in detail in Section

3.3, but is essentially a measure of the separation of clusters as compared to their

size. I use Dunn’s CS index to describe the CS property of the clusters in examples

3.2.1 and 3.2.2

Example 3.2.1 (Six Gaussian clouds). This example will show how SL and VAT de-

tect two-dimensional symmetrical Gaussian-distributed clusters. Table 3.1 shows the

statistics of each of the six Gaussian-distributed clouds shown in Fig. 3.1(a). Note

the covariance of each cloud is σ2I2, where I2 is the 2 × 2 identity matrix. Dunn’s

index for the visually apparent crisp 6-partition of this data, shown in Fig. 3.1(h), is

1.2; so, by Dunn’s definition, this data contain six CS clusters. To contrast, Dunn’s

index for the visually apparent 3-partition, shown in Fig. 3.1(f) is 0.7, which indicates

that the 3-partition is not CS clusters.

Figure 3.1(b) shows the MST for this data set and Fig. 3.1(c) shows the VAT
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Figure 3.1: Six Gaussian clouds example: Images of the partition transformations
T (U∗

SL) show that the SL partitions are aligned in the VAT ordered data.

74



Table 3.1: Six Gaussian Clouds Data Characteristics.

No. of objects Mean, μ Var., σ2I2 Indices in VAT
50 (0,0) 1 201-250
50 (12,0) 1 251-300
50 (0,12) 1 151-200
50 (18,18) 1 101-150
50 (30,18) 1 51-100
50 (36,36) 1 1-50

image. The VAT image clearly shows six dark blocks on the diagonal, indicating a

tendency for six clusters. Figs. 3.1(d-i) illustrate the results of SL clustering for c = 2

clusters, c = 3 clusters, and c = 6 clusters. In order to show that each partition of

the VAT-reordered data is aligned, the image of the partition transformation T (U
(c)∗
SL )

is shown, where c is the number of clusters, SL indicates SL, and ∗ indicates that

the partition is of VAT-reordered objects. These figures clearly show that the SL

partitions at c = 2, c = 3, and c = 6 of the VAT-reordered objects are aligned (as

they must be according to Proposition 3.2.1); the clusters appear as c contiguous

dark blocks along the diagonal of the image of T (U
(c)∗
SL ).

Example 3.2.2 (Three lines). This data set consists of 100 numerical objects arranged

as three “parallel lines”. Figure 3.2(a) illustrates this data set. Clearly, there are

three clusters in the form of long strings of closely-spaced objects. However, Dunn’s

index for the visually appealing 3-partition of this data (i.e., the parition that groups

together all the points along each line) is just 0.12. Consequently, the visually appar-

ent clusters are not CS clusters. This does not, of course, preclude the possibility that

the three lines data have some as yet undiscovered c-partition for which Dunn’s index

is greater than 1, but it is hard to imagine that such could be the case. However,

these data do display a strength of SL clustering: the ability to label long stringy

groups of objects as belonging to the same cluster. Contrastively, this is a case where

VAT fails to indicate the tendency to three clusters. Figure 3.2(c) shows the VAT
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image of these data. I leave it to you, the reader, to determine how many clusters

you see in the VAT image—it surely is not three!

The resulting subtrees of the numerical object data are shown in Figs. 3.2(d,f,h)

as a result of SL clustering and the respective images of the transformation T (U
(c)∗
SL )

in Figs. 3.2(e,g,i). Notice that the c = 2 and c = 3 cases show that the VAT image

has definite edges at the cut locations. In addition, despite the fact that c = 6 clusters

is obviously a poor choice for this data set, the c = 6 partition of the VAT-reordered

data is still aligned. This is the case for all choices of c, where 1 ≤ c ≤ 100 for this

data set.

This example brings up an interesting question regarding the efficacy of VAT

to show the cluster tendency of data such as this—why is there such a dichotomy

between the strength of SL with long stringy clusters and the weakness of VAT to

show the tendency of these clusters? By applying the usual validation heuristic—

choose the partition that is before the biggest jump in the cut edge strength—to the

SL hierarchy, it selects the visually preferable 3-partition of D. Fig. 3.2(f) makes it

clear that SL finds this solution. This issue is addressed in more detail in Section 3.3.

Example 3.2.3 (Bioinformatics data). This example is with a real world data set

derived from GPD19412.10.03 (characterized in Table 2.4). The dissimilarity data

is denoted here as D194. These data are different from those of the previous two

examples in that those are derived from object data, while these data are derived

directly from a (dis)similarity relation built with a fuzzy measure applied to GO

annotations of the GPD19412.10.03 genes. Furthermore, the off-diagonal elements of

the dissimilarity matrix are not distinct. However, you will see that the analysis still

holds true. Section 2.4 contains a detailed description of the construction of this data.

These data, D194, are displayed in Fig. 3.3(a) and the VAT image is shown in Fig.

3.3(b). The three ENSEMBL families are clearly visible in both views.

76



(a) Numerical object data - X (b) Minimal spanning tree (c) VAT image - I(D∗)

(d) c = 2 subtrees (e) T (U
(2)∗
SL )

(f) c = 3 subtrees (g) T (U
(3)∗
SL )

(h) c = 6 subtrees (i) T (U
(6)∗
SL )

Figure 3.2: Three parallel lines example: Images of the partition transformations
T (U∗

SL) show that the SL partitions are aligned in the VAT ordered data.
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(a) Dissimilarity data - D194 (b) VAT image - I(D∗
194)

(c) T (U
(3)∗
SL ) (d) T (U

(5)∗
SL ) (e) T (U

(6)∗
SL )

(f) T (U
(7)∗
SL ) (g) T (U

(9)∗
SL ) (h) T (U

(11)∗
SL )

Figure 3.3: Bioinformatics example: Images of the partition transformations T (U∗
SL)

show that the SL partitions are aligned in the VAT ordered data.
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The images of the SL partition transformation T (U
(c)∗
SL ) are displayed in Figs.

3.3(d-h). First, you can see that each partition of the VAT-reordered data is aligned.

Second, the images show an interesting aspect of the SL clustering of this data. SL

is known to be very susceptible to outliers and this is evident in these views. The

c = 3 partition, displayed in Fig. 3.3(c), shows that SL clustering partitions the data

into one large cluster and two very small clusters (located at the bottom right of the

image). This is due to four gene products, which are outliers in this data set. Previous

research has shown that these four outlier gene products, indexed as 120, 121, 30,

and 107, actually cluster into three clusters, namely {120, 121}, {30}, and {107}
[Popescu et al., 2004]. The c = 6 partition, shown in Fig. 3.3(e), demonstrates that

SL clustering partitions this data set into the expected three ENSEMBL families (the

receptor precursor family is the first block, the collagen alpha chain is the second, and

the myotubularins are the third, from the top of the image), plus the three outlier

clusters. Figs. 3.3(f-h) illustrate that the families have further substructure. The

tendency of the collagens to break up into three groups, as shown in Fig. 3.3(g), is

supported by [Myllyharju and Kivirikko, 2004].

In summary, these three examples confirm the relationship of VAT and SL that

is described analytically in Section 3.2.1—namely, that SL clusters of VAT-reordered

data are aligned partitions.

3.3 VAT and Dunn’s Validity Index

In the previous section it was proved that SL c-partitions will always be aligned

partitions of the VAT reordered objects; hence, the image transformation T (U∗) will

always show c dark blocks along the diagonal. The main function of VAT is to show

cluster tendency as c dark blocks along the diagonal of the image of D∗. However,
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VAT fails this task for the example in Figure 3.4. I address this problem with an

analysis that shows that Dunn’s index is a contrast measure of VAT images.

Dunn’s index is a cluster validity measure that provides a metric as to how well

the clusters that a clustering algorithm returns represent compact well-separated

(CWS) clusters [Dunn, 1974]. For the set of all crisp c-partitions, Mhcn, Dunn’s

index quantifies the CWS property of clusters defined by a partition U by computing

α(c,U) =
min1<q<c min1<r<c,r �=q dist(Cq,Cr)

max1<p<c diam(Cp)
, (3.12)

where Ci is the i-th cluster as defined by the partition U, dist(Cq,Cr) is the dis-

tance between two clusters, and diam(Cp) is the cluster diameter. The diameter and

distance functions, in terms of the dissimilarity data, are defined as

dist(Cq,Cr) = min
oi∈Cq ,oj∈Cr

Dij, (3.13)

diam(Cp) = max
oi∈Cp,oj∈Cp

Dij, (3.14)

where Dij is the ijth element of D.

The optimal partition for a given number of clusters c can be found by computing

ᾱ(c) = max
∀U∈Mhcn

α(c,U). (3.15)

For SL hierarchical clustering, and other deterministic clustering algorithms, there is

only one partition for each value of c; hence, one does not need to compute (3.15).

However, the relative validity of partitions at different values of c can be compared

by comparing the respective values of (3.12) for each c-partition.

Dunn showed that clusters that have an α(c,U) > 1 are CWS clusters. He

also showed that object data can be partitioned into c CWS clusters if and only
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if ᾱ(c) > 1—put more simply, clusters should be spaced far apart from each other

relative to their size.

Proposition 3.3.1. Let U ∈ Mhcn such that α(c,U) > 1. Then the elements Dij

that correspond to T (U)ij = 1 (between-cluster dissimilarity) are all strictly greater

than the elements Dij that correspond to T (U)ij = 0 (within-cluster dissimilarity).

Proof. Recall T (U) = [1] −UTU. The numerator of Dunn’s index Eq.(3.12) can be

rewritten by combining this transformation—described in Section 3.1—with Eq.(3.13),

min
1≤q≤c

min
1≤r≤c,r �=q

dist(Cq,Cr) = min
(T (U))ij=1

Dij. (3.16)

Similarly, the denominator of Eq.(3.12) can be rewritten,

max
1≤p≤c

diam(Cp) = max
(T (U))ij=0

Dij. (3.17)

Dunn’s index can now be formulated in terms of D and T (U),

α(c,U) =
min(T (U))ij=1 Dij

max(T (U))ij=0 Dij

. (3.18)

Equations (3.16) and (3.17) are always greater than or equal to 0; thus, if α(c,U) > 1

then the value of Eq.(3.16) is strictly greater than the value of Eq.(3.17), proving the

proposition.

Remark 3.3.1. SL partitions U∗
SL are always aligned partitions of the VAT reordered

objects. Hence, the image of T (U∗
SL) appears as c dark blocks along the diagonal.

Proposition 3.3.1 proves that the dissimilarity data between these blocks (cluster-

cluster distances) will be strictly greater than the dissimilarity data within these

blocks (in-cluster distances) if α(c,U∗
SL) > 1. Evidently, the VAT image will have
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Figure 3.4: Three parallel lines example shows that VAT can fail to show the visually-
preferable cluster tendency of 3 clusters. However, the image of the partition trans-
formation T (U∗

SL) shows that the SL 3-partition is aligned in the VAT ordered data.

c dark blocks if α(c,U∗
SL) > 1. Furthermore, the value of Dunn’s index provides a

measure of the “blockiness” of the VAT image—the greater the value of Dunn’s index,

the greater the contrast of the blocks in the VAT image.

The three dark blocks in Fig. 3.4(d) represent the grouping of the objects according

to the 3-partition shown in Fig. 3.4(c). The three dark blocks show the elements of

D∗ within the clusters and the white regions show the elements of D∗ between the

clusters. Hence, the denominator of Eq.(3.12) is the maximum element in D∗ within

the three dark blocks (the diameter of the middle line), which is shown on Fig. 3.4(b).
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Similarly, the numerator of Eq.(3.12) is the minimum element in D∗ in the white

regions between the three dark blocks. The value of Dunn’s index for the 3-partition

shown in Fig. 3.4(c) is 0.12 and VAT fails to show (c = 3).

Figure 3.5 shows the VAT image for the same type of example shown in Fig. 3.2(a);

each view shows the three lines moved progressively farther apart. Figures 3.5(a,b)

shows cases where the SL 3-partition produces a Dunn’s index < 1 —which is still

the maximum possible value over all U ∈ Mhcn. Figure 3.5(c) illustrates the case

where Dunn’s index > 1; hence, the elements of D∗ within the three dark blocks are

strictly greater than the background elements of D∗. I argue that the VAT image in

Fig. 3.5(c) is the only image that undoubtedly suggests three clusters. This example

gives empirical evidence to support Proposition 3.3.1 and Remark 3.3.1.

My analysis and the example shown in Fig. 3.5 demonstrate that the effectiveness

of VAT in showing cluster tendency is tied directly to Dunn’s index. Dunn’s index

provides a measure of contrast between the blocks on the VAT image diagonal and

the background regions. Although the examples shown are for one artificial data set,

Proposition 3.3.1 proves that this result is true for all data sets. Proposition 3.3.1

also provides a fast and elegant way to implement Dunn’s index in applications, such

as MATLAB, or on a Graphics Processing Unit (GPU). Additionally, this analysis

poses the question of the possibility to adapt Dunn’s index to the empty-cluster or

“noise” cluster case.

There are many questions that are not answered by this analysis: (i) What if

more than one U ∈ Mhcn produces a Dunn’s index > 1? In such cases, of which

partition U will VAT show the cluster tendency? (ii) The VAT image is meant to be

interpreted by a human; hence, how does human perception of the “blockiness” relate

to this analysis? (iii) How does this analysis apply to VAT-based algorithms such as

Visual Cluster Validity [Hathaway and Bezdek, 2003, Huband and Bezdek, 2008]?
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(a) Dunn’s Index = 0.39
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(b) Dunn’s Index = 0.66
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(c) Dunn’s Index = 1.06

Figure 3.5: Three examples of object data (left) and corresponding VAT images
(right) to show that Dunn’s Index is a “blockiness” measure of VAT images. At
which value of Dunn’s index do you see a cluster tendency of 3 in the VAT image?
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3.4 VAT = iVAT + Distance Transform

There are many cases where VAT fails to show the cluster tendency of data sets that

have a visually preferable number of clusters, e.g., the Three Lines data set shown in

Figs. 3.4(a,b). To combat this issue, Wang et al. [2010] proposed an improved -VAT

(iVAT) algorithm that uses a path-based distance measure developed in Fisher et al.

[2001]. By using the path-based distance, iVAT is often able to improve the visual

contrast of the dark blocks along the VAT diagonal. However, iVAT, as originally

proposed in [Wang et al., 2010], is computationally expensive, O(n3)—as opposed to

O(n2) of VAT.

Here I will show that iVAT is essentially a distance transform of the original VAT

image. I denote D′ as D′∗ to indicate the VAT-ordered path-based distance matrix.

Algorithm 3.4.1 outlines my recursive formulation of iVAT from the VAT-reordered

dissimilarity matrixD∗. Line 1 requires (r−1) comparisons and Line 3 requires (r−2)

comparisons, for a total of (2r − 3) operations. The total number of operations in

Algorithm 3.4.1 is thus (2n2 − 3n), which is O(n2) complexity. I was able to reduce

the complexity by using VAT itself as a preprocessing step. In contrast to the iVAT

formulation in [Wang et al., 2010], I start with VAT and then transform the VAT-

reordered dissimilarity data into the iVAT image with my recursive algorithm.

Algorithm 3.4.1: Recursive calculation of iVAT image

Input: D∗ - VAT-reordered dissimilarity matrix
Data: D′∗ = [0]n×n

for r = 2, . . . , n do
j = argmink=1,...,r−1 D

∗
rk1

D′∗
rc = D∗

rc, c = j2

D′∗
rc = max

{
D∗

rj, D
′∗
jc

}
, c = 1, . . . , r − 1, c �= j3

D′∗ is symmetric, thus D′∗
rc = D′∗

cr.

Without loss of generality, let the objects in any VAT-reordered object data O∗
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also represent the vertices of a fully connected graph, where the individual vertices

are denoted as o∗i , i = 1, . . . , n. For ease of notation, I denote the vertices simply by

the objects’ indexes, i = 1, . . . , n. The edge weights of this graph are computed by

your chosen vector norm or dissimilarity function d,

edge weightij = d(i, j) = D∗
ij. (3.19)

Then,

dmin(I, J) = min
∀i∈I,∀j∈J

D∗
ij (3.20)

Lemma 3.4.1. Consider a vertex k, 1 < k < n, and the sets of vertices, I =

{1, . . . , k − 1} and J = {k + 1, . . . , n}. Then,

dmin(I, k) ≤ dmin(I, J). (3.21)

Proof. Recall that VAT is a special case of Prim’s algorithm and, thus, computes

the minimum-spanning-tree (MST) of a set of vertices (objects) by adding the vertex

which is closest to the already ordered vertices. By the definition of VAT, (3.21) is

true.

Remark 3.4.1. In the case where each edge has a unique weight, then dmin(I, k) <

dmin(I, J) can be shown to be true (see Section 3.2).

The next lemma proves that line 2 in Algorithm 3.4.1 is valid. Note that D∗ and

D′ are symmetric distance matrices.

Lemma 3.4.2. Consider the vertices k, 1 < k ≤ n, and l, 1 ≤ l < k, and the sets of

vertices I = {1, . . . , k − 1} and J = {k + 1, . . . , n}, where J = ∅ if k = n. If

D∗
kl = dmin(I, k), (3.22)
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then the path-based distance (2.4) between k and l is

D′
kl = D∗

kl. (3.23)

Proof. Lemma 3.4.1 shows that dmin(I, k) ≤ dmin(I, J), which can be extended to

D∗
kl = dmin(I, k) ≤ dmin(I, J). Thus,

D∗
kl ≤ min

p
max

1≤h<|p|
Dp[h]p[h+1], (3.24)

for all paths p ∈ Pkl that include a vertex in J . Equation (3.22) shows that

D∗
kl ≤ min

p
max

1≤h<|p|
Dp[h]p[h+1], (3.25)

for all paths p ∈ Pkl that include a vertex in I. Thus, D′
kl = D∗

kl. If k = n, consider

(3.25), and it is easy to see that the lemma holds true.

Remark 3.4.2. Notice that D∗
kl in Lemma 3.4.2 is the weight of the MST edge that

connects vertex k to the sub-tree I.

The next lemma proves that line 3 of the recursive algorithm is valid.

Lemma 3.4.3. Consider the vertices k, 1 < k ≤ N , and l, 1 ≤ l < k, and the sets of

vertices I = {1, . . . , k − 1} and J = {k + 1, . . . , n}, where J = ∅ if k = n. If

D∗
kl > dmin(I, k) (3.26)

and

s = argmin
1≤t<k

D∗
kt, (3.27)
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then the path-based distance (2.4) between k and l,

D′
kl = max{D∗

ks, D
′
sl}. (3.28)

Proof. Lemma 3.4.3 is proved by showing that the path p ∈ Pkl that produces the

minimum
{
max1≤h<|p| D∗

p[h]p[h+1]

}
is the path along the MST edges between vertices

k and l. Lemma 3.4.2 shows that D∗
ks ≤ dmin(I, J). Thus, all paths p ∈ PkI through

the vertices J have an edge with a weight ≥ D∗
ks. In other words, D∗

ks is the least

costly path from vertex k to the sub-tree I, where l ∈ I. By definition, D′
sl is the

value of the maximum edge weight along the least costly path from s to l, thus

D′
kl = max{D∗

ks, D
′
sl}.

Remark 3.4.3. Notice that D∗
ks is the weight of the (k− 1)th edge added the MST by

Prim’s algorithm. Additionally, it can be shown that D′
sl is the weight of the (l−1)th

edge added to the MST. Thus, all the distance values in D′ are the weights of the

maximum MST edge that is traversed between vertices k and l. This logic can also

be extended to show that the path p which produces each value of D′ is the path

along the MST.

Equations (3.25) and (3.28) are applied recursively, starting with k = 2, to calcu-

late D′ from D∗. Now I show that the result of this recursive calculation is an iVAT

image, D′ = D′∗.
The properties of a VAT image are:

1. The first vertex in the ordering is one of the set of vertices that satisfy

k = argmax
∀i

{
max
∀j

Dij

}
. (3.29)

2. The ordering of the vertices is that which could be computed using Prim’s
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algorithm.

First, I show that D′ satisfies the first VAT property by showing that the first row

in D′—the distances between vertex 1 and all other vertices—contains an element

that is the maximum of D′.

Lemma 3.4.4. D′ satisfies

max
∀i

D′
1i = max

∀i,j
D′

ij. (3.30)

Proof. The path-based distance D′
1i is the value of the maximum weighted edge along

the MST path between vertices 1 and i. Hence, max∀i D′
1i is the value of the maximum

weighted MST edge because all MST edges are traversed on at least one path p ∈
PMST
1,∀j , where PMST

1,∀j denotes all possible paths between vertex 1 and all other vertices

that are on the MST. Additionally, all the elements of D′ are MST edge weights.

Thus, max∀i D′
1i = max∀i,j D′

ij.

Remark 3.4.4. An interesting consequence of Lemma 3.4.4 is that it can be simply

modified to show that any vertex can be chosen as the initial vertex in iVAT.

