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Abstract—Very large (VL) data or big data are any data that
you cannot load into your computer’s working memory. This is not
an objective definition, but a definition that is easy to understand
and one that is practical, because there is a dataset too big for any
computer you might use; hence, this is VL data for you. Clustering
is one of the primary tasks used in the pattern recognition and data
mining communities to search VL databases (including VL images)
in various applications, and so, clustering algorithms that scale well
to VL data are important and useful. This paper compares the ef-
ficacy of three different implementations of techniques aimed to
extend fuzzy c-means (FCM) clustering to VL data. Specifically, we
compare methods that are based on 1) sampling followed by nonit-
erative extension; 2) incremental techniques that make one sequen-
tial pass through subsets of the data; and 3) kernelized versions of
FCM that provide approximations based on sampling, including
three proposed algorithms. We use both loadable and VL datasets
to conduct the numerical experiments that facilitate comparisons
based on time and space complexity, speed, quality of approxima-
tions to batch FCM (for loadable data), and assessment of matches
between partitions and ground truth. Empirical results show that
random sampling plus extension FCM, bit-reduced FCM, and ap-
proximate kernel FCM are good choices to approximate FCM for
VL data. We conclude by demonstrating the VL algorithms on a
dataset with 5 billion objects and presenting a set of recommenda-
tions regarding the use of different VL. FCM clustering schemes.

Index Terms—Big data, fuzzy c-means (FCM), kernel methods,
scalable clustering, very large (VL) data.

I. INTRODUCTION

LUSTERING or cluster analysis is a form of exploratory
data analysis in which data are separated into groups or
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TABLE I
HUBER’S DESCRIPTION OF DATASET SIZES [11], [12]
Bytes | 10° 108 1010 1012 10>12
“size” | medium large huge monster VL

subsets such that the objects in each group share some similarity.
Clustering has been used as a preprocessing step to separate data
into manageable parts [1], [2], as a knowledge discovery tool [3],
[4], for indexing and compression [5], etc., and there are many
good books that describe its various uses [6]-[10]. The most
popular use of clustering is to assign labels to unlabeled data—
data for which no preexisting grouping is known. Any field
that uses or analyzes data can utilize clustering; the problem
domains and applications of clustering are innumerable.

The ubiquity of personal computing technology, especially
mobile computing, has produced an abundance of staggeringly
large datasets—Facebook alone logs over 25 terabytes (TB) of
data per day. Hence, there is a great need to cluster algorithms
that can address these gigantic datasets. In 1996, Huber [11]
classified dataset sizes as in Table 1. Bezdek and Hathaway
[12] added the very large (VL) category to this table in 2006.
Interestingly, data with 10”12 objects are still unloadable on
most current (circa 2011) computers. For example, a dataset
representing 10'2 objects, each with ten features, stored in short-
integer (4 bytes) format would require 40 TB of storage (most
high-performance computers have <1 TB of main memory).
Hence, we believe that Table I will continue to be pertinent for
many years.

There are two main approaches to clustering in VL data:
distributed clustering which is based on various incremen-
tal styles, and clustering a sample found by either progres-
sive or random sampling. Each has been applied in the con-
text of FCM clustering of VL data; these ideas can also be
used for Gaussian-mixture-model (GMM) clustering with the
expectation—maximization (EM) algorithm. Both approaches
provide useful ways to accomplish two objectives: acceleration
for loadable data and approximation for unloadable data.

Consider a set of n objects O = {oy,...,0,}, e.g., human
subjects in a psychological experiment, jazz clubs in Melbourne,
or wireless sensor network nodes. Each object is typically rep-
resented by numerical feature-vector data that have the form
X ={x1,...,x,} C R?, where the coordinates of x; provide
feature values (e.g., weight, length, cover charge, etc.) describ-
ing object o;.

A partition of the objects is defined as a set of cn values
{u; }, where each value represents the degree to which object
o; is in the kth cluster. The c-partition is often represented

"Huber also defined riny as 10% and small as 10%.
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as a ¢ x n matrix U = [uy;]. There are three main types of
partitions: crisp, fuzzy (or probabilistic), and possibilistic [13],
[14]. Crisp partitions of the unlabeled objects are non empty
mutually disjoint subsets of O such that the union of the subsets
equals O. The set of all nondegenerate (no zero rows) crisp
c-partition matrices for the object set O is

thn :{U S RCX”|UM (S {0, 1}V],’L

0<> uy <nVisy uy = 1,w} (1)
j=1 i=1

where wuy; is the membership of object o; in cluster k; and the
partition element u; = 1 if o; is labeled & and is O otherwise.
When the rows of U are considered as vectors in R", we denote
the kth row as uy; when the columns are considered as vectors
in R*, we denote the ith column as (U);. Both uy and (U); are
considered as column vectors.

Fuzzy (or probabilistic) partitions are more flexible than crisp
partitions in that each object can have membership in more than
one cluster. Note, if U is probabilistic, say U = P = [py;], then
Pk 18 interpreted as a posterior probability p(k|o;) that o; is in
the kth class. Since this paper focuses primarily on FCM, we do
not specifically address this difference. However, we stress that
most, if not all, of the methods described here can be directly ap-
plied to the GMM/EM algorithm, which is the most popular way
to find probabilistic clusters. The set of all fuzzy c-partitions is

Mfcn :{U € Ichn|uij € [Oa 1]VJ7Z

0<Zuij<n,Vi;Zuij:1,Vj}. 2)
j=1 i=1

Each column of the fuzzy partition U must sum to 1, thus
ensuring that every object has unit total membership in a
partition (), up; = 1).