Next, I show that D′ satisfies the second VAT property by first defining

d′min(I, J) = min
∀i∈I,∀j∈J

D′
ij. (3.31)

Lemma 3.4.5. Consider the vertex 1 < k < n and the sets of vertices, I = {1, . . . , k−
1} and J = {k + 1, . . . , n}. The dissimilarity matrix D′ satisfies

d′min(I, k) ≤ d′min(I, J). (3.32)

Notice that this Lemma essentially shows that the property of D∗ proven in

Lemma 3.4.1 applies to D′.
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Proof. Consider the MST edges that must be cut in order to produce the MST subtree

I and the MST subtrees in J . By definition of VAT and Prim’s algorithm the weight

of the MST edge that connects k to I is less than or equal to the weights of the MST

edges that connect I to the subtrees in J (if this was not true, then the vertices would

be differently ordered by VAT). All MST paths from I to J must pass through the

MST edges that are cut, thus the lower-bound on d′min(I, J) is the weight of these

edges. The lower-bound on d′(min)(I, k) is the weight of the MST edge that connects

k to I; hence, d′min(I, k) ≤ d′min(I, J).

Note that a special case to consider is where there is one MST subtree in J and

this is connected to I through an MST edge to vertex k. In this special case, it is

easy to see that all MST paths from I to J must pass through k and thus (3.32) is

true.

Remark 3.4.5. There are many possible VAT-reorderings of D′ because there are

many ties in the path-based distances and any object could be chosen as the initial

object. Lemmas 3.4.4 and 3.4.5 show that D′, as calculated by the recursive formulas

in Lemmas 3.4.2 and 3.4.3, is already in one possible VAT reordering. And, arguably,

this ordering of D′ is the “best” reordering because it is also the VAT-reordering of

the original dissimilarity matrix.

3.4.1 Discussion

The iVAT algorithm proposed in [Wang et al., 2010] was shown to improve the quality

of VAT images, which ideally improves the interpretability of the clustering tendency.

The recursive formulation I propose significantly reduces the computational complex-

ity of the iVAT algorithm; my formulation has a complexity of O(n2), compared to

O(n3) for the formulation presented in [Wang et al., 2010]. Moreover, my algorithm
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produces both the VAT and iVAT images, which is not the case for the original iVAT

method.

In every test of VAT versus iVAT I have either seen or run, the iVAT image was

at least as good (visually) as the VAT image. My conjecture is that iVAT images will

always be equal to or superior to VAT images, but to date I have not discovered a way

to prove this. Because this is a subjective evaluation, it may not be provable at all.

Nonetheless, until a counterexample is discovered, I believe that with the recursive

formulation, there is no reason not to default to iVAT in every instance. Section A.1

in the Appendix shows more examples of iVAT images, specifically of noisy large-scale

data sets.

Additionally, I have inserted the recursive formulation of iVAT Eq.(2.4) into the

improved co-VAT (co-iVAT) algorithm for visual assessment of clustering tendency

in rectangular dissimilarity data, which is proposed in Section 4.2.2.

Future directions include extending the iVAT algorithm to the scalable versions

of VAT and co-VAT, scalable VAT (sVAT) [Hathaway et al., 2006], bigVAT [Huband

et al., 2005], and scalable co-VAT (scoVAT) [Park et al., 2009]. These algorithms

work with very-large data, or data that is unloadable on standard computers.

This chapter began by presenting a relationship between VAT and SL cluster-

ing. Essentially, this relationship suggests that VAT images can be used to partition

data into SL-like clusters; this is the problem I address in the next chapter of this

dissertation.
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Chapter 4

Relational Clustering Algorithms

4.1 Clustering in Ordered Dissimilarity Data

Assume as input a normalized (entries between 0 and 1) dissimilarity matrix D∗

(equivalently, I(D∗)) that is symmetric with diagonal elements that are zero. The

superscript (∗) indicates that D has been reordered by some algorithm to produce a

“VAT-like” image, as in Fig. 2.4. The important property of I(D∗) is that it has,

beginning in the upper left corner, dark blocks along its diagonal. Accordingly, the

search through Mhcn for each c under consideration is constrained to those parti-

tions that mimic the blocky structure in I(D∗), namely the aligned partitions M∗
hcn

described in Section 3.1.

The important characteristics of I(D∗) that I shall exploit for finding a U that

seems to match it are: (i) the contrast between the dark blocks along the main

diagonal and the lighter off-diagonal blocks; and (ii) the visually apparent edges of

those dark blocks. The algorithm generates candidate partitions in M∗
hcn and tests

their fit to the clusters suggested by the aligned dark blocks in I(D∗). To accomplish

this, I define an objective function onM∗
hcn that computes a measure of two properties
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(a) Ideal I(D∗)

1 1 0 0 0
0 0 1 1 1[ [

(b) Optimal
partition U ∈M∗

h25

A

CBT

B

(c) Esq(U)
“squareness”

(d) Eedge(U)
“edginess”

Figure 4.1: The components of the CLODD objective function E(U): Esq(U) mea-
sures the contrast of the dark blocks along diagonal compared to the off-diagonal light
blocks; Eedge(U) measures the edge contrast of the dark blocks.

of blocky images I(D∗) — “squareness” and “edginess”. Figure 4.1(a) shows an

idealized case of I(D∗) for c = 2 which, for illustration purposes, assumes that n = 5.

Figure 4.1(b) shows the presumably optimal aligned partition that provides the

best fit to the image in 4.1(a). Figure 4.1(c) shows the “squareness” component of the

objective function that measures the contrast between diagonal dark blocks A and C

and the off-diagonal blocks B and BT according to the U in 4.1(b). An intuitively

appealing measure is the difference of the average dissimilarity values between appar-

ent clusters (i.e. dissimilarities in [(A,B)] and [(BT,C)]) and those within apparent

clusters (i.e. dissimilarities in [(A,A)] and [(C,C)]). Let U be a candidate partition

in M∗
hcn, let {Oi : 1 ≤ i ≤ c} be the crisp c-partition of O corresponding to U. The

cardinality |Oi| = ni∀i, and the membership os ∈ Oi is abbreviated simply as s ∈ i.

With these heuristics, the “squareness” component of the objective function for a
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given D∗ is:

Esq(U;D∗) =

⎛
⎜⎜⎜⎜⎝

c∑
i=1

∑
s∈i,t �∈i

d∗st

c∑
i=1

(n− ni)ni

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
ave. dissimilarity between dark

and non-dark regions in I(D∗)

−

⎛
⎜⎜⎜⎜⎝

c∑
i=1

∑
s,t∈i,s �=t

d∗st

c∑
i=1

(n2
i − ni)

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
ave. dissimilarity within

dark regions in I(D∗)

. (4.1)

Good candidate partitions U should maximize Eq.(4.1). This equation is a measure

of contrast between the on-diagonal dark blocks and the off-diagonal non-dark blocks.

The “edginess” of the dark blocks inD∗ is computed by averaging the values of the

first order estimate of the horizontal digital gradient across each vertical boundary

imposed by a candidate U in M∗
hcn. Figure 4.1(d) shows the edges that are considered

for this part of the objective function. The symbols along the vertical boundary

separating the dark from the non-dark blocks represent dissimilarity values in the

columns of D∗ adjacent to the boundary. The “edginess” value for the example in

4.1(d) is computed by

Eedge(U) =

(∑ | © −�|+∑ |♦−�|
2 + 3

)
.

For the c blocks in D∗, there are (c − 1) interior vertical boundaries between dark

blocks and adjacent blocks of lighter intensities. Each vertical edge spans the right

face of an upper block and the left face of the block immediately below it. Let

U = {n1 : . . . : nc} ∈ M∗
hcn, a candidate aligned partition. For j = 1 to c − 1, let
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mj =
∑j

k=1 nk, and m0 = 1. The “edginess” measure is defined as

Eedge(U;D∗) =
1

c− 1

c−1∑
j=1

mj∑
i=mj−1

|d∗i,mj
− d∗i,mj+1|+

mj+1∑
i=mj+1

|d∗i,mj
− d∗i,mj+1|

nj + nj+1

. (4.2)

Good candidate partitions U should maximize Eq.(4.2). Although this equation

looks complicated, it is merely the average horizontal gradient across vertical edges

separating dark blocks from non-dark blocks in I(D∗). Good candidate partitions U

maximize both Eqs. (4.1) and (4.2), which allows us to add them together to produce

a composite objective function. To make the resulting sum flexible in terms of the

balance between contrast and edginess, I use the convex combination of Eqs. (4.1)

and (4.2). Let α be the mixing coefficient, and

Eα(U;D∗) = αEsq(U;D∗) + (1− α)Eedge(U;D∗); 0 ≤ α ≤ 1. (4.3)

If contextual information is unavailable to suggest that one factor, contrast or edgi-

ness, is more important than the other, one may take α = 1/2, which gives equal

weight to contrast and edginess in D∗.

The final component of the objective function controls the size of the smallest

cluster allowed in the search over M∗
hcn. I use the spline function,

s(x, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 ; x ≤ 1

2
(
x
a

)2
; 1 < x ≤ a

2

1− 2
(
a−x
a

)2
; a
2
< x < a

1 ; a ≤ x

, (4.4)

for this purpose. This function is a typical s-curve valued in [0, 1] with points of
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Figure 4.2: S-curve, Eq.(4.4), with a = 5

inflection at a/2 and a. For U = {n1 : . . . : nc} ∈M∗
hcn, I set the inflection points by

choosing a = γn, 2/n < γ < 1, and then evaluate s at x = min1≤i≤c{ni}.
Finally, the function in Eq.(4.3) is multplied by

Sγ(U) = s

(
min
1≤i≤c

{ni}, γn
)
. (4.5)

This scales Eq.(4.3) in a way that enables us to damp very small clusters in candidates

partitions when none are apparent in D∗. If one of the candidate partitions contains

a cluster that has fewer than a = γn objects, then CLODD penalizes the value of

the objective function of this candidate partition. Essentially, γ sets the the expected

smallest cluster size for a particular data set.

The objective function is now complete, so an optimal partition of D∗ is defined
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as one that maximizes

E(U;D∗) = s

(
min
1≤i≤c

{ni}, γn
)
· Eα(U;D∗) = Sγ(U) · Eα(U;D∗). (4.6)

Last, I want to search for the best partition at various values of c, so let C =

{2, 3, . . . , cmax}. The optimization problem that the CLODD algorithm attempts to

solve is

max
U∈M∗

hcn,c∈C
{E(U;D∗)} (4.7)

An approximate global solution of Eq.(4.7) is denoted by Uc∗ . One needs to choose

two model parameters (α, γ), and then solve the optimization problem in Eq.(4.7).

Before I turn to the solution of Eq.(4.7), I give an example that illustrates the basic

ideas of this approach.

Example 4.1.1. Shown in Fig. 4.3(a,c) is a matrix D and the image I(D) of dis-

similarities between five objects O = {o1, . . . , o5}. Figure 4.3(b,d) shows the VAT

reordering D∗ of D, and the VAT image I(D∗) corresponding to this reordering.

Visual inspection of I(D) does not reveal whether the objects represented by

pair-wise dissimilarities in D might form clusters in O. In addition, it is easy to

see that cluster structure is suggested by the two dark block in the VAT image

I(D∗). The strong impression given by I(D∗) is that this is an instance for which

the ideal case is shown in Fig. 4.1(a). Thus, the aligned 2-partition of O that should

provide a best match to I(D∗) is the one shown in Fig. 4.1(b) corresponding to

o = {o∗1, o∗2}∪{o∗3, o∗4, o∗5}. At this point, VAT has done its job. One could apply CCE

[Sledge et al., 2008] or autoVAT [Wang et al., 2009] to I(D∗), and those algorithms

would return the value c = 2, telling us to look for two clusters in O. Despite

this, these algorithms (VAT, CCE, and/or autoVAT) still have not defined cluster

partitions. To obtain the U in Fig. 4.1(b) that is suggested by I(D∗), I apply
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D =

⎡
⎢⎢⎢⎢⎣

0 0.73 0.19 0.71 0.16
0.73 0 0.59 0.12 0.78
0.19 0.59 0 0.55 0.19
0.71 0.12 0.55 0 0.74
0.16 0.78 0.19 0.74 0

⎤
⎥⎥⎥⎥⎦

(a) Dissimilarity matrix - D

D =

⎡
⎢⎢⎢⎢⎣

0 0.12 0.59 0.73 0.78
0.12 0 0.55 0.71 0.74
0.59 0.55 0 0.19 0.19
0.73 0.71 0.19 0 0.16
0.78 0.74 0.19 0.16 0

⎤
⎥⎥⎥⎥⎦

(b) VAT reordered dissimilarity matrix - D∗

(c) Image - I(D) (d) VAT image - I(D∗)

Figure 4.3: Dissimilarity data used in CLODD example 4.1.1. VAT image shows a
cluster tendency of 2.

CLODD to D∗.

To see how the CLODD objective function E(U;D∗) compares candidates, con-

sider the aligned 2-partitions,

U = {2 : 3} =
[
1 1 0 0 0
0 0 1 1 1

]
and

V = {3 : 2} =
[
1 1 1 0 0
0 0 0 1 1

]
,

and their transformations under f and g,

f(U) = UTU =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

⎤
⎥⎥⎥⎥⎦ ; g(U) = [1]−f(U) =

⎡
⎢⎢⎢⎢⎣

0 0 1 1 1
0 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

⎤
⎥⎥⎥⎥⎦ , (4.8)
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U↔ {2 : 3} ∈M∗
h25 U↔ {3 : 2} ∈M∗

h25

D∗ =

⎡
⎢⎢⎢⎢⎣

0 0.12 0.59 0.73 0.78
0.12 0 0.55 0.71 0.74
0.59 0.55 0 0.19 0.19
0.73 0.71 0.19 0 0.16
0.78 0.74 0.19 0.16 0

⎤
⎥⎥⎥⎥⎦ D∗ =

⎡
⎢⎢⎢⎢⎣

0 0.12 0.59 0.73 0.78
0.12 0 0.55 0.71 0.74
0.59 0.55 0 0.19 0.19
0.73 0.71 0.19 0 0.16
0.78 0.74 0.19 0.16 0

⎤
⎥⎥⎥⎥⎦

Figure 4.4: Boundaries imposed on D∗ by choosing U = {n1 : n2} ∈M∗
h25

f(V) = VTV =

⎡
⎢⎢⎢⎢⎣

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1

⎤
⎥⎥⎥⎥⎦ ; g(V) = [1]−f(V) =

⎡
⎢⎢⎢⎢⎣

0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
1 1 1 0 0
1 1 1 0 0

⎤
⎥⎥⎥⎥⎦ . (4.9)

The blocks of 1’s in f(U) = UTU and f(V) = VTV show the regions in D∗

over which the CLODD calculations are made (as do g(U) and g(V)). The partition

parameters {2 : 3} and {3 : 2} set up “boundaries” in D∗ as shown in Fig. 4.4.

For this example, equations (4.1) and (4.2) yield,

Esq(U;D∗) = (0.59+0.73+0.78+0.55+0.71+0.74)/6−(0.12+0.19+0.19+0.16)/4 = 0.52,

Esq(V;D∗) = (0.73+0.78+0.71+0.74+0.19+0.19)/6−(0.12+0.59+0.55+0.1)/4 = 0.20,

Eedge(U;D∗) = [|0.12− 0.59|+ |0− 0.55|+

|0.55− 0|+ |0.71− 0.19|+ |0.74− 0.19|] /5

= 0.53,
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Eedge(U;D∗) = [|0.59− 0.73|+ |0.55− 0.71|+ |0− 0.19|+

|0.19− 0|+ |0.19− 0.16|] /5

= 0.14.

In this example the smallest ni = 2 and n = 5 for both U and V, so the spline factor

in Eq.(4.4) has the same value for any choice of γ; without loss, take Sγ(U) = 1.

Choosing α = 0.5 in Eq.(4.6 I arrive at the final values,

E(U;D∗) = E0.5(U;D∗) = (0.52 + 0.53)/2 = 0.53,

E(V;D∗) = E0.5(V;D∗) = (0.20 + 0.14)/2 = 0.17.

For the two candidates U and V, my expectation is correct: E clearly favors U to

V, that is, U2∗ = U.

The objective function E(U;D∗) is always valued in [0, 1]. E(U;D∗) = 0 if and

only if I(D∗) has only one intensity, which can occur if and only if D∗ has all zero-

valued off-diagonal elements. E(U;D∗) = 1 if and only if I(D∗) has c perfect (i.e.

0 valued intensities) diagonal blocks with all other off-diagonal intensities equal to

one. If the diagonal blocks in Fig. 4.1(a) were pure black, then the partition in

Fig. 4.1(b) would result in E(U;D∗) = 1. Remark 3.1.1 showed that the finite set of

all aligned partitions M∗
hcn is much smaller than the finite set of all crisp partitions

Mhcn; however, M
∗
hcn is still far to big for an exhaustive search. This leads us to

methods for approximating a solution to Eq.(4.6).
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4.1.1 Particle Swarm Optimization and CLODD

I stress that, in principle, any number of optimization algorithms could be used. I use

particle swarm optimization (PSO, [Clerc and Kennedy, 2002]) because it is simple,

and because it has been shown to be relatively successful at optimizing highly modal

non-linear objective functions. For a given c in C, each candidate U = {n1 : . . . :

nc} ∈ M∗
hcn is completely specified by the c integer indices {n1 : . . . : nc}, which

in turn can be used to specify the locations along the columns of D∗ where trial

boundaries are matched to the boundaries in D∗. The integers mj =
∑j

k=1 nk, j =

1, 2, . . . , t−1, are the locations of the right edges (boundaries) of the first t−1 blocks

in D∗ — the right edge of the last block is at location mn = n, which is the right

edge of the matrix or image of the matrix. Because one can recover the c integer {ni}
from the c − 1 integers {mi}, I write U = {n1 : . . . : nc} = �m ∈ M∗

hcn. The vector

�m = (m1, . . . ,mt−1) ∈ Rt−1 plays a central role in CLODD.

Fix c = t. Let Uit = {ni1 : . . . : nit} ∈ M∗
htn. Construct the vector �mit =

(mi1, . . . ,mi(t−1)) ∈ Rt−1. This vector of t − 1 integers has strictly increasing com-

ponents, mi1 < mi2 < . . . < mi(t−1), that specify the t − 1 locations of the interior

boundaries imposed on D∗ by Uit. The vector �mit is thought of as a particle having

velocity �vit = (vi1, . . . , vi(t−1)) ∈ Rt−1. Let Np be the number of particles in each

swarm, or the number of trial partitions of O per iteration. Each swarm represents a

different choice of the number of clusters t. Let m̂it denote the current best position

of each particle in swarm t, let ˆ̂mt denote the current best position of all Np parti-

cles in swarm t, and let
ˆ̂
G be the best particle over all swarms. In the specification,

rand([a, b]) is a random vector, where each component distributed is uniformly on

[a, b]. With these conventions, I am ready to state the CLODD algorithm, displayed

in Algorithm 4.1.1.

Although the CLODD algorithm looks complex, it is really quite simple. Line 2
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Algorithm 4.1.1: CLODD: Extraction of clusters from ordered dissimilarity
data
Input: An n× n matrix of ordered (from, e.g., VAT) dissimilarities,
D∗ = [d∗ij]; ∀i, j : 0 ≤ d∗ij ≤ 1, d∗ij = d∗ji, d

∗
ii = 0.

Parameters:
C = {2, 3, . . . , cmax} = range of values for search over M∗

hcn

Np = no. of particles for each swarm c ∈ C
α = mixing coefficient for Eα(U;D∗), 0 ≤ α ≤ 1
γ = set point control for Sγ(U), 2/n < γ ≤ 1
qmax = maximum number of swarm iterations
ε = threshold multiplier
εc = εNp(c− 1), c ∈ C = termination threshold at each value of c
PSO parameters:
K = inertial constant, 0 < K < 1
Alocal = local influence constant, 0 < Alocal < 4
Aglobal = global influence constant, 0 < Aglobal < 4
Main Loop:
for t = 2 to cmax do1

Initialize particles, (i, t), i = 1, 2, . . . , Np2

for q = 1 to qmax do3

for i = 1 to Np do4

if �m
(q)
it produces a valid partition then5

Build the partition matrices U
(q)
it , Ûit, and

ˆ̂
Ut equivalent to6

�m
(q)
it , m̂it, ˆ̂mt

if E(U
(q)
it ) > E(Ûit) then m̂it = �m

(q)
it7

if E(U
(q)
it ) > E(

ˆ̂
Ut) then ˆ̂mt = �m

(q)
it8

�v
(q+1)
it = K�v

(q)
it + Alocal · rand([0, 1])(.∗)(m̂it − �m

(q)
it ) + Aglobal ·9

rand([0, 1])(.∗)( ˆ̂mt − �m
(q)
it )

�m
(q+1)
it = Round(�m

(q)
it + �v

(q+1)
it )10

CLIP �m
(q+1)
it , constrain the elements of �m

(q+1)
it to the interval11

[1, n− 1]

SORT �m
(q+1)
it , such that m(it)1 ≤ m(it)2 ≤ . . . ≤ m(it)t−112

if

[
t−1∑
s=1

Np∑
i=1

|�v(q+1)
is | < εt = εNp(t− 1) OR q = qmax

]
then STOP

13

if E(
ˆ̂
Ut) > E(U ˆ̂

G
) then

ˆ̂
G = ˆ̂mt14
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initializes the particles according to the following procedure:

1. Randomly choose �m
(1)
it so that

�m
(1)
it �= �m

(1)
st , i �= s,

and

�m
(1)
it ← U

(1)
it ∈M∗

htn.