Many algorithms have been proposed to cluster in VL data,
but only a handful of them address the fuzzy clustering prob-
lem. Literal schemes simply cluster the entire dataset. In con-
trast, extended clustering schemes apply a clustering algorithm
to a representative (and manageably sized) sample of the full
dataset, and then noniteratively extend the sample result to ob-
tain clusters for the remaining data in the full sample. Algorithms
that include their own noniterative mechanisms for extension
are referred to as extensible algorithms [15]. Perhaps the most
well-known method for fuzzy clustering of VL data is the gen-
eralized extensible fast FCM (geFFCM) [12]. This algorithm
uses statistics-based progressive sampling to produce a reduced
dataset that is large enough to capture the overall nature of the
data. It then clusters this reduced dataset and noniteratively ex-
tends the partition to the full dataset. However, the sampling
method used in geFFCM can be inefficient and, in some cases,
the data reduction is not sufficient for VL data. Hence, we will
adapt geFFCM into a simple random sampling plus extension
FCM (rseFCM) algorithm. Other leading algorithms include
single-pass FCM (spFCM) [16] and online FCM (oFCM) [17],
which are incremental algorithms to compute an approximate
FCM solution. The bit-reduced FCM (brFCM) [18] algorithm
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uses a binning strategy for data reduction. A kernel-based strat-
egy which is called approximate kernel FCM (akFCM) was
developed in [19] and [20], which relies on a numerical approx-
imation that uses sampled rows of the kernel matrix to estimate
the solution to a c-means problem.

In this paper, we compare four leading algorithms to compute
fuzzy partitions of VL vector data: rseFCM, spFCM, oFCM,
and brFCM. Then, we will compare four kernel FCM (kFCM)
algorithms to compute fuzzy partitions of VL data: rsekFCM,
akFCM, spkFCM, and okFCM. The spkFCM and okFCM are
proposed in this paper as kernelized extensions of the spFCM
and oFCM algorithms.

Section II describes FCM algorithms for VL data, and
Section III proposes new kernelized extensions of some of these
algorithms. The complexity of the algorithms is compared in
Section IV, and Section V presents empirical results. Section VI
contains our conclusions and some ideas for further research.
Next, we describe some of the related research.

A. Background and Related Work

Much research has been done on clustering in VL data. Meth-
ods can be roughly categorized into three types of algorithms.
1) Sampling methods compute cluster centers from a smaller
sample of (often randomly) selected objects. Popular sampling-
based methods include CLARA [7], CURE [21], and the core-
set algorithms [22]. 2) Single-pass algorithms sequentially load
small groups of the data, clustering these manageable chunks
in a single pass, and then combining the results from each
chunk. Representative algorithms include incremental cluster-
ing [23], [24] and divide-and-conquer approaches [25], [26].
3) Data transformation algorithms alter the structure of the data
itself so that it is more efficiently accessed. The data often take
the form of graph-like structures. Well-known algorithms of this
type include BIRCH [27] and CLARANS [28]. Other algorithms
in this category include GARDENy p [29] and CLUTO [30],
which were designed to address high-dimensional data. While
all the algorithms that are mentioned in this paragraph perform
their job well, they all produce only crisp partitions.

Methods that generate fuzzy partitions include the fast FCM
(FFCM) developed in [31], where FCM is applied to larger
and larger nested samples until there is little change in the
solution; and the multistage random FCM proposed in [32],
which combines FFCM with a final literal run of FCM on the full
dataset. Both these schemes are more in the spirit of acceleration,
rather than scalability, as they both contain a final run on the
full dataset. Other algorithms that are related, but were also
developed for efficiency, include those described in [33] and
[34]. In [35], fast kernel FCM (FKFCM) is proposed, which is
designed to speedup the processing of quantized MRI images.
This algorithm is similar to our brFCM algorithm in that it uses
a weight in the FCM objective function to represent the multiple
contributions of objects that have the same quantization (pixel)
value. Unlike brFCM, the FKFCM algorithm is not appropriate
for use with real-valued feature data.

The algorithms in this paper rely on extension to produce
partitions of the full dataset. The objective of extension de-
pends on the size of the data. When the dataset is VL, sampling



1132

X (population)

f/)(VL (unloadable) Feasibility

Error un-measureable

Acceleration
Error measureable

X, (loadable)

Xg (sample)

Fig. 1. Population X, and samples X vz, X1, and X§.

and extension offers a clustering solution (i.e., makes clustering
feasible) for cases where it is not otherwise possible with the
corresponding literal approach. If the dataset is merely large
(L), but still loadable into memory, then an extended scheme
may offer an approximate solution which is comparable to the
literal solution at a significantly reduced computational cost—
in other words, it accelerates the corresponding literal scheme.
Therefore, the benefits for the two cases can be summarized as
feasibility for VL data and acceleration for L data. Both situa-
tions are depicted in Fig. 1, where the dataset to be clustered is
either X7 or Xy. The set X, denotes the source population,
and X represents a sample of either Xy, or Xy . In a nutshell,
extended schemes choose a sample X or collection of samples,
cluster it (or them), and then extend the results to X or Xy,.

We do not specifically address how the sampled datasets
are chosen; we simply use uniform random sampling. We be-
lieve that random sampling is sufficient for most VL datasets
and is certainly the most efficient way to choose a sample.
However, progressive sampling might provide improved perfor-
mance for some datasets. Provost et al. [36] provide a very read-
able analysis and summary of progressive sampling schemes.
Sampling methods for spectral and kernel methods are addressed
in [37]-[39], and these papers also support our claim that uni-
form random sampling is preferred.

Another fundamental difference between X; and Xy, in-
volves the calculation of approximation error. For L datasets, we
can assess the approximation error by measuring the difference
between the clustering solutions obtained using the correspond-
ing extended and literal schemes. On the other hand, the only
solution generally available for a VL dataset is that obtained by
the extended scheme, for which the approximation error cannot
be measured. Thus, our confidence in the accuracy of extended
clusters in the unverifiable case (Xy) is necessarily derived
from the verified good behavior that we can observe by con-
ducting various X experiments. We do, however, perform a
demonstration of the VL methods in Section V-D that compares
the performance of the algorithms using a measure we devised
specifically for this purpose. Now we move on to descriptions
of the FCM algorithms.