2. �v
(1)
it = rand([−1, 1]) : m̂it = �m

(1)
it : ˆ̂mt = �m

(1)
1t

Line 6 builds the candidate partitions according to the particles, including the par-

ticles’ current location, prevsiou best personal location, and previous best overall lo-

cation. Although I show in the CLODD algorithm outline that candidate partitions

are built at every iteration of the particle swarm, because this problem is discrete

in nature, candidate partitions only need to built and tested when new candidates

are explored. If a candidate partition has been tested in a previous iteration, the

objective function does not need to be calculated again. Lines 7 and 8 test to see if

candidate partitions are better than the best previously found candidate partitions.

Line 9 is the PSO update equation, which updates the velocity of each particle. Line

10 calculates the new location of each particle. Lines 11 and 12 are of particular

interest and lead to the following remark.

Remark 4.1.1. It is possible that at the end of the Round operation, �m(q+1) could have

one or more negative entries. This would be not be a valid partition. For example,

one might have �m(q+1) = (−2,−1, 0, 3, 1) before clipping. This condition is only

temporary, because �m(q+1) is clipped before it has a chance to reach the objective

function. Thus, CLIP (−2,−1, 0, 3, 1) = (1, 1, 1, 3, 1). In this example, there are

several equal elements in the clipped �m(q+1). This is NOT a valid partition, because
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it violates the condition that m1 < m2 < . . . < mt−1. When this occurs, CLODD

will not evaluate the objective function and, subsequently, will not update the local

or best particle positions. The particle is allowed to stay in its location (which is

invalid) but does not contribute. If the particle is lucky, it will be updated to a valid

location at the next iteration.

Line 12 sorts the elements of �m(q+1) such that the elements are ordered and in-

creasing. Note that this is merely a ease-of-computation step and does not change

the partition, as the elements of �m are the boundaries of the aligned partition on the

image. Line 13 is the termination criterion for the PSO.

Remark 4.1.2. If the termination criterion
∑t−1

s=1

∑Np

i=1 |�v(q+1)
is | < εt = εNp(t − 1) is

met, the average value of the magnitude of the particle velocities is less than ε. There

are (t− 1) velocity elements in each particle. The particles can only move in discrete

jumps (integers, see line 10); hence, an average velocity less than ε = 0.5 virtually

ensures that all particles have converged to a solution—usually, but not necessarily,

the globally best solution of Eq.(4.6).

Finally, line 14 keeps track of the best candidate partition over all values of t, the

number of clusters.

Remark 4.1.3. Two or more particles can occupy the same location. In fact, as

a swarm approaches termination by the velocity criterion, many particles may be

located at the global maximum. As a result of the formulation of the update equation

(line 9), once the particles arrive at the global maximum (with minimal momentum),

they stay.

Remark 4.1.4. The VAT image of D may suggest that the data set it represents con-

tains c clusters, but it is CLODD that extracts an aligned c-partition of O∗ from

the image. Proposition 3.2.1 shows that when the MST of D is unique, CLODD ex-
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tracts SL clusters from the VAT image. The important point is that CLODD extracts

only the aligned SL partition at the (VAT suggested) “best value” for c, whereas SL

produces n − 1 aligned c-partitions of O. Thus, [VAT + CLODD] is, for some (but

not all) D’s that have a unique MST, equivalent to [SL + some heuristic means for

choosing the “best” SL partition].

4.1.2 Numerical Examples

This section contains a number of examples that illustrate various facets of the

CLODD algorithm. First, I list the computing protocols (for all examples except

where noted). C = {2, 3, . . . , cmax} varies from example to example; α = 0.5,

γ = 0.05; Np = 20 particles per swarm; qmax = 1000; ε = 0.5 = termination threshold

multiplier; K = 0.75; Alocal = Aglobal = 2. Many papers attempt to establish “best”

choices for the PSO parameters. I chose the values shown after a limited amount of

experimentation with each. A given problem may warrant other choices, but here, I

concentrate on the showing the basic points of CLODD.

CLODD parametric evaluation

Figure 4.5(a) shows n = 100 object vectors X ⊂ R2. Call the subset of n1 = 2 points

in the upper left corner of this scatter-plot X1, and the remaining n2 = 98 points

X2. The visually apparent cluster structure is the 2-partition X = X1 ∪ X2, so I

expect U∗
2 ↔ {2 : 98} ∈M∗

h2n. Convert X to dissimilarity data D by calculating the

Euclidean distances dij = ||xi − xj|| for 1 ≤ i, j ≤ n.

Figure 4.5(b) shows the VAT image I(D∗) of D. The structure seen in the scatter-

plot is mirrored exactly by I(D∗) for these nice data. Choose C = {2, 3, 4, 5, 6}. First
I set α = 0.5, and vary the parameter γ, γ = 0.02, 0.05, 0.10, 0.25, 0.50, and 0.75.
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Figure 4.5: Scatter-plot and VAT image of {2 : 98} object data

Figure 4.6 shows the values of E(Uc;D
∗) for the winner of the PSO competition at

each c in C as γ runs across the specified range of values.

Figure 4.6(a) shows that γ makes an important contribution to the solution of

Eq.(4.7). E(U2;D
∗) has a strong maximum across all values of c, but as γ increases,

the optimal partition at c = 2 selected by PSO becomes less and less attractive

(remember, E(U;D∗) is maximized, and its value always lies in [0, 1]). For the

parameters of this example, the optimal partition of D∗ (and, hence, of D, and

thus X) occurs at γ = 0.02 and c = 2, for which U2∗ = {2 : 98} ∈ M∗
h2n. The first

two columns of Table 4.1 show resubstitution error rates, Er = 100(# wrong)/100

for this set of experiments. Even though c = 2 wins the PSO competition for every

value of γ, only γ = 0.02 realizes zero errors — i.e., finds the “right” 2-partition. For

example, U2 = {34 : 66} for (α, γ) = (0.5, 0.75). This (wrong) solution is shown in

Fig. 4.6(b), where the boundaries of the aligned partition {34 : 66} are shown as an

overlay on the VAT image of the data. This misfit is clear in Fig. 4.6(b): 2 of the 34

points in the first cluster are correct, but the remaining 32 points assigned to cluster

1 should have been labeled to cluster 2, so there is a 32% labeling error.
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E(
U

)

No. of Clusters
(a) γ vs. c: α = 0.5

(b) U2∗ for (α, γ) = (0.5, 0.75): c = 2

Figure 4.6: The effect of γ on the behavior of CLODD for the {2 : 98} data. (a)
shows that the 2-partition produces the optimum E(U;D∗) at each γ. (b) shows the
associated 2-partition for (γ, α) = (0.5, 0.75). Note that γ = 0.75 produces a behavior
in CLODD that prefers a partition that has a larger cluster (by design).
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Table 4.1: Resubstitution Error Rates for Selected (α, γ) Pairs

α = 0.50 γ = 0.02 γ = 0.05
γ %Er α %Er α %Er

0.02 0 0 0 0 0
0.05 2 0.1 0 0.1 0
0.1 6 0.25 0 0.25 0
0.25 17 0.5 0 0.5 2
0.75 32 0.75 0 0.75 2

0.9 0 0.9 2
1 0 1 2

Now fix γ = 0.02, and vary the parameter α, α = 0, 0.10, 0.25, 0.50, 0.75, 0.90, and

1.0. Recall that α = 0 causes CLODD to only use the edge detection of Eq.(4.2,

while α = 1 causes CLODD to only use the block detection of Eq.(4.1). The middle

two columns of Table 4.1 show that at γ = 0.02 every value of the mixing coefficient

α produces a perfect fit, U2∗ = {2 : 98}. Figure 4.7 is a plot of the winning values of

E(U;D∗). At c = 2 the objective function shows a slight increase as the parameter

α increases from 0 to 1, but this trend does not hold for c > 2. Recall that E(U;D∗)

is bounded above by 1, and notice that the range of values for E(U2;D
∗) at c = 2

is 0.94 to 0.98. The magnitude of these values provides very strong evidence for the

correctness of the fit of U2∗ = {2 : 98} to D∗. CLODD works well with any choice of

α because at γ = 0.02, the spline function in Eq.(4.5) only penalizes partition choices

with clusters smaller than γn = 0.02(100) = 2.

The last two columns in Table 4.1 and the plots in Fig. 4.7(b) show the results

of repeating this experiment with γ = 0.05 (penalizing partition choices with clusters

smaller than 5 objects). First, notice that the vertical scale in Fig. 4.7(b) is less

than half of the scale in view 4.7(a), so every partition recommended by the PSO

for γ = 0.05 is much less attractive (in the eyes of CLODD) than those found with

the samller value of γ. Second, observe that the best value of E(U;D∗) increases

108



E(
U

)

No. of Clusters
(a) α vs. c: γ = 0.02

E(
U

)

No. of Clusters
(b) alpha vs. c: γ = 0.05

Figure 4.7: The effect of α on the value of E(U;D∗) for the {2 : 98} object data.
For each α in both (a) and (b) the 2-partition is the preferred partition. For α = 1,
E(U;D∗) = Sγ(U) · Esq(U;D∗), and for α = 0, E(U;D∗) = Sγ(U) · Eedge(U;D∗).
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Table 4.2: Resubstitution Error Rates for Selected (α, γ) Pairs At c = 2 For The
{2 : 98} Data

γ
α 0.02 0.05 0.10 0.25 0.50 0.75
0 0 0 85 75 59 59

0.10 0 0 85 17 59 59
0.25 0 0 6 17 43 43
0.50 0 2 6 17 27 32
0.75 0 2 6 17 27 32
0.90 0 2 6 17 27 32

1 0 2 6 17 27 32

monotonically as α increases from 0 to 1, but the largest value in Fig. 4.7(b) is less

than half of the best value in view 4.7(a). Third, Table 4.1 shows that the desired

best match partition, U2∗ = {2 : 98} is found when α = 0, 0.10, and 0.25, but for

all higher value of α — which occur at higher value of E — the partition chosen

is U2∗ = {4 : 96}, a labeling of the objects in X that has two mistakes. This is a

different (and less severe) type of bad behavior than that shown by CLODD when

α = 0.5 is fixed and γ increases, as shown in the first two columns of Table 4.1.

Figure 4.8(a) shows 42 values of the CLODD objective function E(U;D∗) and

Fig. 4.8(b) shows the resubstitution error rates corresponding to the PSO winners at

c = 2. For example, the tall dark bars at the back of Fig. 4.8(a) are the 7 bars in

the leftmost group at c = 2 in Fig. 4.7(a); the zeroes seen in the foreground of Fig.

4.8(b) correspond to the error rates shown in the middle two columns of Table 4.1.

Table 4.2 shows the data that are plotted in Fig. 4.8(b). The largest number

of misclassifications, 85%, occurs at two value pairs: (α, γ) = (0, 0.10) and (α, γ) =

(0.10, 0.10). As γ continues to increase, the error drops. In this example, with one

very small cluster in these data, CLODD is most reliable when γ is also very small

(see Table 4.1). Interestingly, CLODD always chooses c = 2; it just gets the wrong

2-partition for large values of γ — this effect is also exacerbated when α is small,
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Figure 4.8: Joint distribution of E(U;D∗) and error rate Er as a function of (α, γ)
for {2 : 98} data: c = 2. This example shows that γ = 0.02 produces the error rate.
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(b) E(Uc;D
∗
3) vs. c

(c) VAT image I(D∗
3) (d) VAT image with U3∗

Figure 4.9: Object data scatter-plot, PSO winners, VAT image, and optimal CLODD
partition for the Three Clouds data X3 — dotted line in view (d) indicates partition
boundaries. CLODD found the preferred 3-partition.

meaning the objective function is looking for edginess. All of the remaining examples

use the fixed values (α, γ) = (0.50, 0.05). These values were empirically chosen as a

good trade-off between edge-detection and block-detection, and also penalizing small

cluster sizes.

Example 4.1.2 (Three Gaussian Clouds). Figure 4.9(a) shows n = 100 object vectors

X3 ⊂ R2. Figure 4.9(c) is the VAT image I(D∗
3) of the corresponding Euclidean

dissimilarity data D3. The well-defined cluster structure that is visually evident in

X3 is represented exactly in I(D∗
3), so CLODD is expected to find a perfect match
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(d) CLODD solution U5∗

Figure 4.10: VAT image, PSO winners, and optimal CLODD partition for the 3 lines
data X3L. CLODD was unable to find the preferred 3-partition.

to the boundaries in the VAT image. Figure 4.9(b) is a plot of the values of the

objective function E(Uc;D
∗
3) for the PSO winners at each c = 2, 3, . . . , 10. The

aligned partition U3∗ has a strong maximum of 0.72 in Fig. 4.9(b). This partition —

the expected perfect match — is superimposed on I(D∗
3) in Fig. 4.9(d).

Example 4.1.3 (Three lines). Figure 4.10(a) shows n = 100 object vectors X3L ⊂ R2.

Figure 4.10(c) is the VAT image I(D∗
3L of the corresponding Euclidean dissimilarity

data D3L. Most observers would agree that there is well defined cluster structure,

which is visually evident in X3L, but view 4.10(c) shows that VAT does not elicit

113



this from these data. The visual impression given by I(D∗
3L is that X3L has c = 5

clusters, and it is seen that CLODD agrees. The PSO winners at each c, shown in

Fig. 4.10(b), have a clear maximum at c = 5. Please notice that the corresponding

aligned partition U5∗, which solves Eq.(4.7), has a very weak maximum of 0.233.

This partition of X3L is shown in Fig. 4.10(d). What went wrong? VAT failed to

reorder the distance matrix to show the c = 3 linear clusters. As shown in Section

3.3, the ability of VAT to show “proper” cluster tendency is directly linked to Dunn’s

cluster validity index. Dunn’s index for the visually apparent 3-partition of X3L is

0̃.3, which is less than 1; hence, the contrast of the VAT image is not sufficient to

show a cluster tendency of c = 3.

Example 4.1.4 (Uniform random field). To study the candidate partitions that CLODD

might suggest when there are no visible clusters in the data, I generated a set of 500

object vectors Xu, uniformly distributed in [0, 1]× [0, 1], and converted them to Eu-

clidean dissimilarity data Du. What would you conjecture, based only on the visual

evidence in the VAT image I(D∗
u), shown in Fig. 4.11(c)? There are several dark

blocks in the lower part of this image that attract the eye, and there are quite a few

smaller dark blocks along the diagonal, so you might speculate that there is some type

of cluster substructure in the data — albeit weak and perhaps not distinguishable by

the reordering procedure used by VAT.

The solution of the CLODD objective function Eq.(4.7) for these data is indicated

by the maximum on the graph in Fig. 4.11(b). CLODD finds c = 5 clusters, and the

corresponding partition is shown in Fig. 4.11(d). The optimal CLODD partition U5∗

is not an unreasonable fit to the VAT image. Although, it certainly could be argued

that there is NO cluster structure in these data. CLODD does not, in essence, fail for

this data. CLODD finds an aligned partition that is a pretty good match to the VAT

image it has to work with. The failure in this case, as in the Three Lines example,
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Figure 4.11: VAT image, PSO winners, and optimal CLODD partition for the uni-
form data Xu — dotted line in view (d) indicates partition boundaries. There is no
preferred partition for this data.

is due to VAT, which produces a reordered image that seems to have more structure

than the scatter-plot of these data suggest. This reminds us that the job of every

clustering algorithm is to find clusters, and CLODD is not different from all other

clustering algorithms in this respect: CLODD does its job — namely, finding clusters

where none seem to exist.

Example 4.1.5 (“VOTE” data). This example uses the real world VOTE data set,

downloaded from the UCI Machine Learning Repository [Asuncion and Newman,

2007]. The data are generated from Congressional voting records, and consist of the
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Figure 4.12: VAT images, PSO winners, and optimal CLODD partitions for the
VOTE data — dotted line in views (e,f) indicates partition boundaries. Views (a,c,e)
use Euclidean dissimilarity relation, a, views (b,d,f) use squared Euclidean dissimi-
larity relation.
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1984 records of the 435 members of the United States House of Representatives on

16 key votes. These data consist of “y” for yea, “n” for nay, and “?” for unknown

disposition. To represent these data numerically, I chose the values 0.5 for yea, -0.5 for

nay, and 0 for unknown. Thus, the voting records are represented by an object data

set XV OTE = {x1, . . . ,x435} ⊂ R16. Euclidean and squared Euclidean distances were

used to generate relational data sets De and De2 from XV OTE. Figure 4.12(a) shows

the VAT image I(D∗
e). This image gives the impression that there are two clusters

in the data, but the intensities at the edges of the dark regions fade into neighboring

pixels more or less continuously, and the lower corner, along the diagonal of the lower

block, simply disappears. Figure 4.12(c) plots the values of the objective function for

the winner of each PSO competition, where, recall, each PSO competition is for a

different number of clusters. The range of values of the vertical axis of Fig. 4.12(c) is

very compressed and is relatively small — E(U;D∗
e) is valued in [0.208, 0.223]. The

graph from c = 3 to c = 6 is nearly flat, so while there is a maximum at c = 5, it is

relatively weak. This indicates that the optimal CLODD partition U5∗ is not clearly

preferable, just better than those at other values of c.

Figure 4.12(b), the VAT image I(D∗
e2), has improved visual contrast for the pre-

ferred 2-partition along party lines. The dark blocks are darker and the boundaries

seem more distinct, but a gray area is still seen along the bottom and right edge of

the VAT image. Figure 4.12(d) plots the winning objective function value at each

c. Views 4.12(c) and 4.12(d) show that changing the input data from De to De2

changes the number of optimal clusters from c = 5 to c = 3. This demonstrates

the ability of the edginess and contrast factors, which comprise E(U;D∗), to track

changes in contrast and edge definition in the VAT image I(D∗). The 3-partition

chosen as the best match for I(D∗
e2) is U3∗ = {176 : 224 : 45}. This is a somewhat

more satisfying result than the partition U5∗ = {145 : 31 : 210 : 24 : 25} that CLODD
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Figure 4.13: Party label of 435 members of congress ordered by VAT.

matches to I(D∗
e). The two identified classes in these data are Republicans (54.8%)

and Democrats (45.2%), but this does not guarantee that the numerical data con-

tain two geometrically well-defined clusters. The two apparent clusters correspond to

Democrats and Republicans voting along party lines, while the poorly defined region

in the bottom right corner of I(D∗
e2) corresponds to 45 voters who crossed party lines

on these 16 votes. Figure 4.13 shows the party labels of the members in the same

order as produced by VAT in Fig. 4.12.

Remark 4.1.5. The contrast enhancement used in the previous example does not

change the ordering of the VAT-ordered dissimilarity matrix, it merely improves the

visual contrast of the image. However, the contrast enhancement does change the

clustering, according to CLODD, because the distance calculation (proximity metric)

used is different. This is a strength of CLODD; it is not dependent on a Euclidean

distance calculation, it only requires a dissimilarity matrix as input. Because it is a

visual technique, one could run CLODD with different contrast enhancement methods

and choose the most visually pleasing result.

Example 4.1.6 (Bioinformatics data). The last example uses one version of the real

world data GPD19412.10.03, denoted here as D194. This data set is also described

and shown in Section 2.4 and Figure 2.11. This data is different from the previous
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Figure 4.14: VAT image, PSO winners and optimal CLODD partition for the
GPD19412.10.03 data — dotted line in view (d) indicates partition boundaries.
CLODD found substructure within the collagen family, which has been reported in
other literature.

examples in that it is not derived from object data. Rather, it is derived directly

from a (dis)similarity relation built with a fuzzy measure applied to annotations of

194 human gene products, which appear in the Gene Ontology [The Gene Ontology

Consortium, 2004]. Popescu et al. [2004] contains a detailed description of the con-

struction of this data and Section 2.4 further describes this data. Recall that these

data are comprised of 21 sequences of gene products from the Myotubularin protein

family, 87 sequences of gene products from the Receptor Precursor protein family, and
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86 sequences of gene products from the Collagen Alpha Chain protein family. The

three protein families are clearly visible in the image of D194 shown in Fig. 4.14(a);

the upper left block is the Myotubularins, the middle block is the Collagens, and the

lower right block is the Receptor Precursors. Note the strong substructure within the

Collagen protein family dissimilarity data. This substructure has been corroborated

in Myllyharju and Kivirikko [2004] and, as you will see, is also supported by CLODD.

Figure 4.14(a) displays an image of D194, and if you compare this image to the

VAT image I(D∗
194) in Fig. 4.14(c), you will see that they are similar, but not exactly

equal. However, both these images seem to suggest that there are more than just 3

clusters, with c = 5 − 7 main clusters being my estimate from the VAT image. In

this regard, CLODD agrees. Figure 4.14(b) shows a slight maximum in the objective

function at c = 6, and the corresponding partition U6∗ is shown superimposed in Fig.

4.14(d). In this example, the three highest values of the objective function, which

occur at c = 5,6, and 7, are all about 0.64. Compare this to the best values of the

objective function in the previous examples. In the {2 : 98} and Three Clouds data,

the maximum objective function value is larger than 0.6; in both these examples

CLODD (arguably) found a good partition of these data. But in the Three Lines,

Uniform, and VOTE data, where either VAT or CLODD performed less reliably, the

value of the objective function is below 0.25. Hence, I believe that CLODD supports

the substructure found in the Collagen family. Also, please note that within the 6

main clusters found by CLODD in the GPD19412.10.03 data (which, for lack of a better

term, I call first order clusters), there are visually apparent subclusters (second order

clusters).
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4.1.3 Perspectives on CLODD

The examples demonstrate that when D has “good” clusters, CLODD will find them.

In the examples when CLODD finds a good match to a good VAT image of the data,

the value of the objective function is larger than 0.6. But in the examples where

either VAT or CLODD is less reliable, the value of the objective function is below

0.25. This indicates that CLODD is useful for both finding clusters in unlabeled data

and, also, presenting a cluster validity index of those clusters.

There are algorithms besides VAT that produce block diagonal images: some are

displays of clusters already found [Johnson and Wichern, 2007, Floodgate and Hayes,

1963, Ling, 1973, Baumgartner et al., 2000, 2001]; others are constructed, like VAT,

to assess structure prior to clustering [Baumgartner et al., 2000, Zhang and Chen,

2003]; still others are used to simultaneously find and display clusters [Johnson and

Wichern, 2007, Sneath, 1957, Tran-Luu, 1996]; and finally, images with this type

of structure are used to attack the validity question [Hathaway and Bezdek, 2003,

Huband and Bezdek, 2008]. Consequently, CLODD is much more widely useful than

it might appear. However, many good questions remain. For example, the possibility

that Eq.(4.7) may not have a solution, or that it has more than one, is ignored. These

questions are interesting, but the objective function in Eq.(4.6) is discontinuous on

its domain; hence, these questions are indeed formidable.

On a more practical note, I ask if there is a better way than trial and error to find

a reliable pair of CLODD parameters (α, γ)? The initial attempts at approaching

this question have centered on computational ways to make CLODD “adaptive”,

but so far, I have met with little success. Another interesting question concerns the

reliance of CLODD on VAT. Certainly CLODD will fail when VAT does, and it was

demonstrated here that this can happen. It is possible that other reordering methods

might be useful “front end” partners for CLODD in such cases. This leads to a related
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question concerning the size of the data O. VAT is a useful reordering scheme for

small to medium sized data sets (n ≤ 10,000). The scalable version of VAT [Hathaway

et al., 2006] produces a sample-based estimate of the VAT image I(D∗) for very large

n, but does not reorder the very large data in preparation for CLODD clustering.

4.2 New Formulations of co-VAT

4.2.1 Alternate reordering scheme

The original co-VAT algorithm, outlined in Algorithm 2.3.1, reorders the rectangular

matrix D by shuffling the VAT-reordering indexes of Dr∪c. Thus, co-VAT is very

dependent on the construction of Dr∪c. Algorithm 4.2.1 presents a reordering scheme

that is not dependent on the reordering of Dr∪c — this matrix does not even need to

be constructed. However, we still need the matrix of the union if we intend to assess

cluster tendency in Or∪c. Essentially, the reordering of the row indexes of D are

taken from the VAT-reordering of Dr and the reordering of the column indexes are

taken from the VAT-reordering of Dc. Another advantage of this alternate reordering

scheme is that the scale factors, λr and λc in (2.22) and (2.23), can be ignored.

Algorithm 4.2.1: Alternate co-VAT Reordering Scheme

Input: D - m× n rectangular dissimilarity matrix
Build estimates of Dr and Dc using Eqs.(2.22) and (2.23), respectively.
Run VAT on Dr, saving permutation array, RP = {RP (1), . . . , RP (m)}1

Run VAT on Dc, saving permutation array, CP = {CP (1), . . . , CP (n)}2

Form the co-VAT ordered rectangular dissimilarity matrix,3

D∗ = [d∗ij] = [dRP (i)CP (j)], 1 ≤ i ≤ m; 1 ≤ j ≤ n
Output: Rectangular image I(D∗)

Appendix A.3 presents several examples that show that the alternate co-VAT

is successful for all the cases that co-VAT was shown successful in [Bezdek et al.,
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2007]. The following two examples illustrate the effectiveness of the alternate co-VAT

reordering scheme for data sets where the original co-VAT fails.

Example 4.2.1. This example is on a pure relational data set that has 250 row ob-

jects and 300 column objects. The dissimilarity data for these objects is shown in

Fig. 4.15(a). Clearly, view (a) does not indicate any discernable cluster structure.

Similarly, the co-VAT image in view (b) also does not show any cluster structure.

At the very least, this image shows that there is a group of column objects (indexed

1-50) that do not have a strong similarity to any row objects.

Interestingly, views (d) and (e) of D∗
r and D∗

c , respectively, show the cluster ten-

dency of the row and column objects rather well: 3 clusters in the row objects and 5

clusters in the column objects. But, the reason that co-VAT “fails” on this example

is because the reordering of D∗
r∪c “fails”. View (f) shows D∗

r∪c. This image shows no

clear cluster structure in the union of the row and column objects. Thus, when the

reordering indexes are reshuffled to produce the co-VAT image, this image also fails

to show the structure.

However, if I use the alternate reordering method to produce a co-VAT image,

as shown in Fig. 4.15(c), the cluster structure of this data is very clear. This image

would suggest 3 pure co-clusters; however, notice that there is overlap between all of

the objects that have a strong similarity to another object (notice that the column

objects indexed 100-150 are the same column objects indexed 1-50 in the original

co-VAT image). The row objects indexed 200-250 have a strong similarity to column

objects 1-100 and 150-200. However, the column objects 150-200 are also strongly

similar to the row objects 100-200. And these row objects are strongly similar to the

column objects 250-300. Thus, I believe that a question remains as to the number of

pure co-clusters in this data set. Also, it is my conjecture that these overlaps are the

reason that the original co-VAT formulation “fails” for this data set.
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Figure 4.15: Example 4.2.1 Pure rectangular relational data. (a) - dissimilarity data;
(b) original co-VAT reordering, (c) alternate co-VAT reordering, (d-f) - co-VAT re-
ordered dissimilarity data matrices.
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Example 4.2.2. This example is on a pure relational data set that has 250 row ob-

jects and 300 column objects. The dissimilarity data for these objects is shown in

Fig. 4.15(a). As in the previous example, the co-VAT image shown in view (b) does

not suggest any cluster structure. Again, the images of D∗
r and D∗

c clearly show

structure: 6 clusters in the row objects and 5 clusters in the column-objects. The

image of D∗
r∪c again shows no clear cluster structure.

The alternate reordering method, shown in view (c), produces a visually pleasing

image. There appears to be 2 pure co-clusters in this data set. However, as we saw in

the previous example, there is overlap between the dark blocks—row objects 175-200

are strongly similar to column objects 250-300. Thus, the question remains as to how

many pure co-clusters there are. This example also provides more evidence for my

conjecture that the overlapping is the cause of the failure of co-VAT.

It is my opinion that in Examples 4.2.1 and 4.2.2 there is 1 pure co-cluster in

the union of the row and column objects. Imagine that these dissimilarity matrices

represent the weights of a partially-connected graph, where the dissimilarity values

represent the edges and objects represent the vertices. Each row vertex is connected

to all column vertices and each column vertex is connected to all row vertices. Con-

sider the dissimilarity data shown in Fig. 4.15(c) for Example 4.2.1. It is clear that

there exists a “low-cost” path between every set of vertices, except for the column

vertices indexed 100-150. Conversely, in Example 4.2.2, the dissimilarity data shown

in Fig. 4.16(c) shows that there exists a “low-cost” path between every set of vertices.

For this reason, I believe that there is 1 pure co-cluster in these two examples.

Example 4.2.3. This example treats the data first presented in Example 4.1.5 as

rectangular data. Again, these data consist of 1,984 records of 16 key votes by the

435 members of the U.S. House of Representatives. I coded the data as 1 for yea, 0

for nay, and 0.5 for unknown. Figure 4.17(a) shows the raw rectangular data for this
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Figure 4.16: Example 4.2.2 Pure rectangular relational data. (a) - dissimilarity data;
(b) original co-VAT reordering, (c) alternate co-VAT reordering, (d-f) - co-VAT re-
ordered dissimilarity data matrices.
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example.

Figures 4.17(b,c) show the co-VAT and alternate co-VAT reordered matrices, re-

spectively. Again, the alternate co-VAT reordering produces a more appealing image,

from the standpoint of assessing cluster tendency. There are clearly two larger co-

clusters — one at the upper-left and on at the middle-bottom of view (c). These two

co-clusters correspond to Republicans and Democrats, respectively, that tend to vote

along party lines as well as the votes on which they tend to agree on. View (b) clearly

does not provide as pleasing a result as view (c) does. Figure 4.18 shows the labels

of the column objects, plotted in the order of column objects in view (b) and (c) of

Fig. 4.17, respectively. The plots in Fig. 4.18 clearly support the visual evidence that

the alternate co-VAT reordering is superior to the original formulation. As the figures

show, the alternate algorithm is able to show how the members of each party cluster

together; the original co-VAT ordering shows no such pattern.

Figures 4.17(d-f) show the other co-VAT images. Note that view (e) is the same

dissimilarity data that was used in the CLODD example shown in Fig. 4.12. Again,

this view shows the two clusters of party members that tend to vote along party lines

(Figure 4.18(b) shows the labels (Republican and Democrat) according the reordering

of Dc). View (f) of Fig. 4.17 shows the cluster tendency in the union of the members

and votes. This view does not seem to suggest any cluster structure in the union of

the objects. The failure of VAT to elucidate the cluster structure from Dr∪c is the

reason that the co-VAT image in view (b) is inferior to the alternate co-VAT image

shown in view (c).

4.2.2 co-iVAT

The iVAT distance transform in (2.4) is first applied to the three square co-VAT

matrices, D∗
r, D

∗
c , and D∗

r∪c, using the recursive formulation in Algorithm 3.4.1. The
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Figure 4.17: Example 4.2.3. (a) - rectangular data; (b) original co-VAT reordering,
(c) alternate co-VAT reordering, (d-f) - co-VAT reordered dissimilarity data matrices.
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Figure 4.18: Labels ordered according to column object reordering of co-VAT and al-
ternate co-VAT — shows that the alternate co-VAT discovers party affiliation pattern
through voting records.

transformed matrices are denoted as D′∗
r , D

′∗
c , and D′∗

r∪c (examples of these matrices

are shown in Figs. 4.20(a,c,d), respectively). Although, by definition, Eq. (2.4) could

be applied to the rectangular dissimilarity matrix D by considering D to represent

a partially-connected graph (edges only exist between row objects and column ob-

jects), applying this transform directly is computationally expensive. However, if one

considers the elements of D′∗
r∪c that correspond to elements of the rectangular matrix,

one can build the reordered rectangular matrix D′∗ from D′∗
r∪c.

The rectangular co-iVAT image is created as follows:

1. Build Dr∪c and run VAT to produce D∗
r∪c, where the reordering indexes are

Pr∪c = {P (1), . . . , P (m+ n)}.

2. Compute D′∗
r∪c from D∗

r∪c using the recursive iVAT distance transform outlined

in Algorithm 3.4.1.

3. Build the rectangular co-iVAT image D′ from the corresponding elements of

D′∗
r∪c. First, create the reordering indexes K and L, where K are the indexes

of the elements of Pr∪c ≤ m and L are the indexes of the elements of Pr∪c > m
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(m is the number of row objects). Then create D′∗ by

D′∗ =
[
D′∗

ij

]
=
[
(D′∗

r∪c)K(i),L(j)

]
, 1 ≤ i ≤ m, 1 ≤ j ≤ n. (4.10)

I have also adapted iVAT to the new reordering scheme of co-VAT presented in

Algorithm 4.2.1. This adaptation requires the construction of D′∗
r∪c, as above, and

the corresponding elements of D′∗
r∪c are extracted to create the reordered rectangular

matrix D′∗. The co-VAT matrices built with the iVAT distance transform are called

co-iVAT images.

Example 4.2.4. This numerical example is composed of 360 row objects and 360

column objects, as displayed in Fig. 4.19(a). The associated dissimilarity data, calcu-

lated using Euclidean distance, is shown in Fig. 4.19(b). The column objects (shown

as green squares) are composed of three groups, the two groups of 50 objects located

around coordinates (1.5,3) and (4.5,3), and the 260 objects organized along the curved

line extending from the upper-left to the lower-right. The row objects (shown as blue

circles) are composed of three groups, the two groups of 50 objects located around co-

ordinates (1.5,0.5) and (3.5,5.5), and the 260 objects organized along the curved line

extending from the upper-left to the lower-right. Hence, this example has a preferable

cluster tendency of 3 clusters of row objects, 3 clusters composed of column objects,

5 clusters in the union of the row and column objects, and 1 co-cluster.

Figure 4.19(c,d) shows that both co-VAT and the alternate co-VAT display the 1

co-cluster as a diagonal band in the upper-left of the image, with both giving approx-

imately equally pleasing results. The co-VAT images of D∗
r and D∗

c in Figs. 4.19(e,f),

respectively, clearly show the smaller 2 clusters in each of the row objects and column

objects as 2 smaller dark blocks in the lower-right of the image. Again the large

co-cluster is shown as a dark diagonal band in the upper-left. The image of D∗
r∪c is
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Figure 4.19: co-VAT images of 360 row objects and 360 column objects represented
by rectangular dissimilarity data D
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(a) co-iVAT image - D′∗ (b) Alternate-reordering
co-iVAT image - D′∗

(c) co-iVAT image - D′∗
r (d) co-iVAT image - D′∗
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Figure 4.20: co-iVAT images of 360 row objects and 360 column objects represented
by rectangular dissimilarity data D

shown in Fig. 4.19(g); it shows the 5 clusters in Or ∪ Oc as the four dark blocks in

the lower-right and the dark diagonal band in the upper-left. While we hesitate to

say that co-VAT and the alternate co-VAT have failed for this example, we believe

that the large diagonal band leads to ambiguity as to the cluster tendency of these

data. Further more, the contrast in Figs. 4.19(c,d) make it difficult to determine the

number of co-clusters.

Figure 4.20 shows the corresponding co-iVAT images of the rectangular dissimilar-

ity data shown in Fig. 4.19. The co-iVAT images give a very clear view of the cluster

tendency for each of the four types of clusters: D′∗ shows 1 co-cluster, D′∗
r shows 3

row-clusters, D′∗
c shows 3 column-clusters, and D′∗

r∪c shows 5 clusters in Or ∪Oc.
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Figure 4.21: co-iVAT images of dissimilarity data in Fig. 2.10; (a) original co-iVAT
reordering, (b) alternate co-iVAT reordering, (c-e) co-iVAT reordered dissimilarity
data matrices.

Figures 4.21, 4.22, and 4.23 illustrate the co-iVAT images for the pure relational

data examples first shown in Fig. 2.10 and Examples 4.2.1 and 4.2.2. These examples

highlight my conjecture that there are actually only 1 pure co-cluster in Examples

4.2.1 and 4.2.2.

The co-iVAT images in Fig. 4.21 are very similar to results achieved using using

the conventional co-VAT method. However, the contrast of these images is improved;

although, the improvement is slight. There is a drastic difference between the co-iVAT

images in Figs. 4.22 and 4.23 to the co-VAT images in Figs. 4.15 and 4.16.

First, the co-iVAT images shown in Fig. 4.22 clearly suggest that there is 1 pure

co-cluster in the data. I would like to point out that in this case the original co-VAT
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Figure 4.22: co-iVAT images of dissimilarity data in Example 4.2.1; (a) original
co-iVAT reordering, (b) alternate co-iVAT reordering, (c-e) co-iVAT reordered dis-
similarity data matrices.

ordering scheme, in view (a), is more pleasing than the alternate reordering method,

shown in view (b), because the large co-cluster is shown as a contiguous dark block

rather than the broken dark block shown in view (b). Interestingly, this example

contradicts the axiom that cp = cr∪c − cco = cr + cc − cco. View (c) suggest cr = 3,

view (d) suggests cc = 5, and view (e) suggests cr∪c = 2. Thus, cp = 3 + 5 − 2 = 6.

The tendency of cp = 6 is clearly not suggested by views (a) and (b). I will address

this question further in Section 4.3.

A similar conundrum exists in the example shown in Fig. 4.23. Views (a) and (b)

show that all objects are grouped in one pure co-cluster. View (c) shows cr = 6, view

(d) shows cc = 5, and view (e) shows that there is 1 cluster in the union of the row
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Figure 4.23: co-iVAT images of dissimilarity data in Example 4.2.2; (a) original
co-iVAT reordering, (b) alternate co-iVAT reordering, (c-e) co-iVAT reordered dis-
similarity data matrices.

and column objects. Thus cp = 6 + 5− 1 = 10. Obviously, views (a) and (b) do not

suggest cp = 10. I will address this discrepancy further in the next section.

Example 4.2.5. Figure 4.24 shows the co-iVAT images of the dissimilarity data first

presented in Example 4.2.3. Views (a) and (b) show the co-iVAT images of the

reordered dissimilarity data. It is my opinion that these images are an example

where co-iVAT fails to show the cluster structure in D. This is in contrast to the

co-VAT image shown in Fig. 4.17(c), which more clearly shows the grouping of the

row and column objects (key-votes and representatives, in this case). The co-iVAT

images shown in views (c) and (d) show the cluster tendency in Dr (votes) and Dc
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Figure 4.24: co-iVAT images of VOTE rectangular data in Example 4.2.3; (a) orig-
inal co-iVAT reordering, (b) alternate co-iVAT reordering, (c-e) co-iVAT reordered
dissimilarity data matrices.

(representatives), respectively. These images show similar structure as shown by the

respective co-VAT images shown in Figs.4.17(d,e) — 2 clusters in the row objects

and 2 clusters in the column objects. Finally, view (e) shows the co-iVAT image of

Dr∪c. This image suffers from the same problem as seen in the co-iVAT images shown

in views (a) and (b); namely, the cluster structure is not shown due to the distance

transform. This problem occurs because of the tertiary nature of this data set (yea,

nay, and unknown). If two representatives have at least one ’nay’ vote in common,

then the path-based distance is 0. This is the issue with using the path-based distance

with this data-set.
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The last example, the VOTE data set, showed a case where the iVAT distance

transform degraded the effectiveness of co-VAT in showing the cluster structure. How-

ever, as I proved in Section 3.4, the computational complexity of VAT and iVAT are

equivalent. Note that proofs in Section 3.4 can also be extended to show that the

co-iVAT images are in the same order as the co-VAT images; only the dissimilarity

values themselves are altered. Thus, I recommend computing both co-VAT and co-

iVAT images of a rectangular data set and using both sets of images to judge the

cluster structure.

4.3 Rectangular Single-Linkage

Rectangular Single-Linkage (ReSL) is similar to CLODD, in that ReSL partitions

ordered dissimilarity data. However, unlike CLODD, ReSL addresses rectangular

dissimilarity data. The front end ordering algorithm for ReSL is the alternate co-

VAT, presented in Section 4.2. The alternate co-VAT reorders the dissimilarity data

and displays cluster tendency among row objects Or, column objects Oc, the union of

row and column objects Or ∪Oc, and the co-clusters. Again, co-clusters are defined

as clusters among the union of the row and column objects that contain at least one

object of each type.

The name Rectangular Single-Linkage comes from the fact that CLODD is used

to extract aligned partitions from the co-VAT image. It was shown in Chapter 3 that,

in fact, these aligned partitions are SL clusters—[CLODD + VAT] is essentially [SL

+ a heuristic for finding the best SL partition]. Thus, I extend this line of thought

to rectangular data; thus, CLODD for rectangular data is ReSL.

Consider n = nr + nc objects, O = Or ∪ Oc. These objects are represented by

an nr × nc rectangular dissimilarity matrix D ∈ [0, 1]nrnc (assume that D has been
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normalized to the interval [0, 1]). ReSL begins by computing the co-VAT matrices

D∗
r, D

∗
c , D

∗
r∪c, and D∗. Note that the alternate co-VAT reordering method described

in Section 4.2 is required for ReSL as the alternate formulation maintains consistent

ordering between D∗, D∗
r, and D∗

c . Then, I use CLODD to compute aligned partitions

of the three square relational matrices, D∗
r, D∗

c , and D∗
r∪c. These partitions are

denoted as U∗
r = {(nr)1 : . . . : (nr)kr}, U∗

c = {(nc)1 : . . . : (nc)kc}, and U∗
r∪c =

{(nr∪c)1 : . . . : (nr∪c)kr∪c}, respectively.
The definition of a co-cluster is a cluster that is composed of both row objects

and column objects. Thus, I use the partitions U∗
r and U∗

c to determine which

of the clusters, when considered together, are composed of mixed row and column

objects. If one considers the aligned partition of the row objects in respect to the

rectangular data D∗—when D∗ is reordered with the alternate reordering method—

the partition appears as horizontal boundaries, as shown by the yellow horizontal

lines in Fig. 4.25(d). The aligned partition of the column objects in respect to D∗

appear as vertical boundaries, as shown by the yellow vertical lines in Fig. 4.25(d). In

the example shown in Fig. 4.25, there are 3 row clusters and 4 column clusters; thus,

there are 12 combinations of the row and column clusters that could be co-clusters.

Hence, I compute the degree of co-clusterness by first calculating the mean-value of

the dissimilarity data within each candidate co-cluster,

(dco)ij =
1

(nr)i(nc)j

∑
k:(U∗

r )ik=1

∑
l:(U∗

c )jl=1

D∗
kl. (4.11)

This equation is the mean-value of the of the rectangular dissimilarity data within each

possible co-cluster (combination of a row and column cluster) or, in other words, the

mean value of the dissimilarity between a row and column cluster. Thus, if this value

is small, then the degree of co-clusterness is large. Because normalized dissimilarity
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data is assumed, I calculate the degree of co-clusterness by the transformation

Uco = 1− dco. (4.12)

At this point in the algorithm, one can use the degree of co-clusterness matrix to

represent the co-clusters (much as one would with a possibilistic partition matrix).