II. Fuzzy ¢c-MEANS ALGORITHMS

The FCM algorithm is generally defined as the constrained
optimization of the squared-error distortion

c n

Tn (U V) =3 il —vill3 3)

i=1j=1
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Algorithm 1: LFCM/AO
Input: X, c,m
Output: U, V
Initialize V'
while maxlgkgc{ﬂvk,new — Uk,old||2} > e do

c 2 -1

Xj — Vil \" -
Z M ’ Vl,] (4)
2\ Tk, =il

i (u)

v, =
i (ug)™

u,‘j =

) Vi ®)

where U is the (¢ x n) partition matrix, V = {vy,...,v.} is
the set of ¢ cluster centers in R?, m > 1 is the fuzzification
constant, and || - || 4 is any inner product A-induced norm, i.e.,
[Ix]l4a = VT Ax. We will only use the Euclidean norm (A = 1)
in our examples, but there are many examples where the use of
another norm-inducing matrix, e.g., using A = S, the inverse
of the sample covariance matrix, has been shown to be effec-
tive. The FCM/AO algorithm produces a solution to (3) using
alternating optimization (AO) [40]. Other approaches to op-
timizing the FCM model include genetic algorithms, particle
swarm optimization, etc. The FCM/AO approach is by far the
most common, and the only algorithm used here. We may ease
the notation at times by dropping the “/AO” notation unless
clarity demands it. Algorithm 1 outlines the steps of the literal
FCM/AO (LFCM/AQO) algorithm. There are many ways to ini-
tialize LFCM; we choose ¢ objects randomly from the dataset
itself to serve as the initial cluster centers, which seems to work
well in almost all cases. However, any initialization method that
adequately covers the object space and does not produce any
identical initial centers would work.

The alternating steps of LFCM in (4) and (5) are iterated until
the algorithm terminates, where termination is declared when
there are only negligible changes in the cluster center locations:
more explicitly, maxj<<.{|| Vi new — Vi.o |’} < €, where €
is a predetermined constant. We use ¢ = 102 in our experiments
and the Euclidean norm for the termination test.

A. Sampling and Noniterative Extension

The most basic, and perhaps obvious, way to address VL data
is to sample the dataset and then use FCM to compute cluster
centers of the sampled data. If the data were sufficiently sam-
pled, the error between the cluster center locations produced by
clustering the entire dataset and the locations produced by clus-
tering the sampled data should be small. Algorithm 2 outlines
the random sample and extend approach, which we denote as
rseFCM. Note that the extension step in line 3 of rseFCM is
equivalent to (4) in FCM. Extension can be used to compute
the full fuzzy data partition for any algorithm that produces (or
approximates) cluster centers. In Section V, we will apply ex-
tension to other VL FCM algorithms in order to measure the
relative accuracy of each clustering approach.
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Algorithm 2: rseFCM to approximately minimize

Algorithm 4: spFCM/AO to approximately minimize

I (U, V) Imw (U, V') [16]
Input: X, ¢, m Input: X, ¢, m, n;
Output: U,V Output: V

1 Sample n, objects from X without replacement, denoted Load X as ng-sized randomly chosen subsets,
X X ={X,Xs,..., X}

2 U,V = LFCM(X§, ¢, m) 1w=1,,

3 Extend the partition (Us, V) to X, Vz; € X, using
Eq. (4), giving (U, V)

Algorithm 3: wFCM/AO to minimize Jy,w (U, V) [13]
Input: X, ¢, m, w, (initial V)
Output: U, V
If V is not initialized, initialize V'
while max; <;<.{||Vinew — Vioua||*} > € do
Calculate U with Eq. (4)

D1 wi(uif) "X,

o wy(uig)™

, Vi (7

VvV, =

Remark: Once the extension step is completed, so that a parti-
tion U on the full dataset is known, we can perform a completion
step by using U to (re)compute the cluster centers V' with (5).
Extension, followed by completion, yields a pair (U, V) that
satisfies the first-order necessary conditions to minimize J,,,,
and if desired, we can compute the value J,, (U, V).

B. Algorithms Based on Weighted Fuzzy c-Means

In LFCM, each object is considered equally important in the
clustering solution. The weighted FCM (WFCM) model intro-
duces weights that define the relative importance of each object
in the clustering solution. Hence, wFCM is defined as the con-
strained optimization of

Imw (U7 V) = Z Z Wi u?} ||X,i -V ||124 (6)

i=1j=1

where w € R"”, w; > 0, is a set of predetermined weights that
define the influence of each feature vector. Algorithm 3 outlines
the wFCM algorithm. As (7) shows, objects with a higher weight
w are more influential in defining the location of the cluster
centers V. These weights are important in the spFCM, oFCM,
and brFCM algorithms, which are outlined next.

1) Single-Pass Fuzzy c-Means: Algorithm 4 outlines the
spFCM algorithm. Line 1 of the algorithm sets the weight vector
w to the n,-length vector of 1s. Line 2 calculates the wFCM
partition of the first sample set of data, returning the c cluster
centers V' (note that wFCM in Line 2 is initialized using your
chosen initialization method). spFCM then iterates over the re-
maining subsets of data in X. At each iteration, wFCM is used
to cluster an augmented set of data that is composed of the union
of the cluster centers from the previous iteration and the sam-
ple subset X;, which we denote as {V U X, }. Hence, there are

2 U,V = wFCM(X1, ¢, m, w)
for [ =2 to s do
3

Ns

wgzz(uij)wj, i=1,...,c 8)

Jj=1

4 w={w'Ul,_}
| U,V =wFCM({V U X;},c,m,w,V)

Algorithm 5: oFCM/AO to approximately minimize
Imw (U, V) [17]

Input: X, ¢, m, n;
Output: V
Load X as ng-sized subsets, X = {X1, Xo,...
where XZ = {x(i—l)ns+la . ,Xins}
1 Ul, Vi = WFCM(Xl, c,m, 1nb)
for /] =2 to s do
2 | U,Vi=wFCM(X,¢,m, 1,,,Vi_1)

3w :Z;‘L;l(Ul)ﬁ l=1,...,s
4 V=wFCM({V; U...UV,},e,m,{wi U...Uwg})

; Xsh

(c + ny) objects that are clustered at each iteration. Lines 3 and 4
determine the weights that are used in wFCM for the augmented
input dataset {V U X, }. Line 3 calculates the weights for the ¢
(next step) cluster centers V' from the current cluster member-
ships, and Line 4 creates the (¢ + ny)-length weight vector for
the next step, composed of the ¢ weights that correspond to the
cluster centers and ng 1s, which correspond to the objects in the
sample subset X;. Line 5 shows that wFCM takes as input the
augmented subset of data {V U X}, the number of clusters ¢,
and the weight vector w. In addition, wFCM is initialized using
the cluster centers V' from the previous iteration (shown as the
fifth argument in Line 5), which speeds up convergence.

2) Online Fuzzy c-Means: Algorithm 5 outlines the o0FCM
algorithm. Unlike spFCM, which computes the new cluster cen-
ters by feeding forward the cluster centers from the previous iter-
ation into the data being clustered, oFCM clusters all s subsets of
objects separately and then aggregates the s sets of cluster cen-
ters at the end. In Line 2 of oFCM, a partition and set of cluster
centers, denoted as U; and V7, are produced for the first subset
of objects X;. At each iteration of Line 2, wFCM partitions X,
producing U; and V;. Note that we use the cluster centers from
the previous iteration to initialize wFCM to speed up conver-
gence (this feedforward initialization could be ignored for the
case where each iteration of Line 2 is performed separately, such
as on a distributed architecture). Line 3 computes the weights
for each of the c cluster centers in each of the s sets of V's. Note
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Algorithm 6: brFCM/AO to approximately minimize
Imw (U, V) [18]

Input: X, c, m

Output: V

Bin X into s quantization bins, where

X' ={x}}, k=1,...,s, is the set of bin prototypes
(typically the means of the binned feature vectors or the
bit-reduced binary values)

Set wy, to the number of feature vectors aggregated into
X}, Vk

V = wFCM(X', ¢, m, w)

that (U7 ) ; indicates the jth column of U;. Finally, wWFCM is used
in Line 4 to cluster the (cs) centers {V; U...U V;} using the
corresponding weights {w; U...U w,}. The final output is ¢
cluster centers V.

The size of the dataset that is composed of the cluster centers
(which are processed at Line 4) could be large in cases where
X is extremely large and must be broken up into many chunks
(s is large). If the cluster center data at Line 4 are too large to
be processed, it could be processed by another run of oFCM or
a streaming algorithm, such as proposed in [41].

3) Bit-Reduced Fuzzy c-Means: brFCM was designed to ad-
dress the problem of clustering in large images. Algorithm 6
outlines the steps of this algorithm. The brFCM algorithm be-
gins by binning the input data X into areduced set X', where X’
is the set of bin prototypes (i.e., the bin centers). This reduced
set X' is then clustered using wFCM, where the weights are
the number of objects in each bin. There are many ways to bin
data; e.g., image data can be bit-reduced by removing the least
significant bits and binning the identical objects. An easy way to
bin the data is to compute the s-bin histogram; the weights are
the number of pixels in each bin, and the data are the bin centers
(the means of the data in each bin). This is the method that
we will use in this paper as it provides us with an easy way to
directly compare the results with the other VL FCM algorithms
as we can specify the number of bins (which is equivalent to
specifying the sample size).

Note that the spFCM, oFCM, and brFCM algorithms all pro-
duce cluster centers V' by approximately minimizing .J,,,,, and
not the full ¢ X n data partition. However, this partition can be
easily computed by the extension step (Line 3) of Algorithm 2
and then the completion step, computing a final V' with the full
U, yields a necessary pair (U, V') that can be evaluated by J,,
if desired.

It was shown in [42] that the spFCM and oFCM algorithms
converge—I[42, Ths. 1 and 2] also can be used to show that
rseFCM converges. Now we move to kernel versions of the
algorithms that are presented.

C. Kernel Fuzzy c-Means Algorithms

Consider some nonlinear mapping function ¢: x — ¢(x) €
RPx  where D is the dimensionality of the transformed fea-
ture vector x. With kernel clustering, we do not need to explic-
itly transform x; we simply need to represent the dot product

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 20, NO. 6, DECEMBER 2012

d(x) - ¢(x) = Kk(x,x). The kernel function x can take many
forms, with the polynomial (x;,x;) = (x! x; + 1)” and ra-
dial basis function (RBF) k(x;,x;) = exp(c||x; — x;||*) be-
ing two of the most well known. Given a set of n object
vectors X, we can, thus, construct an n X n kernel matrix
K = [K;; = k(X;,X;j)]nxn. This kernel matrix K represents
all pairwise dot products of the feature vectors in the trans-
formed high-dimensional space—called the reproducing kernel
Hilbert space (RKHS).