However, an estimate of the number of co-clusters kco can be obtained by kco =

kr + kc − kr∪c, where kr, kc, and kr∪c are the number of clusters in each square co-

VAT matrix as returned by CLODD. The co-clusters are the objects corresponding

to the kco greatest elements of Uco.

Algorithm 4.3.1 outlines the steps of ReSL.

Algorithm 4.3.1: Rectangular Single-Linkage

Input: D ∈ Nnrnc - rectangular dissimilarity data
Data: Partition matrices - U∗

r ∈Mhkrnr , U
∗
c ∈Mhkcnc , U

∗
r∪c ∈Mhkr∪cn, and

Uco

Compute co-VAT matrices, D∗
r, D

∗
c , D

∗
r∪c, and D∗.1

Use CLODD to compute U∗
r = {(nr)1 : . . . : (nr)kr}.2

Use CLODD to compute U∗
c = {(nc)1 : . . . : (nc)kc}.3

Use CLODD to compute U∗
r∪c = {(nr∪c)1 : . . . : (nr∪c)kr∪c}.4

Compute Uco using (4.12)5

If the number of co-clusters is desired, kco = kr + kc − kr∪c.
Co-clusters are objects corresponding to kco greatest elements of Uco.6

4.3.1 Numerical Examples

Example 4.3.1. This example demonstrates the ReSL algorithm on the rectangular

data first shown in Fig. 2.9. The rectangular dissimilarity data D was built using

Euclidean distance on 50 row objects and 80 column objects. The results of the ReSL

algorithm are shown in Fig. 4.25. As view (e) shows, there are 3 clusters in the row

objects (blue circles), 4 clusters in the column objects (green squares), 5 clusters in
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the union of the objects, and 2 co-clusters (the two groups at the lower-left and lower-

right). The results of the ReSL algorithm support this visually preferred clustering

of this data set.

View (a) of Fig. 4.25 illustrates the 3-partition computed by CLODD from the

co-VAT reordered dissimilarity matrix D∗
r. This partition is also shown by the three

larger blue circles in the lower part of the plot in view (e). View (b) shows that

CLODD is able to find the preferred 4-partition of the column clusters, which are

also shown as the four larger green squares in view (e). The numbers shown in views

(a) and (b) correspond to the number of the row and column clusters in view (e).

There are 5 clusters in the union of the objects, and view (c) shows that CLODD

is able to find this preferred partition in the co-VAT reordered dissimilarity matrix

D∗
r∪c. Finally, as described in Algorithm 4.3.1, the partitions of the row objects and

column objects are used to find the degrees of co-clusterness for each group of row

and column objects. View (d) shows the candidate co-cluster boundaries in D∗ found

by the ReSL algorithm. Clearly, ReSL is able to find the visually-evident boundaries

in D∗. Finally, these boundaries are used to compute the degree of co-clusterness

for each region. The degree of co-clusterness matrix Uco is shown in view (f). The

matrix Uco shows that the two co-clusters, the groups at the lower-left and lower-right

in view (e), have the highest degree of co-clusterness at 0.94. The combinations of

the center row cluster with the two column clusters at the lower-right and lower-left

produce the next highest degrees of co-clusterness, which is expected. If one chooses

to “harden” Uco by choosing the two (kr + kc − kr∪c) highest degrees, then ReSL is

clearly able to find the two co-clusters in this example.

Example 4.3.2. This example, shown in Fig. 4.26, demonstrates ReSL on the data first

presented in Example 2.3.2. Views (a) and (b) show the partitions of the row objects

and the column objects, respectively. CLODD is clearly able to find the 4 dark blocks
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on the diagonal of these images. The 4 clusters in the row objects are the row-indexes

{1−50}, {51−150}, {151−200}, {201−250} in view (d). The 4 clusters in the column

objects are the column-indexes {1− 50}, {51− 150}, {151− 200}, {201− 250} in view

(d). It is interesting that the row objects and column objects indexed {51 − 250}
appear as a cluster in D∗

r and D∗
c . But this is expected, because the clustering of D∗

r

and D∗
c can be thought of clustering the row-vectors and column-vectors in D∗, where

these vectors are the dissimilarity values in the rows and columns of this matrix.

View (c) shows the partition of the union of the row and column objects. This

image shows that CLODD returns the visually appealing 5-partition of D∗
r∪c. Ac-

cording to the rule that the number of co-clusters kco = kr + kc − kr∪c, the number

of co-clusters should be 3 = 4 + 4− 5. The degree of co-clusterness matrix, shown in

view (e), supports the claim of 3 co-clusters by the 3 large values (0.96).

Example 4.3.3. Figure 4.27 illustrates the ReSL partitions of the rectangular data

from Example 4.2.1. This example is interesting because, as was stated previously,

it is my opinion that this data set contains 1 co-cluster. This was supported by the

co-iVAT image shown in Figs. 4.22(a,b). ReSL finds 3 clusters in the image of D∗
r

in view (a) and 5 clusters in the image of D∗
c in view (b), which, in both cases, is

the visually preferable solution. However, the image of D∗
r∪c does not show any clear

cluster structure, expect for perhaps the one distinct dark block in the upper-left.

Like any clustering algorithm will, CLODD returned a partition for this dissimilarity

matrix — view (c) shows that CLODD returned a 3-partition: one very large cluster,

and two smaller clusters. Thus, according to the co-cluster rule, the number of co-

clusters is kco = 3 + 5− 3 = 5. However, the degree of co-clusterness matrix in view

(e) shows that there are 6 dark blocks in D∗, as illustrated in view (d). Does this

mean that there are actually 6 co-clusters in this data set?

It is still my opinion that there is 1 co-cluster in this data, because the 6 co-clusters
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Fig. 2.10

143



50 100 150 200 250

50

100

150

200

250

(a) Partition of D∗
r

50 100 150 200 250 300

50

100

150

200

250

300

(b) Partition of D∗
c

100 200 300 400 500

100

200

300

400

500

(c) Partition of D∗
r∪c

50 100 150 200 250 300

50

100

150

200

250

(d) Partition of D∗⎡
⎣ 0 0 0 0.96 0.96

0 0 0.96 0 0.96
0.96 0 0.96 0 0

⎤
⎦

(e) Partition values of Uco

Figure 4.27: ReSL partitions of co-VAT reordered dissimilarity images shown in
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found by ReSL are all overlapped — the row objects indexed {1 − 100} are similar

in relation to the column objects indexed {250− 300}, these column objects are also

similar to the row objects {100− 200}, and so on.

Example 4.3.4. Figure 4.28 shows the ReSL partitions of the rectangular data first

presented in Example 4.2.2. This example is very similar to the previous example,

as there is, in my opinion, 1 co-cluster which ReSL detects as many overlapping

co-clusters. Views (a) and (b) show that CLODD is able to partition the row and

column objects, respectively, in the visually preferred manner — there are 6 clusters

in the row objects and 5 clusters in the column objects. If one thinks of the rows of

D∗ as vectors, then view (d) shows that there are indeed 6 distinct patterns in the

rows. View (d) also supports the claim of 5 clusters in the column objects. Again,

as was seen in the previous example, the co-VAT image of D∗
r∪c does not show any

particular cluster structure — CLODD finds 3 clusters in Or ∪Oc. Thus, the rule-

of-thumb suggests that there are 8 = 6 + 5 − 3 co-clusters. However, the degree

of co-clusterness matrix show in view (e) does not support this claim, and instead

suggests that there are 13 co-clusters. Although, again, it is my opinion that there is

1 co-cluster, which in this case encompasses all 550 objects.

Example 4.3.5. This last example presents the ReSL partitions of the VOTE rect-

angular data set, first presented in Example 4.2.3. Figure 4.29 shows the results of

ReSL on the VOTE data. The CLODD partitions of D∗
r and D∗

c , in views (a) and

(b), are interesting. The votes (row objects) are partitioned into 10 clusters, with 8

clusters containing only one object. The partition of D∗
c returns 3 clusters. The two

large dark blocks in D∗
c represent the two groups of representatives that vote along

party lines and the group that votes independently.

The partitions in views (a) and (b) are projected into the rectangular data, as

outlined in the ReSL algorithm descrition. The co-cluster partitions are shown in
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Fig. 4.29(c). The two large co-clusters—the dark blocks in the upper left and lower

middle—are the Republicans an Democrats, respectively, that vote along party lines

and the votes on which they vote ‘nay’ (recall ‘nay’ is coded as 0).

Interestingly, because this example is not “true” relational data, i.e. the elements

of D are not a measure of dissimilarity, the co-clusters with a small degree of co-

clusterness are also informative. These co-clusters represent representatives that vote

‘yea’ on the same votes.

For this reason, I believe that, in this case, the degree of co-clusterness matrix

is representative of the type of each co-cluster. High values indicate representatives

and the votes on which they vote ‘nay’ together, low values indicate representatives

and the votes on which they vote ‘yea’ together, and values near 0.5 indicate mixed

groups.

Next, I will examine how co-iVAT can be used as the input for ReSL.

ReSL and co-iVAT

Example 4.3.6. This example presents the ReSL partitions of the data set shown in

Figs. 4.15, 4.22, and 4.27. This set represents one of the examples where the idea of

the co-cluster is questioned; namely, is there 1 co-cluster in this data set or are there

6? The ReSL degree of co-clusterness matrix, computed on the co-VAT image and

shown in Fig. 4.27(e), suggests that there are 6 co-clusters by the 6 large values.

However, using ReSL with the co-iVAT images as input produces a different result.

The results are shown in Fig. 4.30. The partitions of the co-iVAT images, D′∗
r andD′∗

c ,

are identical to the partitions of the co-VAT images, D∗
r and D∗

c . However, because

the image of D′∗
r∪c is drastically different from the image of D∗

r∪c, the partition show

in view (c) is also very different. There are 2 clusters in to co-iVAT image D∗
r∪c,

while there were 3 clusters in the co-VAT image D∗
r∪c. Unlike the co-VAT image, the
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co-iVAT has a visually preferable partition and CLODD is finds it. Last, the partition

of D′∗ is shown in view (d) and the degree of co-clusterness matrix is shown in view

(e). The partition of degree of co-clusterness matrix support 12 co-clusters. However,

note that the 12 co-clusters form a large dark block where row objects {1− 250} are
perfectly similar to the column objects {1− 100, 150− 300}. Thus, it is my opinion

that this co-iVAT image has 1 co-cluster, which is formed by the 3 row objects clusters

and four of the five column object clusters.

4.3.2 Co-clustering Comparisons

There are many co-clustering algorithms, each producing different types of partitions

in different types of data. However, ReSL is the only clustering algorithm to date

that finds all types of clusters within rectangular proximity or relational data. But

for the sake of completeness, in this section I make comparisons with the co-clustering

algorithm, spectral co-clustering, developed by Dhillon [2001].

The spectral co-clustering algorithm considers the induced adjacency matrix

M =

⎡
⎢⎣ 0 A

AT 0

⎤
⎥⎦ ,

where Mij is the weight of the edge that connects vertexes i and j, and A is the

rectangular adjacency matrix. Because I am considering rectangular relational ma-

trices D, D can easily be converted to an adjacency matrix with the transformation

A = 1 − D. Notice that the induced adjacency matrix M assumes that the edges

between the row objects and column objects (vertexes) have 0-valued weights (no

edges). I argue that this assumption is very constrictive and note that ReSL makes

no such assumption.
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The spectral co-clustering algorithm seeks to find the k co-clusters (groups of

row and column objects) that minimize the necessary cut between clusters (sets of

vertexes), where a cut is defined as

cut(V1, V2) =
∑

i∈V1,j∈V2

Mij.

Thus, spectral co-clustering seeks to minimize

cut(V1, V2, . . . , Vk) =
∑
i<j

cut(Vi, Vj), (4.13)

for a given expected number of co-clusters k. I stress that, like many clustering

algorithms, spectral-clustering requires the user to input the expected number of co-

clusters k. ReSL automatically determines this value, in a sense—it is presented by

the degree of co-clusterness matrix. To minimize (4.13), spectral co-clustering uses a

singular value decomposition (SVD) relaxation-based method. See [Dhillon, 2001] for

a detailed description of this algorithm.

Figure 4.31 illustrates the result of spectral co-clustering on the dissimilarity ma-

trix of the data set first presented in Fig. 2.9. Recall that the two bottom clusters on

the left and right are composed of both row and column objects, the middle cluster is

a set of row objects, and the top two clusters are column objects. Views (a) and (b)

show the 2-partition of these data. The yellow-dotted lines in view (a) illustrate the

partition of the dissimilarity data, while the plot in view (b) shows the corresponding

2-partition of the object data. Note that the two true co-clusters, as shown by the

two dark blocks in the dissimilarity matrix, are partitioned into separate clusters.

The spectral co-clustering 3-partition of the data set shown in Fig. 4.31(c,d) is,

perhaps, more interesting. The two “true” co-clusters comprise two of the clusters and
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Figure 4.31: Spectral co-clustering partitions of dissimilarity data shown in Figs. 2.9
and 4.25.

the remaining objects—the objects in the middle and top clusters—are grouped in the

remaining cluster. In my opinion, this would be the “best” co-cluster partition of this

data produced by the spectral co-clustering algorithm. The 4-, 5-, 6-, . . . partitions

from spectral co-clustering were unstable and produced wildly varying and “wrong”

partitions. The 3-partition of this data is the closest match to the ReSL results for

this data set (shown in Fig. 4.25). However, ReSL is able to easily distinguish all 5

of the clusters, including the two co-clusters, the two column-object clusters, and the

single row-object cluster. Spectral co-clustering is not only unable to recognize all 5

clusters, but also the closest result is the 3-partition shown in Fig. 4.31(c,d). These
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Figure 4.32: Spectral co-clustering 5-partition of dissimilarity data shown in Figs. 2.9,
4.25, and 4.31.

views show that spectral co-clustering is able to partition the two true co-clusters,

but the other three are then grouped as one. For a final comparison, the spectral

co-clustering 5-partition is shown in Fig. 4.32; clearly, this result is undesirable.

Figure 4.33 demonstrates spectral co-clustering on one of the “pure” relational

data sets. The ReSL partitions are shown in Fig. 4.26—I have included the image

of the ReSL partition of the rectangular matrix in view (b) of 4.33 for comparison.

To reiterate, ReSL partitions the row objects into 4 clusters, the column objects into

4 clusters, and definitively partitions the three dark blocks as three co-clusters, as

shown in the degree of co-clusterness matrix in Fig. 4.26(e). The “best” and most

stable spectral co-clustering partition—the 3-partition—of these data is shown in

Fig. 4.33. This algorithm partitions the three dark blocks into separate co-clusters;

however, it also groups the objects that should not belong to a co-cluster into one

of the clusters. One might imagine that the spectral co-clustering 4-partition would

be more pleasing. However, the 4-partition is unstable (it can be wildly different,

depending on the initialization). Figure 4.34 shows two results of the 4-partition

produced by spectral co-clustering—one result is “correct” or desirable, the other
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Figure 4.33: Spectral co-clustering 3-partition of dissimilarity data shown in Figs. 2.10
and 4.26. ReSL partition shown in view (b) for comparison.
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Figure 4.34: Spectral co-clustering 4-partitions of dissimilarity data shown in
Figs. 2.10, 4.26, and 4.33.

result is not. ReSL, by comparison, produces the “correct” result, every time.

Finally, Figs. 4.35 and 4.36 demonstrate spectral co-clustering on the “pure” re-

lational data sets first presented in Figs. 4.15 and 4.16. I show the ReSL partition

of the rectangular dissimilarity matrix for each example for comparison. In each of

these examples, spectral co-clustering produced unstable partitions (very different

partitions, depending on initialization) at all values of k, the number of co-clusters.

I chose some of the more successful results to show in Figs. 4.35 and 4.36. However,
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Figure 4.35: Spectral co-clustering 3-partition of dissimilarity data shown in Figs. 4.15
and 4.27. ReSL partition shown in view (b) for comparison.

even in these more successful cases, spectral co-clustering is unable to partition the

dark blocks in the (what I consider to be) desirable way that ReSL does.

In summary, I believe that ReSL is more effective than spectral co-clustering at

solving the clustering in rectangular data problem because:

(i) It automatically determines the number of clusters;

(ii) It produces and recognizes all four types of clusters;

(iii) The partitions ReSL produces in the “pure” relational data examples are more

desirable.

4.3.3 Perspectives on ReSL

The examples shown here demonstrate that ReSL is effective at partitioning rect-

angular data, constructed both from “pure” relational data and Euclidean relations.

Examples 4.3.1 and 4.3.5 illustrate data sets where each type of rectangular data

cluster—clusters in the row objects, clusters in the column objects, clusters in the
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Figure 4.36: Spectral co-clustering partitions of dissimilarity data shown in Figs. 4.16
and 4.28. ReSL partition shown in view (c) for comparison.

union of the objects, and co-clusters—is clearly present. And ReSL is successful in

finding the preferred partition for each of these cluster types.

Examples 4.3.3 and 4.3.4 prove challenging because the definition of a co-cluster

is uncertain. In each of these examples, there is a group of individual co-clusters

(clusters composed of both row and column objects) which have some relation to

the other co-clusters via either the similarity among row objects or similarity among

column objects. For example, the co-cluster composed of row objects {100−200} and
column objects {150 − 200} in Fig. 4.27(d) is similar to the co-cluster composed of
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row objects {200−250} and column objects {150−200} and the co-cluster composed

of row objects {100−200} and column objects {250−300}. However, notice that the
row objects {200− 250} are dissimilar to the column objects {250− 300}. Thus, the
question remains as to whether these three co-clusters are truly only one co-cluster.

It is my opinion that this situation is analogous to object-data that has substructure

within its clusters. However, because object data does not exist for the rectangular

data shown in Examples 4.3.3 and 4.3.4, it is impossible to visually verify whether

this is the case. In Appendix B, I briefly explore the question: What is a co-cluster?

I also demonstrated ReSL on real data—the voting records of the 435 members

of the U.S. House of Representatives. Again, this data is not truly relational as the

elements of D represent the votes themselves. Thus, a value of 0 does indicate perfect

dissimilarity between a member and their vote; it represents a ‘nay’ vote. Despite

this, I believe that ReSL was effective in showing the relationship among the members

and the votes on which they agree. I imagine the ReSL could be useful in this case

to the members to determine who their allies are in particular issues.

Last, I showed an example of ReSL using co-iVAT as the reordering algorithm.

This example further examined the question of, ’what is a co-cluster?’ As the co-

iVAT examples showed, the co-iVAT transform produces rectangular data images of

which the cluster structure is more visually apparent. Because CLODD is used to

partition the various matrices produced by co-VAT, the strong edges that are usually

present in co-iVAT images allows CLODD to be that much more effective at finding

the preferred partition. However, as we saw in many of these examples, co-iVAT does

not always produce the most pleasing results (or, perhaps, the desired results). Thus,

I recommend clustering both the co-VAT and co-iVAT images. Because it is shown

that the iVAT transform has the same computational complexity as VAT, this result

carries over to co-VAT and co-iVAT. Thus, very little additional computational time
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is required to consider both.

Additional examples using CLODD, the alternate co-VAT reordering method, co-

iVAT, and ReSL and presented in Appendix . In the next chapter, I switch gears and

examine a different type of data: ontologies.
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Chapter 5

Clustering in Ontologies

5.1 Ontological Self-Organizing Map (OSOM)

Figure 5.1 is a block diagram of the OSOM training algorithm. The inputs are the

ontological data and the pair-wise term similarity matrix (see Section 2.4). The

OSOM itself operates very much like a conventional SOM: i) a random test signal is

chosen, ii) the winning prototype is selected, iii) all prototypes are moved towards the

test signal according to a predefined network topology. Section 5.1.2 describes the

training procedure in more detail and also proposes a batch version of the OSOM,

which is based on the batch SOM [Kohonen, 2001].

Section 5.1.3 describes how I utilize the OSOM to produce cluster visualization

of the ontological data. The visualization method maps the ontological profiles (the

OSOM prototypes) of the OSOM network to a two-dimensional toroidal grid (al-

though, any predefined network topology could be chosen). Cluster tendency is shown

by the relations between neighboring ontological prototypes on the grid, which are

displayed as gray levels—black represents no relation and white represents highly

related.
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Figure 5.1: OSOM training block diagram.

Summarization of each ontological prototype (e.g. gene or gene product cluster)

is achieved as a direct result of my formulation of the OSOM. The OSOM prototypes

are represented by a vector of weights, where each element of the weight vector is

associated with a term from the corpus. The value of these weights are the member-

ships of the associated terms in the description of the ontological prototype. Thus,

the summarization of each prototype is the term(s) with the largest corresponding

weight vector element(s). If the ontological data are genes represented by their GO

annotations, then this summarization describes the shared function of the groups of

genes. Section 5.1.4 describes my summarization method in more detail.

5.1.1 Generalized Outer Product Similarity

I use a distance measure in this section, the generalized outer product (GOP), which

has not previously been used for GO-based gene similarity. This measure was discov-

ered in our work in [Sledge et al., 2009c,b], which involves generalizing cluster validity

indexes to relational data . Essentially, the GOP distance is the well known A-norm
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(||�x − �y||A) generalized to relational data. The authors of [Hasenfuss and Hammer,

2007] use this distance in their relational SOM.