Given a kernel function x, kernel FCM (kFCM) can
be generally defined as the constrained minimization of a
reformulation—by elimination of V' by substitution of (5) into
(3)—of the objective in (3):

n n
E E E u"l u';:?l

j=1 \i=1k=1

Jm(U K, X“Xk /QZUIJ>
(€))
where U € My.,, m >1 is the fuzzification parameter,
and d,(x;,xi) = k(xi, %) + k(X Xk ) — 26(x;,Xy) is the
kernel-based distance between the ith and kth feature vectors.
Note that in (9) we use a partition matrix that is (n x c) to stay
consistent with the existing kernel clustering literature. We will
stick to this convention for our discussion of kernel algorithms.
KFCM solves the optimization problem min{.J,, (U;k)} by
computing iterated updates of

k=1

-1
Vi, j. (10)
The kernel distance between input datum x; and cluster center

Vv is
di(xi,v) = [|9(x:) = 6(v))| (11

where, like LFCM, the cluster centers are linear combinations
of the feature vectors
m
Do U j o(x1)
o(vj) = =

1=1 Ui

12)

Equation (11) cannot by computed directly, but by using

the identity K;; = H(XI,X]‘) = ¢(x;) - ¢(x;), denoting 0; =

u'/ >, |uf| whereu]' = (ufy, uyj, ... ,u’ffj)T, and substitut-
1ng (12) into (11), we get

=1 D U Z;

Py “z j

Zz L ufo(xr) - o(x;)

Z[ 1um

ST g T ~T
=u; Ku; +e; Ke; —2u; Ke;

(x1) - o(xs)

dy (Xi,vj) =

+¢(xi) - o(xi) —

=1, Ku; + K;; — 2(0] K), (13)

where e; is the n-length unit vector with the ¢th element equal
to 1. This formulation of kKFCM is equivalent to that proposed
in [43] and, furthermore, is identical to relational FCM [44] if
the kernel x(x;,x;) = (x;,x;) is used [45].

Equation (13) shows the obvious problem which arises when
using kernel clustering with VL data; the distance equation’s
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complexity is quadratic with the number of objects. Further-
more, the memory requirement to store K is also quadratic with
the number of objects.

1) Approximate Kernel Fuzzy c-Means: The akFCM [20] al-
gorithm approximates a solution to kKFCM by using a numerical
approximation of the cluster center to object kernel distance in
(13) that is based on the assumption that the cluster centers can
be accurately represented as a linear sum of a subset of the fea-
ture vectors. First, s feature vectors are drawn randomly. The
cluster centers are approximated by a linear sum of the selected
objects

Z ai;&p(xi) Z aijo(x (14)
where a;; is the weight of the ith feature vector in the jth cluster
center, §; is a binary-selection variable (§; = 1 if x; is drawn
and & =0 if x; is not), and «;; = a(;); are the weights of
the chosen vectors ¢(x(;)),4 = 1,.. ., s. Although this notation
seems cumbersome, it dramatlcally 51mpliﬁes the description of
akFCM, as we can ignore the weights a;; for the objects that
are not sampled (&; = 0).
After sampling, two kernel sub-matrices are computed:

Kee = [Kijlo, Vi, 516G =1, =1 (15)

where (K); is the ith column of K. Notice that K¢ is the s x s
square matrix that corresponds to the pairwise elements of K
for the {-selected objects. K¢ is the n x s rectangular matrix
that corresponds to the columns of K for the £-selected objects;
also, notice that K¢¢ is a submatrix of K.

Using these two submatrices, the weights a; (where this is
the s-length vector, a; = (avj,...,a5;)") are computed as
—(K ' Klu)". (17)

aj:

See [19] and [20] for a detailed derivation. In practice, K¢¢ could
be rank deficient (have a number of relatively small eigenval-
ues); hence, it is advisable to use a pseudoinverse when comput-
ing K 5’51, which we denote as K g ¢ In addition, the calculation
of K 551 K gT only needs to be performed once, at the beginning
of the algorithm, with the result stored.

The key element of akFCM is the approximation of (13) using
aj,ie.,

CZK(X,L',V]') = a?Kggaj + Kii - 2(Kga1)1 (18)

Notice that the full kernel matrix is no longer required to com-
pute the distance d,. (x;,v;); the only required kernel matrix
elements are the diagonal elements (which for the RBF kernel
are all equal to 1) and the s columns of K corresponding to the
selected objects. Algorithm 7 outlines the steps of akFCM.

One theoretical advantage of the akFCM algorithm is that it
has a bounded squared-error distortion, £,, (U, Z), of

Ez [‘CW(U? E)] m\T -1
S < ([

+ %[diag(}()]-l} U)

2See [19] for a detailed derivation of this error for hard kernel c-means. The
error we present here for akFCM is a simple extension of that derivation.
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Algorithm 7: akFCM/AO to approximately minimize
I (U; k) [20]
Input: K¢, K¢, diag(K), ¢, m

Output: U
Initialize U € My,
K = KL KT
while maxlgkgc{Huhmw — uk701d||2} > e do
A T
oy = (Kiy)
dn(xi,vj) = Q?Kggaj + K — 2 (Kgaj)i , Vi, j
1 —1
c k] m—1
dn(Xz‘,Vj)> .
Usj = Z — , Vi, j
k=1 <dn(xi’vk)

where Ez is the expectation with respect to the selection variable

E= (1, 80)s [U™ ik = ujp/ 32, [uf;| is the (column)-
normalized membership matrix, and

ZKLZ Zum _

is the squared-error distortion of the literal kKFCM solution (i.e.,
= =1,,, the vector of all 1s). In [19], it was shown that this er-
ror, for m = 1, is bounded by cn/s for kernels where K; ; <1,
which is an intuitively pleasing result. This bound also holds for
m > 1, as u;; < 1. Next, we describe novel kernelized exten-
sions of the wFCM, spFCM, and oFCM algorithms.

m U 1 Um KUm)

III. NEwW KERNEL FUZZY ¢-MEANS ALGORITHMS
FOR VERY LARGE DATA

A. Weighted Kernel Fuzzy c-Means

The extension of the KFCM model J,,, (U; k) to the weighted
KFCM (WkFCM) model J,, (U; k) follows the same pattern as
the extension of (3) to (6). The cluster center ¢(v; ) is a weighted
sum of the feature vectors, as shown in (12). Now assume that
each object ¢(x;) has a different predetermined influence, given
by a respective weight w;. This leads to

> 1wy (Xl).

o(v)) = =15 (19)
! Zl 1wlu;j
Substituting (19) into (13) gives
w 1
e Geirvs) :W(w ou;) K (wouy) + K
2z VK 20
e (Vo) R, 0

where w is the vector of predetermined weights, and o indicates
the Hadamard product. This leads to the wkFCM algorithm
shown in Algorithm 8. Notice that wkFCM also outputs the
index of the object closest to each cluster center, which is called
the cluster prototype. The vector of indices p is important in the
VL data schemes that are now proposed.
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Algorithm 8: wkFCM/AO to minimize J,,w(U; k)
Input: K, ¢, m, w
OutPUt: U, p= {pla "o apc}
Initialize U € My,
while maxlgkgc{ﬂuk,new — uk,old||2} > e do
Compute d (x;,V;) using (20)

1 —1
e (Y (xi,v) T .
“”‘lz(dzy(xi,vk)) ] T

k=1

pj = arg mlnl{dn(xl’vj)}’ VJ

Algorithm 9: rsekFCM/AO to approximately minimize
Imw (U5 k)
Input: Kernel function x, X, ¢, m, n;
Output: U
1 Sample ng vectors from X, denoted X
2 K = [k(x;,x5)], Vxi,x5 € X,
3 U,p = wkFCM(K, ¢, m, 1,,,)
4 Extend partition to X:
d(%i,Vj) = K(Xi, %) + K(Xp;, Xp, ) — 26(Xi, Xp; ), Vi, J
Update U using (10).

B. Random Sample and Extend Kernel Fuzzy c-Means

The random sample and extend kernel FCM (rsekFCM) fol-
lows the same idea as rseFCM in Algorithm 2. A sample X of
X is chosen, and this sample is clustered using wkFCM. The
cluster prototypes that are returned by wkFCM are then used to
extend the partition to the entire dataset. Algorithm 9 outlines
the rsekFCM procedure. Like the feature vector case, the exten-
sion steps, starting at Line 4, can be used to extend the partition
for any algorithm that returns cluster prototypes (rather than a
full partition).

C. Single-Pass Kernel Fuzzy c-Means

The single-pass kFCM (spkFCM) which is outlined in
Algorithm 10 performs the same basic steps for kernel data
as spFCM does for feature vectors. At Line 1, s (n/s)-sized
sets of indices are drawn, without replacement, from the set
{1,...,n}. We call these sets of indices E = {&1,...,&}.
The indices in &; are the object indices that are clustered in the
[th step of the algorithm. At Line 3, the kernel matrix for the first
subset of objects is calculated, and at Line 4 these objects are
clustered with unity-valued weights. At Line 5, the weights for
the c cluster prototypes are computed. Lines 6-10 comprise the
main loop of spkFCM. At Line 6, an (n/s + ¢) weight vector is
created, which includes the ¢ weights of the cluster prototypes
returned by the previous iteration and n/s 1s. At Lines 7 and
8,the (n/s + ¢) x (n/s + c) kernel matrix is calculated, and at
Line 9 the objects are clustered. Finally, at Line 9 the weights
of the ¢ new prototypes are computed. After each subset of X
is operated on, Line 11 returns the indices of the ¢ objects that
are the cluster protoypes.

Algorithm 10: spkFCM to approximately minimize

Imw (U3 K)
Input: Kernel function x, X, ¢, m, s
Output: p

1 Randomly, without replacement, draw s (approximately)
equal-sized subsets of the integers {1,...,n}, denoted

E ={&,...,&}. ng is the cardinality of &;.
§=6&
K = [K'(Xiaxj)]) 1,] = 5/
U,p = WwkFCM(K, ¢, m, 1,,,)
’LU; = EZL:II uij, V_]
for [ =2 to s do
w={w/,1,,}

6
7| & =1{P).&}
8
9

wm s W N

K = [H(Xi,X]‘)L (2% :s/
U,p = wkFCM(K, ¢, m, w)
10 w) = Z:‘;{C wij, Vj

u p=¢(p)

Algorithm 11: okFCM to approximately minimize
Jm/w (U, ’i)
Input: Kernel function x, X, ¢, m, s
Output: U, p
1 Randomly draw s (approximately) equal-sized subsets of
the integers {1,...,n}, denoted E = {&;,...,&s}. ny is
the cardinality of &;.
2 K= [’i(xiaxj)]a i,j= él
3 U1, P1 = WkFCM(K, c,m, lnl)
for | =2 to s do

4 K = [k(xi,x5)], 1,7 = x
U,,p’ = wkFCM(K, ¢, m,1,,)
p: = &(p')

7 Pall = {pla cee aps}

8 K= [H(Xiaxj)]a iyj = Pall
> wi =5 (U)), VI

10 U,p’ = wkFCM(K, ¢, m, w)
11 p = pau(p’)

D. Online Kernel FCM

Online kFCM (okFCM), which is outlined in Algorithm 11,
is built on the ideas used in the oFCM algorithm. First, in Line
1, the dataset X is split into s roughly equal-sized datasets by
randomly drawing a set of selection vectors F. Each subset of
X is then individually clustered using the wkFCM algorithm,
where each object is weighted equally (see Lines 2—-6). The
objects that are indexed by the cluster prototypes p;—returned
by each run of wkFCM—are then clustered together in one final
step, where the weights for each prototype are the sum of the
respective column of the partition matrix U; (see Lines 7-10).
The final output is a set of ¢ cluster prototypes p, represented
by the c indices of the corresponding objects in X .
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TABLE II
TIME AND SPACE COMPLEXITY OF FCM/AO VL ALGORITHMS

(a) Vector Data Algorithms

Algorithm Time Space
wFCM, LFCM O(tc?dn) O((d + ¢)n)
rseFCM O(tc%dn/s) O((d+c)(n/s))
spFCM O(tc?dn) O((d+c)(n/s))
oFCM O(tc%dn) O((d+c)(n/s) + cs)
brFCM | O(tc?sd) + bin O((d + ¢)s)
Extension O(c?dn) O(cn)
(b) Kernel Algorithms
Algorithm Time Space
wkFCM, kFCM O(ten?) O(n?)
akFCM | O(n3/s? + tcn?/s) O(n?/s)
rsekFCM O(ten?/s?) O(n?/s?)
spkFCM O(ten?/s) 0O(n?/s?)
okFCM | O(ten?/s+tc3s?)  O(n?/s? + s?)
Extension O(cn) O(cn)

It is clear that all the VL implementations of FCM reduce
the amount of data that are simultaneously required. The next
section analyzes in detail the time and space requirements for
each of these algorithms.