First, assume that �gi is the binary vector representation of Gi and Dkl = 1− Rkl

is the normalized distance between the kth and lth terms. The GOP distance is

d(GOP )(Gi, Gj) = g̃Ti Dg̃j − 0.5g̃Ti Dg̃i − 0.5g̃Tj Dg̃j, (5.1)

where g̃ = �g
||�g||1 and D = 1−R.

Assume Dlm = ||�Tl − �Tm||2, where �Tl and �Tm are the hypothetical object-space

representations of the lth and mth terms (i.e. if one could represent the GO term,

GO:0016740-transferase activity, as a set of coordinates in some space, which to my

knowledge is impossible). If we represent two objects as the weighted sums of the

vectors �T ,

�vi =
∑
l

(g̃i)
NT
l=1

�Tl,

�vj =
∑
m

(g̃j)
NT
m=1

�Tm,

then it can be shown that

||�vi − �vj||22 = g̃Ti Dg̃j − 0.5g̃Ti Dg̃i − 0.5g̃Tj Dg̃j.

Therefore, it follows that d(GOP )(Gi, Gj) = ||�vi − �vj||22, where the vectors �v are es-

sentially weighted averages of the object-space representations of the hypothetical

object-space terms �T . Hence, �vi is the object-space representation of the ith gene �gi

(in clustering this is called a medoid) and �vj is the object-space representation of the

jth gene �gj.

Reference [Sledge et al., 2009b] contains a detailed discussion on the derivation of
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this distance measure in the context of relational clustering and medoids. I will show

in Section 5.1.5 that the OSOM and the standard SOM are related when the d(GOP )

distance measure is used.

I combine all the terms from a set of gene products into one large set and compute a

pair-wise GO-term similarity matrix R using the Lin information-theoretic similarity

measure [Lord et al., 2003] in Eq. (2.30). The Lin similarity measure is effective

at computing the similarity of two GO terms because it considers both the relative

closeness of two terms as well as the depth (specificity) of the terms in the hierarchy.

The GPD194 data set [Keller et al., 2004] contains 64 total unique GO terms; thus,

the Lin-based similarity matrix R is 64 × 64. The pre-computed similarity matrix

allows one to quickly compute similarities by casting many of the operations in the

OSOM as matrix-vector multiplications.

5.1.2 Ontological Self-Organizing Map Definition

The self-organizing map is a two-layer lateral feedback neural network that topo-

logically maps itself to the training data. The network structure is often set to a

two-dimensional square, toroidal, or hexagonal grid, where each network node, or

prototype, is laterally connected to its neighbors. The network learning algorithm is

as follows:

1. Randomly draw a sample from the training data, �xd.

2. Find closest SOM prototype p according to a chosen distance metric,

p = argmin
i

{||�xd − �a
(old)
i ||}. (5.2)
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3. Update SOM prototypes by

�a
(new)
i = �a

(old)
i + ε(t) · hip · (�xd − �a

(old)
i ), (5.3)

where ε(t) is the learning rate and hip is the neighborhood function defined as

hip(t) = exp

(
−|�ai − �ap|2

σ2(t)

)
, (5.4)

where �ai is the location of the SOM prototype in the predefined neighborhood

(e.g. square or hexagonal grid).

This algorithm is repeated until a maximum number of iterations or convergence is

reached. Typically, the learning rate ε(t) and the width of the neighborhood function

σ2(t) are reduced during iteration, with the effect that late iterations are only applying

small updates to network prototypes local to the winning prototype p.

Prototype representation

The algorithm I propose as the OSOM is an adaption of the standard SOM to on-

tological data. First, I construct an ontological weight vector for each node in the

OSOM grid. This weight vector is a fuzzy membership representation of all the terms

present in the training data. For example, the GPD194 data set contains a total

of 64 terms among all the gene products combined; thus, the OSOM weight vector

has a length of 64. Each weight vector element is associated with one term and the

value of the weight is the membership of the associated term in the description of the

ontological prototype. I denote the OSOM weight vectors as �wi ∈ [0, 1]NT .

Second, I replace the distance metric in step 2 of the SOM with a similarity

measure. The measures I use are vector-matrix multiplication-based operations that
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are simple extensions of the measures described in Section 2.4.1, [Keller et al., 2004],

and [Sledge et al., 2009b]. What makes the OSOM similarity measures different is that

they are the similarity between an OSOM protoype and a gene or gene product; the

similarity measures in Section 2.4.1 are for two genes or gene products. In practice,

one could choose any similarity measure that measures the similarity of two sets of

terms; there are many measures that fit this description. However, I recommend

using similarity measures that perform some aggregation on the pair-wise similarity

matrix R. Set-based similarity measures such as the Cosine and Jaccard index are

ill-suited to this problem (see [Keller et al., 2004] for information on this topic). I

adapt gene-gene similarity measures, such as the average in Eq. (2.32), for use with

the OSOM:

• Generalized outer product (GOP):

s(GOP )(�wi, �gj) = 1− w̃T
i Dg̃j + 0.5w̃T

i Dw̃i + 0.5g̃Tj Dg̃, (5.5)

where

w̃i =
�wi

|�wi| ,

g̃j =
�gj
|�gj| ,

and D = 1−R.

• Average (AVG):

s(AV G)(�wi, �gj) =
�wT
i R�gj
|�wi||�gj| (5.6)

• Ordered Weighted Average (OWA) [Yager and Kacprzyk, 1997]:

�l = (R�wi). ∗ �gj,
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where .∗ represents element-by-element multiplication. The vector l is then

sorted in descending order, l(1) > l(2) > ... > l(NT ), and the OWA similarity is

computed by,

s(OWA)(�wi, �gj) =
1

N2
T

NT∑
k=1

bkl(k), (5.7)

where NT is the number of terms and bk is the weight of the kth term in the

OWA. In this paper we use bk = 1, k ≤ 4 and bk = 0, k > 4, i.e., the average of

at least 4 pair-wise similarities. However, one could certainly choose a different

set of bk’s, e.g. b1 = 1 and bk = 0, k > 1 is the maximum pair-wise similarity

between �wi and the gene product term vector �gj.

s(AV G) and s(OWA) are adaptations of the soft similarity measures in [Keller et al.,

2004], which were developed specifically for ontologies.

s(GOP ) is adapted from relational clustering and the distance measure d(GOP ). An

important point is that with the s(GOP ) similarity measure, the OSOM can be shown

to be equivalent to Kohonen’s SOM (see the first example in Sec. 5.1.5). However,

unlike the SOM, the OSOM can also be used with ontological data.

Prototype update

The OSOM can use the standard weight vector update Eq. (5.3) of the SOM by

substituting �gd for �xd,

�w
(new)
i = �w

(old)
i + ε(t) · hip · (�gd − �w

(old)
i ). (5.8)

Recall that �g is binary; hence, this update simply moves the prototype towards the

corresponding corner of the NT -dimensional hypercube. This update, however, ig-

nores the term-term similarities.

I also replace the standard form of the weight vector update equation with a
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similarity-based update. In order to create an similarity-based update equation, Ide-

fined two axioms:

1. At each iteration, the weight vector elements that correspond to the terms in

the test signal �gd must increase, as in Eq. (5.8).

2. At each iteration, the weight vector elements that are similar to the terms in

�gd, as evidenced by R, must also increase.

With these axioms in mind, I created the following update equation

�w
(new)
i = �w

(old)
i + ε(t) · hip(t) ·

(
F (R, �gd)− �w

(old)
i

)
, ∀i, (5.9)

where p denotes the closest OSOM prototype to the randomly chosen training vector

�gd and where (F (R, �gd)− �w
(old)
i ) is the update operator. As shown below, the update

operator is computed from the columns of the similarity matrix that correspond to

non-zero elements of the training vector �gd. These columns of the similarity matrix

represent the similarity between the terms in �gd and all other terms (e.g. Rij is the

similarity of the ith and jth terms). Hence, the update operator, F (R, �gd), computes

a row aggregation on the columns of the similarity matrix R that correspond to the

terms in the training vector �gd. The operator F can be modeled after any aggregation

operator [Klir and Yuan, 1995]; e.g., one can define F as one of the following:

• Average (AVG):

F (AV G)(R, �gd) =
R�gd
|�gd| . (5.10)

• Maximum (MAX):

F
(MAX)
k (R, �gd) = max

i
{Rki}, (5.11)
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where i = {l ∈ N|l ≤ NT ; (�gd)l = 1}, k = 1, ..., NT , and Rki is the i-th column

of the k-th row of the similarity matrix R.

The operator chosen for F determines the convergence behavior of the values of the

prototype weight vectors, {�wi}. For example, F (AV G) causes the weight vectors to

have maximum values around 0.5, as the operator averages the similarity values for

all terms in the training vectors. Contrastively, F (MAX) causes the maximum weight

vector values to tend to a value of 1, as there are exactly |�gd| terms equal to 1 in

the matrix-vector multiplication R�gd (each term in �gd has similarity of 1 to itself).

Simply put, F (MAX) pushes the OSOM prototypes towards the terms present in �gd

and, additionally, pushes the prototypes towards all terms represented in R that are

similar to any one of the terms in �gd. Both (5.10) and (5.11) are variations of one form

of the generalized mean, where F (AV G) is M1 and F (MAX) is M∞. The ith element of

Mp is

Mp(R, �gd)i =

(
1

|�gd|
NT∑
j=1

(Rij(�gd)j)
p

)1/p

.

Algorithm 5.1.1 outlines the standard OSOM algorithm. The parameters, such

as the learning rates and maximum iterations, are set according to the problem (viz.

just like the original SOM, use what works for you). For this paper, I use a toroidal

grid-based network as this grid topology does not experience the edge-effects that a

standard square-grid does. The learning rates are set to {ε0 = 0.5, εf = 0.005}, the
widths of the lateral influence function in eq.(5.4) are {σ0 = Nnet + 1, σf = 0.1},
and the maximum number of iterations is tmax = 2, 000. The width of the network

Nnet is adjusted depending on the size of the data set, in this case the number of

genes or gene products. The illustrative results in this section use a 8 × 8 toroidal

network topology (64 prototypes) to map the 194 gene products in GPD194. I chose a

toroidal grid because the neighborhood of each prototype is consistent, thus avoiding
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the well-known boundary effects seen in square-grid network topologies.

Algorithm 5.1.2 outlines the batch version of the OSOM. The strength of the

batch SOM, in general, is that it is proven to converge in a finite number of steps

[Cottrell et al., 2006]. In Section 5.1.5, I compare the different forms of the OSOM

and describe the resulting trained networks.

Algorithm 5.1.1: Ontological Self-Organizing Map

Data: �gj, j = 1, . . . , NG where �gj is the j-th vector of the training data.
Randomly initialize OSOM prototype weight vectors �wi ∈ [0, 1]NT .
t← 0
while t < tmax do

Randomly draw a single training data vector �gd.
Find closest prototype, p = argmaxi S(�wi, �gd).
Update prototypes weight vectors with Eq.(5.9).
σ(t) = σ0(σf/σ0)

t/tmax

ε(t) = ε0(εf/ε0)
t/tmax

t← t+ 1

Algorithm 5.1.2: Batch Ontological Self-Organizing Map

Data: �gj, j = 1, . . . , NG

Randomly initialize OSOM prototype vectors �wi ∈ [0, 1]NT ,
∑NT

j=1 wij = 1.
t← 0
while t < tmax do

�w′
i = {0}NG , ∀i

for j = 1 to NG do
Find closest prototype, p = argmaxi S(�wi, �gj).
�w′
i = �w′

i + hip(t) · �gj, ∀i
�wi =

�w′
i

|�w′
i| , ∀i

σ(t) = σ0(σf/σ0)
t/tmax

t← t+ 1

5.1.3 Cluster Visualization

The visualization method I propose is composed of two distinct steps. First, the

objects (e.g. gene products, articles, etc.) are mapped to the trained OSOM network
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Figure 5.2: Colormap used in visualizations shows relative similarity between network
prototypes.

by the nearest prototype rule—for each object �g, find the best match prototype with

p = argmaxi S(�wi, �g). The prototype p is then annotated with the object information

of �g (e.g. the gene product id, the GO annotations). This groups similar objects (gene

products) into cluster-like arrangements, where each OSOM prototype essentially

represents a cluster (sometimes an empty cluster). Second, the similarity between

neighboring OSOM prototype nodes is mapped into a gray-scale or color image [Kaski

and Kohonen, 1996]—for this paper, red indicates very similar, blue indicates very

dissimilar. The colormap used in this paper is shown in Fig. 5.2. Figure 5.3 illustrates

this mapping for GPD194 using the similarity s(GOP ), eq.(5.5), and the batch OSOM

update. The red regions correspond to groups of similar gene products, while the blue

regions show the boundaries between dissimilar regions. Please note that because of

the toroidal network topology, the top and bottom, as well as the sides, of the images

in Fig. 5.3 wrap around. Also, because GPD194 contains multiple (but different)

sequences of each gene product, the gene product labels (e.g. FGFR1) can appear in

more than one place on the OSOM map.

I compute the similarity between nodes with a generalized outer-product operator,

as in [Hasenfuss and Hammer, 2007],

s(�wi, �wj) = 1−
√

w̃T
i Dw̃j + 0.5w̃T

i Dw̃i + 0.5w̃T
j Dw̃j, (5.12)

w̃ =
�w

|�w| ,

and D = 1 − R. The reason that I use a square-root in this calculation is because

169



4RFGF
1A2LOC2RFGF

FGFR1
MTMR4
MTMR7

MTMR8 MTMR1
MTMR6 TIE1

FGFR1 MTMR2 TEK

FGFR1 MTMR3 FGFR3

RET COL3A1 COL9A2

COL4A2 COL4A3 COL9A1

COL4A6 COL5A3
COL27A1
COL2A1
COL3A1
COL4A1

TEK FGFR2
FGFR4

COL21A1
COL24A1 COL1A2

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 5.3: Batch OSOM network mapping of GPD194 using s(GOP ).

the colormap appears more linear with distance (recall that the GOP distance is

equivalent to squared Euclidean distance), which I have found to be more effective.

One could include the square-root in the s(GOP ) calculation if desired, but, because

s(GOP ) is only used to find the closest prototype to the random test signal, the square

root is unnecessary. The similarity in (5.12) is calculated between each connected

node of the OSOM network. Thus, for the toroidal grid each prototype node has

four surrounding pixels which correspond to its relation to its neighboring nodes.

The colormap is set such that red corresponds to max∀i,∀j [s(�wi, �wj)] and dark-blue

corresponds to min∀i,∀j [s(�wi, �wj)] for a given network. The color-grid is then up-

sampled by cubic interpolation to achieve a visually-pleasing map.

As a result of this coloring scheme, regions that are red represent groups of similar

objects, while blue and cyan regions signify boundaries or objects that are dissimilar

to the surrounding groups. In addition, the degree of similarity can be inferred from

the color-intensity of the regions. For example, in Fig. 5.3, the red islands indicate

groups of similar prototypes—e.g. the red region centered at (4,6) is a group of
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collagens—while the surrounding blue-cyan regions signify boundaries. Additionally,

the dark-blue region at the map location (1,4) (labeled FGFR1) denotes a dissimilar

gene product.

The three GPD194 families can be seen in Fig. 5.3 as spatially grouped gene

products. The collagen alpha chains (COL) are located in the lower part of the

image, with one group mapped to the top right. Recall that the grid is toroidal;

hence, these regions are connected. The myotubularins (MTMR) are located at the

upper-center. Lastly, the receptor precursors (FGFR, TEK, TIE, RET) are scattered

throughout the red islands on the upper-left and upper-right, with a group also in

the lower-right. Note that the MTMR island is connected to the FGFR islands.

This shows that these gene products are related to a degree. These relations are

corroborated by other work with these gene products [Popescu et al., 2004].

5.1.4 Cluster Summarization

Cluster summarization, i.e. the potential output of a CW engine, of the ontological

prototypes is achieved by examining the OSOM prototype weight vectors. For the

case of genes or gene products, this summarization is a functional summarization of

each group. The ontological content of each OSOM prototype is represented by a

weight vector, as discussed in Section 5.1.2. Each element of the weight vector can

be viewed as the relative influence of a specific annotation in defining the profile of

its associated OSOM prototype. Thus, high values in a weight vector signify a high

likelihood that the objects mapped to a location are annotated by the associated

term(s). I define the most representative term (MRT) of an ontological prototype

as the term that has the highest associated weight in the OSOM prototype weight

vector. If there is more than one maximum weight vector element, then the MRT

is defined as the term with the highest information-content [Popescu et al., 2004].
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Figure 5.4: Prototype weight vectors for map locations (2,8) and (1,6) in Fig. 5.10(a).

This provides a simple linguistic output for a potentially complex organization of the

ontological description of groups of genes.

In general, the OSOM weight vectors represent the set of linguistic descriptions

of the mapped objects because each element of the weight vector is the strength of

an ontology term. The relative value of each vector element is the degree to which

an ontology term or word describes the objects mapped to a specific location. For

example, Fig. 5.4 illustrates the prototype weight values for the map locations (2,8)

and (1,6) in Fig. 5.3. For the batch OSOM the prototypes are normalized; hence,

only the relative values within each prototype are important.

The OSOM weight vectors can be used to construct a linguistic proposition about
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each map location and the gene products that are mapped to that location. Take,

for example, the network prototype weight vectors plotted in Fig. 5.4. The gene

products mapped to prototype (2,8) are the collagens indexed 168-184. The gene

products mapped to prototype (1,6) are the receptor-precursors indexed 76, 93, and

96. View (a) shows that the weight vector of prototype (2,8) has 6 non-zero elements.

These non-zero elements are the membership of the respective terms that define that

prototype; thus, they can be used as an input to a fuzzy-rule system which computes a

linguistic summarization. Figure 5.5 shows the rule base for the example I show here.

Note that the ordinate of the output is a linguistic proposition in the form of a hedge.

I also add the ontology from which each summarizing term comes (i.e. molecular

function, biological process, or cellular component) to the linguistic summarization,

shown in bold in this example.

The output linguistic proposition for (1,6) is: The collagen gene products indexed

168-184 are summarized by the following perceptions: i) the molecular function

is MOSTLY extracellular matrix structural constituent ; ii) the cellular component

is MOSTLY collagen type IV ; iii) the biological process is MOSTLY extracellu-

lar matrix organization. For this example the linguistic propositions are redundant

because the weight values are all equal. However, for the gene products mapped to

location (2,8), the weight values are not equal. Thus, the linguistic outputs define

the relative strength of each term in the proposition. For example: The receptor-

precursors indexed 76, 93, and 96 are summarized by the following perceptions: i)

the molecular functions are SLIGHTLY protein serine/threonine kinase activity,

MOSTLY protein tyrosine kinase activity, SOMEWHAT receptor activity, MOSTLY

ATP binding, and SOMEWHAT transferase activity ; ii) the biological process is

SOMEWHAT protein amino acid dephosphorylation.

Figure 5.6 shows the MRTs for a zoomed-in portion of the trained OSOM network
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ment wi.
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Figure 5.6: Zoomed in view of lower-left portion of Fig. 5.3 that shows mapping of
GPD194 gene products and most-representative-terms (MRT) of each location

shown in Fig. 5.3. Table 5.1 contains the MRTs for all prototypes in the trained

OSOM network shown in Fig. 5.10(a).
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Table 5.1: Most representative terms (MRTs) of OSOM network trained on
GPD194 — full map shown in Fig. 5.10(a).

OSOM Index GO ID GO Definition
Receptor Precursors

(2,1) GO:0016740 transferase activity
(1,2) GO:0016740 transferase activity
(2,3) GO:0004872 receptor activity
(1,4) GO:0004872 receptor activity
(8,1) GO:0016740 transferase activity
(7,2) GO:0016740 transferase activity
(8,3) GO:0016740 transferase activity
(6,4) GO:0016740 transferase activity
(2,5) GO:0016740 transferase activity
(1,8) GO:0016301 kinase activity
(2,8) GO:0006468 protein amino acid phosphorylation

Myotubularins
(3,2) GO:0006470 protein amino acid dephosphorylation
(4,2) GO:0016787 hydrolase activity
(5,2) GO:0016787 hydrolase activity
(5,3) GO:0016787 hydrolase activity
(3,4) GO:0016787 hydrolase activity

Collagens
(6,1) GO:0005581 collagen
(5,5) GO:0005581 collagen
(7,5) GO:0005201 extracellular matrix structural constituent
(1,6) GO:0030198 extracellular matrix organization
(4,6) GO:0007155 cell adhesion
(6,6) GO:0007155 cell adhesion
(3,7) GO:0007155 cell adhesion
(5,7) GO:0007155 cell adhesion
(8,7) GO:0005201 extracellular matrix structural constituent
(4,8) GO:0007155 cell adhesion
(5,8) GO:0007155 cell adhesion
(7,8) GO:0005581 collagen
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Table 5.2: Two Gaussian Clouds Properties

No. of points Mean μ Covariance Σ
50 (0,10) 4·I
50 (0,0) 16 · I

5.1.5 Results

Two Gaussian Clouds

This example illustrates how the OSOM and Kohonen’s SOM are equivalent for the

s(GOP ) similarity measure and the standard prototype update, Eq. (5.8). The dots

in Fig. 5.7 show the object-data �T for this example—two 2-dimensional Gaussian-

distributed clouds. The object-data represents the terms. Table 5.2 outlines the

properties of each cloud of data. The pair-wise term similarity matrix is

Rij = 1− ||�xi − �xj||
argmaxkl ||�xk − �xl|| .