IV. COMPLEXITY

We estimate the time and space complexity of each of the
proposed VL variants of FCM/AO. All operations and storage
space are counted as unit costs. We do not assume economies
that might be realized by special programming tricks or prop-
erties of the equations involved. For example, we do not make
use of the fact that the kernel matrices are symmetric matrices
to reduce various counts from n? to n(n — 1)/2, and we do not
assume space economies that might be realized by overwriting
of arrays, etc. Therefore, our “exact” estimates of time and space
complexity are exact only with the assumptions we have used to
make them. Importantly, however, the asymptotic estimates that
are shown in Table II for the growth in time and space with n,
which is the number of objects in X, are unaffected by changes
in counting procedures.

It is easy to let asymptotic estimates lull you into believ-
ing that methods are “equivalent” (and they are, in the limit).
However, we never reach infinity in real computations, so empir-
ical comparisons of speedup are useful and are presented later.
Table II(a) shows the complexities of the vector data algorithms
in terms of problem variables: n is the number of objects in
the d-dimensional data, X € R%; ¢ is the number of clusters;
t is the number of iterations required for termination; and s is
the number of subsets that X is divided into by random sam-
pling without replacement or the number of bins for brFCM.
Table II(b) provides complexities of the kernel algorithms.

As Table II(a) shows, the wFCM, LFCM, spFCM, and oFCM
all share the same big-O time complexity, as all these algorithms
operate on every object in X. However, as we will see in Sec-
tion V, the run-times of these algorithms differ significantly. Es-
sentially, each subpart of spFCM and oFCM converges in fewer
iterations, which results in reduced overall run-time. rseFCM
and brFCM have reduced big-O time complexity, compared
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with the other algorithms, because they cluster a reduced set of
data. The extension algorithm uses the cluster centers that are
returned by any of these VL algorithms to produce full data par-
titions. We have not estimated complexities for the completion
step, which is not used in our experiments.

The space complexity of the VL vector data algorithms is less
when compared with LFCM and wFCM, and in each case it is
proportional to the number of objects that are in each chunk, i.e.,
n/s. oFCM has a slightly greater space complexity as it must
store the c prototypes for all s chunks (one could easily imagine
a scheme where the ¢ prototypes are processed incrementally
by oFCM or another streaming algorithm, which would reduce
the space complexity of oFCM).

The time and space complexities of the kernel-based algo-
rithms in Table II(b) show similar trends to their corresponding
vector data counterparts. The main drawback of kernel cluster-
ing is the O(n?) memory requirement for the storage of the ker-
nel matrix. The rsekFCM algorithm combats this by only com-
puting the (n/s) x (n/s) kernel matrix for the sampled data,
resulting in an O(n?/s?) space complexity.> The akFCM algo-
rithm requires O(n? /s) units of memory to store the rectangular
kernel matrix K¢. The spFCM and okFCM algorithms operate
on O(n?/s?)-sized kernel matrices, and the final step of okFCM
requires O(s?) units of storage (resulting in O(n?/s* + s?)
space complexity for okFCM).* Like the extension step for vec-
tor data, the extension step for KFCM requires O(cn) to store
the partition matrix.

The time complexity of the kernel algorithms is greater than
that of their vector data counterparts and is dominated by the the
computation of (13). This calculation requires O(n?) operations
per cluster, resulting in a total time complexity of O(tcn?) for
kFCM and wkFCM. The akFCM algorithm has a time complex-
ity of O(n?/s® + ten?/s), where O(n®/s?) is required for the
one-time calculation of K gg KgT [20]. The rsekFCM algorithm
is equivalent to kKFCM or wkFCM for an (n/s)-sized dataset,
resulting in a time complexity of O(tcn?/s?). The proposed
spkFCM and okFCM algorithms run wkFCM on s chunks of
approximately (n/s)-sized data, which results in O(ten?/s)
time complexity. Note that if O(s) = O(n/s), then okFCM has
a time complexity of O(tcn?/s + tc®s?) because the last step
of okFCM clusters—using wkFCM—the (cs) prototypes that
are produced from the s data chunks.

Overall, the main strength of the VL FCM algorithms is the
reduced space complexity, compared with the literal implemen-
tations. However, the time complexity for many of these algo-
rithms is also reduced. In the next section, we will see that even
in the cases where the literal and VL implementations share the
same asymptotic time complexity, the VL implementation often
produces a faster run-time.

3Note that because the size of the memory required to store the kernel matrix
dominates that of the partition matrix, we disregard the space complexity of
storing the partition matrix, as is appropriate in big-O calculations.

“The space complexity of okFCM could be dominated by either O (n?/s?)
or O(s?), depending on the relationship of n and s. In typical VL applications,
n > s; hence, the space complexity of okFCM will go to O(n?/s?).
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V. EXPERIMENTS

We performed two sets of experiments. The first experiments
compare the performance of the VL FCM algorithms on data for
which there exists ground truth (or known object labels). The
second set of experiments applies the proposed algorithms to
datasets for which there exists no ground truth. For these data,
we compared the partitions from the VL FCM algorithms to the
LFCM partitions.