Assume that the training data is composed of randomly-drawn normalized binary-

combinations of the data in each cloud, much like the gene products are combinations

of terms. The circles in Fig. 5.7 represent the 60 training data-points, i.e. the genes

or gene products. Both the OSOM and the SOM are initialized to the same starting

points with a 10 × 10 toroidal grid. Identical initialization is accomplished by ran-

domly initializing the OSOM weight vectors, �wi ∈ [0, 1]2, and then computing the

corresponding weights of the SOM prototypes,

�ai =
100∑
j=1

(w̃i)j �Ti.

Each algorithm was run for 1,000 iterations with equivalent learning-rates and neigh-

borhood functions.
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Figure 5.8: Comparison of OSOM and SOM trained on two Gaussian clouds data
shows identical results.
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Figure 5.8 shows the comparison of the OSOM and SOM mappings of the two

Guassian clouds data. The results are identical.

GPD194 Gene Products

To show the strength of the similarity-measure based OSOM, I compared against

the SOSM [Ritter and Kohonen, 1989] and the batch relational SOM [Hasenfuss and

Hammer, 2007]. As in [Ritter and Kohonen, 1989], I use a dot-product similarity

measure for the SOSM,

s(SOSM)(�wi, �gj) = �wi · �gj. (5.13)

The SOSM update equation is equivalent to Eq.(5.8),

�w
(new)
i = �w

(old)
i + ε(t) · hip ·

(
�gd − �w

(old)
i

)
, ∀i. (5.14)

The batch relational SOM trains on objects represented by dissimilarity data.

However, this algorithm is unable to directly encode the ontological data as a bi-

nary vector of terms; thus, a pair-wise training-object dissimilarity matrix must be

computed. I computed the dissimilarity matrix by Dgenes
ij = d(GOP )(Gi, Gj), ∀i, j.

The batch relational SOM trains in a similar fashion to relational-duals of c-means

clustering algorithms [Hathaway et al., 1989].

Figure 5.9 shows the visualizations of the trained OSOM networks using the

F (MAX) prototype update equation for the three different similarity measures. All

three visualizations show that the OSOM is able to correctly show the groupings of

the three gene product families, the collagens, receptor-precursors, and myotubularins

(the three families are described in Table 2.4. Interestingly, the OWA and AV G

similarity measures produced smaller (but more populated) groups of gene products

from each family. All three visualizations show that the OSOM mapped the myotubu-
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Figure 5.9: OSOM network mapping of GPD194 using F (MAX) update, eq.(5.11).
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Figure 5.10: Batch OSOM network mapping of GPD194.
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larins (MTMR) family onto a tightly grouped region. This family is annotated by

nearly identical GO terms; hence, this follows my expectation. I also expected that

the F (MAX) update would tend to group objects together as the update is moving

the prototypes towards all terms that are similar to the terms in the test signal. This

produces less specific prototypes.

Figure 5.10 shows the visualizations of the trained batch OSOM networks for the

three different similarity measures. In contrast to the F (MAX) networks shown in

Fig. 5.9, the batch OSOM produces a more spread out mapping of the gene products

(with the exception of the OWA similarity). This is because the update only moves

the prototypes toward the terms present in the gene products. Thus, the prototypes

are more specific. The batch OSOM using s(GOP ), shown in Fig. 5.10(a), produces the

most pleasing result from an informational standpoint. The families are grouped in

connected regions on the map, but the color visualization shows that there is substruc-

ture within the families. For example, the collagen gene products are separated into

three red islands; the islands are centered at (5,6), (7,8), and (7,5). This substructure

has been identified in other work [Popescu et al., 2004] and is also corroborated by the

experiments described in [Myllyharju and Kivirikko, 2004]. Another pleasing aspect

of this map is that gene products mapped to the locations (4,8), (1,8) and (1,4) are

known outliers. The FGFR1, TEK, and COL21A1 gene products mapped to those

locations are known to have wrong or incomplete annotations that cause them to be

erroneously grouped (note that these annotation errors have since been corrected, but

I use these data for consistency and validation purposes).

Figure 5.11 shows the results of the SOSM and batch relational SOM on the

GPD194 data. The SOSM visualization, Fig. 5.11(a) is perhaps pleasing from the

standpoint that it clearly shows the delineation between the three families, including

the substructure in the collagens and the known outliers at locations (8,4) and (7,4).
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However, the SOSM, in Fig. 11(a), fails to capture the underlying structure of the

similarity between the three families. This family separation in the SOSM is caused

because the SOSM does not consider the term-based similarity, it only calculates the

similarity by a dot-product. The three families do not share any terms between them;

thus, the locations on the SOSM map are very separated. The families do, however,

share similar terms and this similarity is not captured in the SOSM.

The results of the batch relational SOM, shown in Fig. 5.11(b), are pleasing. The

map is well-populated, the family structure is somewhat evident, and the underlying

similarities between certain members of different families are shown. This map is

very similar to the batch OSOM map shown in Fig. 5.10(a). This is expected. Each

of these maps are computed using equivalent similarity measures, namely the GOP

measure, and are updated using a batch algorithm. There are differences between the

OSOM and batch relational SOM, though. First, the RSOM map does not show the

boundaries between the families. It looks as though all prototypes are fairly similar to

each other, except for the outliers at (8,8), (8,2) and (2,4). Also, the strength of the

OSOM formulation is that the linguistic content of each prototype is directly encoded

in the prototype weight vector—each weight vector element represents a term in the

GO. Thus, the summarizations of the network locations are directly encoded in the

map. In contrast, the batch relational SOM prototypes encode the weight of each

object (in this case, gene product) in defining the map. Hence, each weight vector

element is the contribution of a training object, rather than the terms themselves.

Term-based summarizations could be computed from the batch relational SOM by

aggregation or counting methods such as those described in [Popescu et al., 2004].

182



COL4A1
COL4A2

COL4A3
COL4A6 FGFR2

FGFR1
FGFR2
FGFR4

FGFR1
FGFR3
FGFR4

FGFR1
COL21A1

RET
TEK
TIE1

COL1A2
COL27A1
COL2A1
COL3A1COL24A1

COL3A1
COL5A3
COL9A1
COL9A2

MTMR3
MTMR4
MTMR8MTMR1

MTMR2
MTMR6
MTMR7

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(a) SOSM

FGFR2
MTMR1
MTMR6
MTMR8

MTMR3 TEK
TIE1

FGFR4 MTMR7 FGFR4

FGFR2 FGFR1 FGFR3 FGFR1

FGFR1

COL27A1
COL2A1
COL3A1
COL4A1

RET

COL9A1 COL9A2 COL3A1

COL5A3 COL1A2 COL2A1

COL4A6 COL4A3

COL4A2 MTMR2 MTMR4

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

TEK

COL24A1

COL21A1

(b) Batch Relational SOM

Figure 5.11: SOSM and batch relational SOM network mappings of GPD194.

Cell-Apoptosis Related Genes

Table 5.3 outlines 30 genes that are known to be related to cell-apoptosis, or pro-

grammed cell death [Xu et al., 2008]. Genes 1-10 are known to be anti-apoptotic;

these genes prevent cell death. Genes 11-19 are pro-apoptotic, they are involved in

initiating cell death. Genes 20-30 are involved in apoptosis, but the GO annotations

do not define them to be either pro- or anti-apoptotic. These genes are important to

understanding the mechanisms of several cell-related diseases. Some cancer-causing

viruses, including human papilloma virus (HPV), prevent cell-apoptosis in the com-

promised cells [Garnett and Duerksen-Hughes, 2006]. Other diseases, such as AIDS

and Alzheimer’s, cause cell-death [Cameron and Feuer, 2000]. Thus, it is important

to understand the role(s) that genes play in cell-apoptosis.

Figure 5.12 shows the results of training the batch OSOM, the SOSM, and the

batch relational SOM with the cell-apoptosis genes in Table 5.3. Again, the SOSM

shows the obvious result—all the anti-apoptosis genes are mapped to the same lo-
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Table 5.3: Cell-Apoptosis Related Genes [Xu et al., 2008]

No. Group Gene names
1-10 Anti-apoptotic RAF1, ANXA1, B2L10, BAG1, BCLW,

BFL1, SOCS2, BNIP1, BCL2, COF1
11-19 Pro-apoptotic ASC, BCL10, BCLF1, BIK, BIM, CASP3,

CD2, P73L, TNFSF10, BAD
20-30 Involved in apoptosis FOSL2, CD14, GAS2, CASP8, CD38,

AHR, FAF1, P53, FAS, PAX3
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Figure 5.12: Network mapping of cell-apoptosis-related genes.
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cation, all the pro-apoptosis genes are mapped to two locations in the lower-left,

and most of “unknown” genes (20-30) are mapped to the top-center. Notice that the

“known” genes (1-19) are located on a red island that is connected, while most of “un-

known” genes (20-30) are separated from the rest by a dark-blue boundary. As shown

with the GPD194 data set, the SOSM captures the obvious relationships of genes,

but it does not show any of the underlying similarities. Additionally, the functions of

most of the “unknown” genes (20-30) cannot be inferred from this mapping.

In contrast, both the batch OSOM in Fig. 5.12(a) and the batch relational SOM in

Fig. 5.12(c) show some interesting mixing of the genes. Notice that several of the anti-

apoptotic genes (4,6,8,10) are mapped to location (3,3) in the OSOM map. However,

one pro-apoptotic gene (19) and two of the “unknown” set (23,25) are mapped to this

location also. Although the MRT for this location is GO:0006916, anti-apoptosis, this

term is not shared by genes 19, 23, and 25; the other term-based similarities map these

genes into this location. I found that a couple of these specific associations shown

by the batch OSOM are supported by the biomedical literature. BAG1 (4) and

GAS2 (23) are involved in cocaine-induced changes in fetuses [Novikova et al., 2005]

and BAG1 (4) and BAD (19) have been associated in survival of neuronal cells [Gtz

et al., 2005]. Another interesting map location in the batch OSOM is (1,1). There are

three anti-apoptotic genes (3,5,7), four pro-apoptotic genes (12-14,16), and one of the

unknown set (29). All of these genes share the term GO:0005515, protein binding,

as well as other protein-binding terms. These types of relationships are important

for biologists who wish to determine the links between genes which may not share

the same annotations, but do share similar ones (as measured by the ontology-based

similarity measures).

The batch relational SOM mapping of the cell-apoptosis related genes is effective

in showing the relationships between the genes and is very similar in appearance to
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Table 5.4: Most Representative Terms (MRT) of OSOM Map of Cell-Apoptosis Re-
lated Genes

OSOM Index Gene Indexes GO ID GO Definition
(1,1) 3, 5, 7, 12-14, 16, 29 GO:0005515 protein binding
(1,2) 2, 26 GO:0006629 lipid metabolic process
(1,3) 11, 18 GO:0006917 induction of apoptosis
(2,1) 15, 20, 24, 27 GO:0005515 protein binding
(2,2) 28 GO:0030154 cell differentiation
(2,3) 21 GO:0008219 cell death
(3,2) 1, 9, 17, 22, 30 GO:0006915 apoptosis
(3,3) 4, 6, 8, 10, 19, 23, 25 GO:0006916 anti-apoptosis

the OSOM. Upon further inspection, there a similar groupings in the batch relational

SOM and OSOM maps. However, recall that the batch relational SOM does not

directly encode the term-content in the network prototypes. Thus, cluster summa-

rization is not straight-forward, as it is with the OSOM. One must also go through

the additional step of computing the pair-wise gene similarity matrix, upon which

the batch relational SOM operates.

Table 5.4 contains the MRTs for each map location in the batch OSOM map of

the cell-apoptosis related genes. Two of the groups have an MRT that suggests anti-

apoptotic or pro-apoptotic related function, OSOM locations (1,3) and (3,3). The

locations (2,3) and (3,2) have an MRT that is apoptosis-related but these apoptosis

annotations are specific and only suggest that the genes are apoptosis-related.

Table 5.5 provides summarizing remarks about the variants of the OSOM. Overall,

I found the most pleasing results to be the batch OSOM with the s(GOP ) similarity

measure both for the quality of the visualization as well as the linguistic summariza-

tions.
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Table 5.5: Summary of algorithms’ behaviors

Similarity Algorithm Behavior

s(OWA) OSOM, F (MAX) Only considers top term-matches when
computing similarity. Displays course
grouping structure of the objects.

s(AV G) OSOM, F (MAX) Displays more substructure than the OWA
based similarity. Better for determining
“second-order” grouping structure.

s(GOP ) OSOM, F (MAX) Displays finer grouping structure of object.
Although, not as effective as the Batch
OSOM with s(GOP ) at producing a map
that has no “dead” prototypes.

s(OWA) Batch OSOM Very similar behavior as the OSOM with
the F (MAX) update with the s(OWA) mea-
sure.

s(AV G) Batch OSOM Very similar behavior as the OSOM with
the F (MAX) update with the s(AV G) mea-
sure.

s(GOP ) Batch OSOM The most visually pleasing results. There
are very few “dead” prototypes (the map
is filled nicely). The course grouping is ob-
vious but the substructure of the relation-
ships between the objects is evident.

5.1.6 Perspectives on OSOM

The results in Section 5.1.5 show that the OSOM is a powerful tool for visualizing the

relationships between objects composed of ontological data. Because these data are

represented as collections of terms, the standard SOM is ill-equipped for these data.

The results of the SOSM show that it is able to show the obvious relationships between

the genes and gene products. However, the substructure and, more importantly, the

relationships between gene products that do not share identical terms are not shown.

Section 5.1.5 illustrated that the OSOM with the GOP similarity measure is

equivalent to the SOM for object data. However, the SOM cannot take ontological

data as input. Thus, the OSOM can do everything the SOM is able to, but it also
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can analyze ontological data. The OSOM encodes the ontological data directly and

computes a visualization of the gene products that shows how they are related to one

another. Additionally, the weight values in the OSOM prototypes are the relative

strength of each GO term in defining the genes and gene products mapped to that

prototype. Each prototype is essentially a sentence which describes the mapped genes

and/or gene products.

Similar to the OSOM, the batch relational SOM provided accurate and meaning-

ful visualizations of the genes and gene products. However, this is achieved at an

additional cost: the pair-wise gene dissimilarity matrix must be precomputed. Ad-

ditionally, it is not straight-forward to compute a term-based summarization of each

prototype.

The drawback to the OSOM is that it requires the ontology-based objects to

be described as vectors, where each element represents a specific term. The Gene

Ontology, as of 2009, has approximately 30,000 terms. Thus, if the OSOM was

used with the entire Gene Ontology, each gene or gene product vector would have

30,000 elements, with only a few being non-zero. For this case, the OSOM would be

computationally expensive. To combat this drawback, algorithms could be developed

that operate within the ontology tree itself.
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Chapter 6

Perspectives and Open Problems

The analysis and algorithms presented in this dissertation elucidate the natural group-

ings of objects described by relational data.

The main contributions of this dissertation are summarized as:

1. The notion of the aligned partition was defined and it was shown the number of

possible aligned partitions is significantly smaller than the number of possible

partitions, for a given data set.

2. It was proven that there is a direct relationship between the VAT algorithm,

SL clustering, and Dunn’s cluster validity index.

3. A recursive formulation of the iVAT algorithm was developed that produces

both the VAT and iVAT images in O(n2) operations, as opposed to the original

iVAT formulation that only produces the iVAT image in O(n3) operations.

4. A clustering algorithm was developed, called CLODD, which computes aligned

partitions of (VAT)-reordered dissimilarity matrices;

5. A new formulation of the co-VAT algorithm was developed that significantly
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improves the effectiveness of co-VAT in showing the cluster tendency of rectan-

gular data.

6. The iVAT distance transformation was extended to co-VAT, resulting in the co-

iVAT algorithm, which was shown to be (usually) more effective that co-VAT.

7. CLODD was extended to a special kind of relational data called rectangular

data. The resulting algorithm, ReSL, computes 4 types of partitions of rect-

angular data and a degree of co-clusterness matrix, which describes the co-

clusterness properties of the data set.

8. Lastly, the SOM was extended to ontologies. The OSOM algorithm produces

SOM-type maps of data represented by ontologies and linguistic “cluster” sum-

marizations of the resulting map.

Aligned partitions, VAT, and iVAT

Aligned partitions mimic the blocky nature of VAT images. I showed that for n

objects, the ratio of the number of possible aligned partitions to the number of possible

partitions is
|M∗

hcn|
|Mhcn| ≈ nc−1

cn−1 , c << n. Applying this ratio for the fairly typical problem

of c = 10 and n = 10, 000 yields |M∗
hcn|/|Mhcn| ≈ 1/109963 — a very small number.

Thus, looking for aligned partitions of data is a much more tractable problem.

The blocky nature of VAT images is also related directly to SL and Dunn’s validity

index. I showed that SL clusters will always manifest as aligned partitions of VAT-

reordered dissimilarity data. I leveraged this to prove that the contrast of the on-

diagonal blocks and off-diagonal areas of the VAT images is exactly Dunn’s index.

Thus, Dunn’s index, for a given SL c-partition, is a measure of the VAT image in

showing a cluster tendecy of c.
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An improved version of VAT, iVAT, is shown to produce more pleasing results

for “tough” cases, such as the Three Lines example. However, the original iVAT

formulation was very computational expensive. I developed and proved a recursive

formulation of iVAT that produces not only the iVAT image, but also the VAT image,

in an order-of-magnitude less operations than the original iVAT formulation. The

computational complexity of my iVAT formulation is also equivalent to the original

VAT algorithm. It is my opinion that iVAT will always perform at least a good, if

not better, than VAT. Thus, my recursive formulation, which produces both VAT

and iVAT images, is a significant advance over both the original VAT and iVAT

algorithms.

A question that remains is how the iVAT image relates to SL clusters. Because

VAT and iVAT share the same ordering, the Propositions in Section 3.2 hold true

for iVAT also. However, the relationship between Dunn’s validity index and iVAT is

unexplored. It is my conjecture that iVAT shows the preferred SL partition(s) for a

given data set. This conjecture is based on the fact that iVAT is able to accurately

show the visually preferred cluster tendency of the Three Lines example. Also, I

showed that the distances in the iVAT matrix are all MST edge weights. Hence,

because of the direct relationship between SL clustering and the formation of the

MST, I further believe that there is an intimate relationship between iVAT and SL—

perhaps iVAT is more closely related to SL than VAT itself.

CLODD

Because of the relation between aligned partitions, VAT, and SL, I examined a method

for computing aligned partitions from VAT-reordered dissimilarity data. CLODD uses

image processing methods to compute partitions from VAT images.

CLODD answers the three most important questions in clustering:
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1. How many clusters are there?

2. What are the clusters?

3. How good is the partition?

It was shown that CLODD performs very well when VAT performs well. However,

not surprisingly, if VAT fails, so does CLODD.

Unlike some relational clustering algorithms, CLODD does not require the dis-

similarity data to be produced with a Euclidean relation and it can work with all

reordered dissimilarity data, regardless of the reordering method.

In Chapter 3, I proved relationships between VAT and SL. Because VAT is the

primary method for reordering dissimilarity data as a preprocessing step for CLODD,

the question remains as to the relationship between SL and CLODD. I believe that

it can be shown that if there exists a compact-separated partition (having a Dunn’s

index > 1) then CLODD will return this partition. However, my attempts to prove

this have been unsuccessful to date.

co-VAT and co-iVAT

Rectangular dissimilarity data presents a unique challenge as almost all clustering

algorithms, including CLODD, cannot be applied to this type of data. However,

co-VAT is a version of VAT that is adapted to rectangular data. I developed a new

formulation of co-VAT that is shown to be more effective at showing the co-clusterness

in rectangular data. I also extended the iVAT algorithm to produce co-iVAT, which

is an iVAT-based algorithm for rectangular data. Like my iVAT formulation, my

co-iVAT algorithm produces both the co-VAT and co-iVAT images in the same order

of computational complexity as the original co-VAT algorithm.
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In the future, I will extend the analysis in Chapter 3 to rectangular data. For

example, what does it mean to have compact-separated co-clusters? Or, can the prin-

ciples of Dunn’s index be extended to the partitions in rectangular data? Ultimately,

I believe that the answer to these questions will have a direct relationship to co-VAT

images, much the same as with VAT.

ReSL

Like CLODD, ReSL find clusters in relational data by first using a VAT-based reorder-

ing scheme. In contrast to CLODD, ReSL (aptly named) finds clusters in rectangular

relational data. The dissimilarity data is first reordered using the co-VAT (or co-

iVAT) algorithm. ReSL then produces a partition of the row objects, a partition of

the column objects, a partition of the union of the row and column objects, and a

partition of the rectangular data called co-clusters. In addition, ReSL computes a

degree of co-clusterness matrix which is a measure of the co-clusterness of each of the

candidate co-clusters. ReSL is unique as it is the only visual clustering algorithm to

my knowledge that partitions rectangular relational data.

As a result of the examples presented in this dissertation, questions arose in regards

to clustering in rectangular data. Perhaps the most important question is: What is

a co-cluster? The examples of pure rectangular relational data presented in Chapter

4 challenged the rule-of-thumb conjecture that the number of co-clusters kco is equal

to the number of row clusters kr plus the number of column clusters kc minus the

number of clusters in the union kr∪c. Answering the co-cluster question is important

for understanding how to interpret the degree of co-clusterness matrix in ReSL. See

Appendix B for a brief discussion on this topic.
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OSOM

Lastly, I described a SOM-based algorithm that finds groups in ontological data. The

OSOM was demonstrated on the GPD194 data set and was effective in finding the

“expected” groups. The drawback to the OSOM data-structure is that it contains

a vector element for each term in the ontology. Thus, for large ontologies (like the

GO), this vector can be very large. This is perhaps an undesirable trait as users will

probably only want 2 to 4 terms to summarize a group. The question that arises

is then, can an SOM-based algorithm be created that operates entirely within the

ontology? I suspect that the answer to this question is, yes.

To summarize, clustering in relational data is an important and significant prob-

lem. Many (if not most) types of data can only be represented as relations between

objects. These data include documents, bioinformatics and medical informatics data,

ontologies, etc. The larger body of clustering theory, which is based on numerical

object data, cannot be applied to these data directly. This dissertation provides tools

for examining these data visually and partitioning them into appropriate groups.
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Appendix A

Additional Examples

A.1 Recursive iVAT

Figures A.1-A.3 show the VAT and iVAT images of sets of large-scale (on the order

of 8,000 objects) noisy data. The data shown in these figures were originally created

by Karypis et al. to demonstrate the CHAMELEON clustering algorithm. View (a)

in each of these figures show the object data from which a dissimilarity matrix was

computed by a Euclidean distance relation. Views (b) and (c) show the VAT and

iVAT images, respectively. In view (d) of each of the figures, I picked, by eye, the

dark blocks that I thought corresponded to the clusters in the data. The dark blocks

I picked are shown by yellow dotted lines. Finally, view (e) shows the corresponding

objects for each of the dark blocks I chose. By examining views (d) and (e), I can

make a determination as to how effective iVAT is in showing the visually preferred

clusters in these data.

Let’s examine Fig. A.1 first. View (a) suggests that there are 6 clusters in this

data set — the 2 ‘U’-like groups on the left, the 3 groups in middle, and the ‘S’-like

structure on the right. The VAT image in view (b) does not clearly suggest any
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Figure A.1: Example of VAT and iVAT images in large-scale dissimilarity data com-
posed of Euclidean relations on 8,000 objects [Karypis et al.].
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Figure A.2: Example of VAT and iVAT images in large-scale dissimilarity data com-
posed of Euclidean relations on 8,000 objects [Karypis et al.].
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Figure A.3: Example of VAT and iVAT images in large-scale dissimilarity data com-
posed of Euclidean relations on 8,000 objects [Karypis et al.].
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cluster tendency. However, the iVAT image in view (c) suggests to me that there are

6 clusters. I have outlined the dark blocks that I see in view (d). Finally, I plotted

the corresponding objects in each dark block, one color per dark block, in view (e).

Clearly, view (e) suggests that iVAT is successful in showing (to me) the 6 clusters

in these object data.

The example shown in Fig. A.2 tell a similar story as the previous example. View

(a) shows 8,000 objects; I suggest that there are six clusters in these data, one for

each letter in “GEORGE”. However, there is much noise in the data and, also, a line

of objects that extends across “GEORGE” (one might imagine that this line could

be a seventh cluster). The VAT image in view (b) somewhat shows 6 clusters by the

6 dark blocks. However, the iVAT image in view (c) presents a clear picture of 6

dark blocks. I have outlined these dark blocks in view (d) and view (e) shows the

corresponding objects in each of these dark blocks, each plotted in a different color.

Again, it is obvious that iVAT (and VAT as well, though not as obvious) is successful

in showing the cluster tendency of these data.

The last example, of this type, is shown in Fig. A.3. View (a) is a plot of 8,000

objects with (arguably) 8 groups — the 5 dense-regions on the left, the less-dense

region at the horizontal coordinate 500, the upside-down ‘Y’-like structure, and the

small circle at the lower-right. The VAT image in view (b) does not suggest to me

any clear cluster tendency. Again, however, the iVAT image makes the decision much

more simple. I see 7 clusters in view (c), which I have outlined in view (d). View (e)

plots the outlined groups from view (d), each in a different color. Unlike the previous

two examples, iVAT is not completely successful in showing the cluster tendency. It

“fails” to separate the two large clusters in the upper-right of the plot. This is because

there are a small group of objects, formed in a line, around the horizontal coordinate

400 and vertical coordinate 300 that connects these two clusters. This line is so dense
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that it “fools” the path-based distance measure used in iVAT. iVAT is successful in

showing the other clusters in these data.

A.2 CLODD

Figure A.4 demonstrates the flexibility of CLODD in using both VAT and iVAT

images of dissimilarity data. View (a) shows the object data from which dissimilarity

data was computed using a Euclidean distance relation. As this view shows, there

are two groups of objects, each comprising a spiral strand (think DNA). As view (b)

shows, VAT is unable to show the tendency to 2 clusters. However, the iVAT image,

shown in view (c), clearly shows 2 clusters. Views (d) and (e) present the CLODD

partitions of the VAT and iVAT images, respectively. Again, CLODD fails when VAT

fails; however, CLODD is able to partition the data correctly when iVAT is used to

produce the input dissimilarity image.

A.3 Alternate co-VAT Reordering

Figures A.5-A.7 show comparisons of the original co-VAT formulation, proposed in

[Bezdek et al., 2007], to the new formulation, presented in Section 4.2. The datasets

shown in these figures mimic selected examples from the original co-VAT manuscript

[Bezdek et al., 2007]. Comparing the original co-VAT image in view (b) with the new

formulation in view (c) shows that the new formulation is comparably effective in

displaying the clustering tendency for these three examples. In the first two examples

shown in Figs. A.5 and A.6, both the original and new formulations are successful in

showing the clustering tendency. In the example shown in Fig. A.7, both formulations

fail to show the correct tendency. This failure is discussed in [Bezdek et al., 2007]. In
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Figure A.4: CLODD partitions of objects organized in two spirals.
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brief, because the two row clusters are approximately equidistant from each group of

the column objects, the imputed distances in Dr and Dc, as computed by Eqs.(2.22)

and (2.23), are erred. These two dissimilarity matrices are important in the reordering

of D in both the original and new formulations; thus, co-VAT fails for this data set.

Figure A.8 presents an example for which the alternate co-VAT reordering method

is superior to the original reordering scheme. View (a) shows the 3-dimensional object

data. There are 250 row objects organized in 5 line-like groups, shown as blue circles,

and 125 column objects organized in a ‘figure 8’ pattern, shown as green squares.

View (d) clearly shows that there are 5 clusters in the row objects, which is the

visually preferred number of clusters. In contrast, view (e) does not show a clear

dark block structure. Instead, there is a strong near-diagonal, with high dissimilarity

shown in the off-diagonal. This type of structure is also shown in the Three Lines

example, Example 3.2.2. It is my opinion that the image D∗
c shows that there is 1

cluster organized in a connected line pattern (which is supported by the plot of the

object data). The image of D∗
r∪c, shown in view (f), clearly shows a tendency of 5

clusters. Thus, the rule of thumb would indicate 1 = 5 + 1− 5 co-clusters.

However, the alternate co-VAT image, in view (c), seems to indicate 5 co-clusters

by the 5 dark blocks. However, the blocks are blurry. These 5 co-clusters are the 5

cross-like structures produced by the union of the row objects and column objects. In

contrast, the co-VAT image in view (b) does not offer as clear a view of the co-cluster

structure of these data.

A.4 co-iVAT

Figures A.9 and A.10 show the co-iVAT images for the examples presented in Figs. A.6

and A.7. The co-VAT algorithm was able to successfully show the cluster tendency
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Figure A.5: Example that mimics the dataset shown in Fig. 1 from [Bezdek et al.,
2007]. (a) - object data; (b) original co-VAT reordering, (c) alternate co-VAT re-
ordering, (d-f) - co-VAT reordered dissimilarity data matrices.
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Figure A.6: Example that mimics the dataset shown in Fig. 4 in [Bezdek et al., 2007].
(a) - object data; (b) original co-VAT reordering, (c) alternate co-VAT reordering,
(d-f) - co-VAT reordered dissimilarity data matrices.
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Figure A.7: Example that mimics Fig. 7 from [Bezdek et al., 2007]. (a) - object
data; (b) original co-VAT reordering, (c) alternate co-VAT reordering, (d-f) - co-VAT
reordered dissimilarity data matrices.
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Figure A.8: Example of co-VAT algorithms on data created from 3-dimensional ob-
ject data. (a) - object data; (b) original co-VAT reordering, (c) alternate co-VAT
reordering, (d-f) - co-VAT reordered dissimilarity data matrices.
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Figure A.9: co-iVAT images of dissimilarity data shown in Fig. A.6 (a) original co-
iVAT reordering, (b) alternate co-iVAT reordering, (c-e) - co-iVAT reordered dissim-
ilarity data matrices.

of the data shown in Fig. A.6(a) and co-iVAT shows similar effectiveness. However,

co-iVAT was unable to show the cluster tendency of the data in Fig. A.7. The co-

iVAT results, shown in Fig. A.10, are slightly more successful in showing the cluster

tendency for this data. Views (c) and (d) show the cluster tendency in the row

objects and column objects, respectively. Each of these views show the correct cluster

tendency of 2 clusters. However, I think the reader will agree that the co-iVAT image

of D∗
r∪c, shown in view (d), fails to suggest a cluster tendency of 4 clusters in the

union of the row and column objects. Because this data set does not have any true

co-clusters it is unclear what the co-iVAT ofD∗ should show. In the previous example,

shown in Fig. A.9, the co-clusters were clearly presented in the co-iVAT images of

D∗. In comparison, the images of D∗ shown in Fig. A.10(a,b) shows no distinct dark

blocks, which is supported by visual inspection of the object data in Fig. A.7(a).
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Figure A.10: co-iVAT images of dissimilarity data shown in Fig. A.7 (a) original
co-iVAT reordering, (b) alternate co-iVAT reordering, (c-e) - co-iVAT reordered dis-
similarity data matrices.

Figure A.11 shows the co-iVAT images of the dissimilarity data computed from

the 3-dimensional data shown in Fig. A.8(a). As opposed to the co-VAT image shown

in Fig. A.8(b), which was inferior to the alternate co-VAT image in (c), both co-iVAT

images are successful at showing the 5 co-clusters in the object data. This leads me

to believe that co-iVAT images derived from Euclidean relations will always be at

least as good, if not better than, co-VAT images.

View (c) in Fig. A.11 clearly shows that there are 5 clusters in the row objects.

Also, unlike the co-VAT image, D∗
c , the co-iVAT image of the column object dissim-

ilarity data, D′∗
c , more closely resembles a VAT image which shows 5 clusters. View

(e) shows 5 clusters in the union of the row and column objects, which is similar to

the co-VAT image in Fig. A.8(f).
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Figure A.11: co-iVAT images of dissimilarity data shown in Fig. A.8 (a) original
co-iVAT reordering, (b) alternate co-iVAT reordering, (c-e) - co-iVAT reordered dis-
similarity data matrices.

A.5 Rectangular Single Linkage

Figure A.12 shows the results of using ReSL on the co-VAT images in Fig. A.6. Again,

the object for which D is computed from has 4 distinct clusters, each composed of

both row and column objects. Views (a) and (b) show that there are 4 clusters in the

row objects and 4 clusters in the column objects, respectively. View (c) shows that

there are 4 clusters in the union of the objects. Finally, the view of the partitions

outlined on the alternate co-VAT reordered dissimilarity data, shown in view (d),

clearly shows that there are 4 co-clusters and which objects below to each of these
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(e) Partition values of Uco

Figure A.12: ReSL partitions of co-VAT reordered dissimilarity images shown in
Fig. A.6 210
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(d) 4-partition, object data

Figure A.13: Spectral co-clustering partitions of dissimilarity data shown in Figs. A.6
and A.12.

clusters. The degree of co-clusterness matrix in view (e) also supports this claim.

To compare, Fig. A.13 demonstrates the spectral co-clustering algorithm on the

same data set. The views in this figure shows that spectral co-clustering is also

successful in partitioning the data. However, recall that spectral co-clustering cannot

automatically detect the number of co-clusters.

Figure A.14 demonstrates ReSL on the 3-dimensional data set first shown in

Fig. A.11. ReSL is successful at partitioning the row objects into the visually pre-

ferred 5 clusters. However, similar to the Three Lines example in Example 4.1.3,

CLODD is unable to partition the column objects. However, the question remains:

How many clusters are there in the column objects? Depending on context, one could
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say that there is 1 cluster—all the objects in the ‘figure 8’—or 5 clusters—each line

that crosses the 5 row objects clusters. ReSL finds 10 clusters in the column objects,

as shown in view (b), and 6 clusters in the union of the row and column objects,

shown in view (c). Thus, the rule of thumb indicates 9 = 5 + 10− 6 co-clusters. The

degree of co-clusterness matrix in view (e) has 10 “large” values (≥ 0.7). However,

notice that these 10 “large” values correspond to 5 different connected-locations in

D∗. Thus, I believe that ReSL is successfully showing the co-clusters in this data.

What happens if I instead use ReSL on the co-iVAT images of the 3-dimensional

data set from Fig. A.11. Figure A.15 demonstrates this result. View (a) shows that,

again, ReSL is easily able to compute the partition of the row objects, which is

expected given the quality of the co-iVAT image of D′∗
r . View (b) shows that ReSL

partitions the column objects into 9 clusters. Note that the 2 clusters, objects {1−25}
and {51− 75} are the top and bottom of the ‘figure 8’ pattern—see Fig. A.8(a). The

union of the objects is partitioned into 6 clusters, as shown in view (c). Finally, the

partition of the rectangular data D′∗ is shown in view (d). The 2 large co-clusters—

the first composed of row objects {101 − 150} and column objects {51 − 75}, and
the second composed of row objects {151 − 200} and column objects {1 − 25}—are

the 2 crosses formed by the objects at the top and bottom of the ‘figure 8’. Finally,

examining the degree of co-clusterness matrix in view (e) shows that there are 5

“large” values (≥ 0.6) in the matrix, as shown by the bold values.

In summary, I believe the examples shown here offer evidence that ReSL and

co-iVAT can be effective at showing the co-clusterness relations in rectangular data.

However, it is my opinion that one should use ReSL on both the co-VAT and co-iVAT

images and visually judge the evidence to choose the preferable result.
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(e) Partition values of Uco

Figure A.14: ReSL partitions of co-iVAT reordered dissimilarity images shown in
Fig. A.8
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Figure A.15: ReSL partitions of co-VAT reordered dissimilarity images shown in
Fig. A.11
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Appendix B

What is a Co-Cluster?

Many of the rectangular relational data examples given in this dissertation beckon a

question of what objects comprise a co-cluster. So then, what is a co-cluster? There

are many candidate answers to this questions. The reason I limit this discussion to

the last pages of my dissertation is because one could easily explore this question and

write a entire dissertation themselves. Thus, in this section, I introduce some of the

existing discussion on this question and end with some conjecture and questions.

The term two-mode clustering was first coined by Mirkin [1996], although the

process itself is first attributed to Hartigan [1975]. Biclustering, co-clustering, and

two-mode clustering all refer to the process of clustering rectangular data, where the

row objects and column objects are disjoint. Madeira and Oliveira [2004] identify

four types of co-clusters (biclusters), illustrated in Fig. B.1:

1. Co-clusters with constant values, as in view (a);

2. Co-clusters with constant values on rows and columns, as in views (b,c);

3. Co-clusters with coherent values, as in view (d);

4. Co-clusters with coherent evolutions, as in view (e).
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(b) Constant
rows
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(c) Constant
columns

1 2 0 4
2 3 1 5
4 5 3 7
5 6 4 9

(d) Coherent
values (additive

model)

70 13 19 10
20 5 10 4
30 20 29 15
90 30 80 6

(e) Coherent evolution

Figure B.1: Examples of different types of biclusters [Madeira and Oliveira, 2004].

The first three types involve the values of the matrix directly. The coherent

evolution types treats the matrix elements as symbols and examines the behavior of

the symbols across the rows and columns. For example, in view (e), the behavior of

this co-cluster is in the change of the values from column to column. From column 1

to column 2, the change in value is negative; from column 2 to column 3, the change

in value is positive, and from column 3 to column 4 the change in value is negative.

In this dissertation, I, for the most part, only deal with relational data; hence, I argue

that the last three co-cluster types do not make sense. Only the first type, constant

values, makes sense to me because this would indicate a group of equally similar (or

dissimilar) objects. Furthermore, the only interesting co-clusters in relational data

would be those that are grouped by a very small dissimilarity (highly similar objects)

or very large dissimilarity (highly dissimilar objects).

The co-clustering picture does not end there, however. VanMechelen et al. [2004]

and Madeira and Oliveira [2004] describe different shapes of clusters. Partitions can

take three general forms, which are enumerated in Table B.1. Moreover, in rectangular

data these three types can be combined to produce hybrid instantiations. Figure B.2

gives examples of different cluster shapes.
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Table B.1: Forms of cluster partitions [VanMechelen et al., 2004]

1. The clusters can consist of non-empty, non-intersecting subsets of objects;

2. Nested clusters are intersecting subsets of clusters (an example is hierarchical
clusters);

3. Overlapping clusters are intersecting, non-nested clusters.

(a) Non-itersecting co-clusters (b) Non-itersecting rows, nested
columns co-clusters

(c) Non-itersecting columns,
overlapping rows co-clusters

(d) Overlapping co-clusters

Figure B.2: Co-cluster shapes in dissimilarity data [VanMechelen et al., 2004]

Now that we have some formal definitions, let us examine some examples from this

dissertation. Figure B.3 revisits the most compelling examples. Clearly, ‘A’ shows

a cut-and-dry example of three non-intersecting co-clusters. However, ‘B’ and ‘C’

demand more inspection.

A hand-reordered version of Example ‘B’ is shown in Fig. B.4(a). As this view

depicts, the dissimilarity data comprises 3 non-intersecting row clusters, labeled R1,

R2, and R3, and 3 overlapping column clusters, C1, C2, and C3. One might argue
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Figure B.3: Dissimilarity data sets that address the question: What is a co-cluster?

that column objects indexed 250-300 are another column cluster; however, I dissent

on this opinion because these columns indicate objects that are not “close” to any of

the row objects. Thus, not much is known about column objects 250-300. Certainly,

their similarity to one another cannot be imputed from these data; the data are just

noise.

Common opinion [VanMechelen et al., 2004, Madeira and Oliveira, 2004] calls the

arrangement in Example ‘B’ three co-clusters. The ReSL degree of co-clusterness

matrix, rearranged in the order of view (a) in B.4, is
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Figure B.4: Cluster structures of rectangular dissimilarity data - (a) illustrates non-
intersecting row clusters and overlapping column clusters, (b) illustrates nested and
overlapping row clusters and nested and non-intersecting column clusters.

⎡
⎣ 0.96 0.96 0 0 0

0 0.96 0.96 0 0
0 0 0.96 0.96 0

⎤
⎦ .

The three rows of this matrix correspond to the three non-intersecting row clusters.

The five columns of this matrix clearly display the overlapping structure of the column

structures, as well as the “empty” column cluster in the fifth column.

Now, let’s examine Example ‘C’ in Fig. B.4(b). This shows four nested row

clusters with one overlapping row cluster and four nested column clusters with one

non-intersecting column cluster. The number of co-clusters in this example is not

clearly defined by any known reference. I believe that these data represent two co-

clusters: one nested co-cluster, composed of row objects 1-200 and column objects

1-250 and an overlapping cluster composed of row objects 175-250 and column objects

251-300. The ReSL degree of co-clusterness matrix, arranged in the order of the view

in B.4, is
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⎡
⎢⎢⎢⎢⎢⎢⎣

0.96 0.96 0.96 0.96 0
0 0.96 0.96 0.96 0
0 0 0.96 0.96 0
0 0 0 0.96 0
0 0 0 0.96 0.96
0 0 0 0 0.96

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Again, ReSL clearly is able to show the nested structure of the clusters as well as

the overlapping cluster.

These examples illustrate the three types of clusters outlined by [VanMechelen

et al., 2004]. However, they still do not get to the heart of the question, what is a

co-cluster? They merely give some definitions. So I give one more example, shown in

Fig. B.5, which may shed some light on the issue.

The plot in Fig. B.5(a) illustrates object data that comprise two circular clusters

composed of just row objects and two circular clusters composed of just column

objects and one curved-line co-cluster. I believe we all can agree that the curved line

is the only co-cluster in this data set and comprises one co-cluster. However, the

alternate co-VAT image in view (b) does not show this co-cluster as a dark block, as

we saw in previous examples. But the co-iVAT image clearly shows a dark block, the

normal representation of a co-cluster.

Thus, in summary, I believe that clustering in rectangular relational data brings

up the same issues as clustering in object data or square relational data. Namely,

that the definition of a cluster is context and problem dependent. End users cannot

blindly apply clustering algorithms without regard; a knowledge of the underlying the-

ory must be understood. Furthermore, clustering results are open to interpretation,

which is why I believe that visual algorithms, such as those presented in this disser-

tation, are very useful. Humans (and, perhaps, animals) have an unmatched ability

to recognize patterns and group these patterns in a meaningful way. The strength of
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Figure B.5: coVAT and co-iVAT images of 360 row objects and 360 column objects
represented by rectangular dissimilarity data

visual clustering algorithms is that the most information possible is presented to the

end user, with suggestions as to how the data should be grouped.

Have I answered the question, what is a co-cluster? Of course not, because,

ultimately, it all depends on what you are looking for.
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What we see depends mainly on what we look for.
-Sir John Lubbock
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