For all vector data algorithms, we initialize V' by randomly
choosing ¢ objects as the initial cluster centers. For the ker-
nel algorithms, we initialize U by choosing ¢ objects as the
initial cluster centers and setting the corresponding entry in U
equal to 1 for each of those objects, all other entries are set
to 0. We ensure that each algorithm is started with the same
initialization (and same data sampling for the single-pass and
online variants) at the start of a run, with a different initial-
ization drawn for each run. We fix the values of ¢ = 103 and
the fuzzifier m = 1.7.5 The termination criterion for the vector
data algorithms is maxj < <c{||Vk.new — Vio1a||?} < € and for
the kernel algorithms itis max < <. {||[ Wk new — Wr o’} < €
The experiments were performed on a dedicated single core of
an AMD Opteron in a Sun Fire X4600 M2 server with 256 GB
of memory. All code was written in the MATLAB computing
environment.

A. Evaluation Criteria

We judge the performance of the VL. FCM algorithms us-
ing two criteria. They are computed for 50 independent runs
with random initializations and samplings. We present statis-
tical comparisons of the algorithms’ performance over the 50
experiments.

1) Speedup Factor or Run-Time: This criterion represents an
actual run-time comparison. When the LFCM or kFCM solu-
tion is available, speedup is defined as ¢,/ samp> Where these
values are times in seconds to compute the cluster centers V'
for the vector data algorithms and the membership matrix U
for the kernel algorithms. In the cases where LFCM and kFCM
solutions cannot be computed, we present run-time in seconds
for the various VL algorithms. Although in our experiments
we loaded the data into memory all at once at the beginning,
we expect the speedup factors for truly unloadable data to be
similar because the same amount of data are read into memory
whether it is done in chunks or all at once. If data need to be
broken into a large number of chunks, say >100, then speedup
factor could be slightly degraded (although, at that point, the
feasibility to produce a solution with an extremely large dataset
would be more important than speedup).

2) Adjusted Rand Index: The Randindex [49]is a measure of
agreement between two crisp partitions of a set of objects. One of
the two partitions is usually a crisp reference partition U’, which
represents the ground truth labels for the objects in the data. In
this case, the value R(U,U’) measures the degree to which a
candidate partition U matches U’. A Rand index of 1 indicates

SThere are many methods to determine the optimal fuzzifier m [46]-[48]. We
have found that a fuzzifier m = 1.7 works well for most datasets.
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perfect agreement, while a Rand index of 0 indicates perfect
disagreement. The version that we use here, the adjusted Rand
index, ARI(U, U"), is a bias-adjusted formulation developed by
Hubert and Arabie [50]. To compute the ARI, we first harden
the fuzzy partitions by setting the maximum element in each
column of U to 1, and all else to 0. We use ARI to compare the
clustering solutions with ground-truth labels (when available),
as well as to compare the VL data algorithms with the literal
FCM solutions.

Note that the rseFCM, spFCM, oFCM, and brFCM
algorithms—and the analogous kernel variants—do not pro-
duce full data partitions; they produce cluster centers as output.
Hence, we cannot directly compute the ARI for these algo-
rithms. To complete the calculations, we used the extension
step to produce full data partitions from the output cluster cen-
ters. The extension step was not included in the speedup factor
or run-time calculations for these algorithms as these algorithms
were originally designed to return cluster centers, not full data
partitions. However, we observed in our experiments that the
extension step comprised <1% of the overall run-time of the
algorithms.

B. Performance on Labeled Data

We compared the performance of the VL. FCM algorithms on
the following labeled datasets.

2D15% (n = 5000, c = 15,d = 2): These data are composed
of 5000 2-D vectors, with a visually preferred grouping into 15
clusters. Fig. 2 shows a plot of these data. For the kernel-based
algorithms, an RBF kernel with o = 1 was used.

MNIST (n = 70000, ¢ = 10,d = 784): This dataset is a sub-
set of the collection of handwritten digits that are available from
the National Institute of Standards and Technology (NIST).
There are 70 000 28 x 28 pixel images of the digits O to 9. Each

6The 2D15 data were designed by 1. Sidoroff and can be downloaded at
http://cs.joensuu.fi/~isido/clustering/.
"The MNIST data can be downloaded at http://yann.lecun.com/exdb/mnist/.
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TABLE III
ARI OF VL FCM VECTOR DATA ALGORITHMS
(a) 2D15 (b) MNIST
Algorithm Algorithm
rseFCM spFCM oFCM rseFCM spFCM oFCM
Sample | avg. std. avg. std. avg. std. Sample | avg. std. avg. std. avg. std.
size min. max. | min. max. | min. max. size min. max. | min. max. | min. max.
1% 0.79 0.07 | 0.84 0.05 0.97  0.04 1% 0.08  0.03 0.09 0.07 012 0.04
0.64 0.97 0.76 0.99 0.89 0.99 0.03 0.15 0.00 0.22 0.05 0.20
25% 0.88 0.06 | 0.89 0.05 0.97 0.03 25% 0.07  0.03 0.10 0.04 | 011 0.03
0.72 0.99 0.77 0.99 0.89 0.99 0.04 0.15 0.02 0.21 0.04 0.19
5% 0.93 0.05 0.91 0.05 0.98 0.03 5% 0.06 0.02 0.08 0.04 0.11 0.03
0.82 0.99 0.81 0.99 0.89 0.99 0.04 0.14 0.00 0.15 0.05 0.18
10% 095 004 | 095 0.04 0.97 0.03 10% 0.06 0.02 | 006 0.03 0.12  0.03
0.89 0.99 0.89 0.99 0.88 0.99 0.04 0.14 0.00 0.15 0.07 0.17
259 0.96 0.04 0.95 0.04 0.98 0.03 259% 0.07 0.03 0.08 0.03 0.10 0.02
0.89 0.99 0.89 0.99 0.89 0.99 0.04 0.16 0.02 0.15 0.05 0.17
359 096 004 | 096 0.04 098 0.03 359 0.07  0.03 0.08 0.03 0.10 0.03
0.89 0.99 0.89 0.99 0.89 0.99 0.04 0.16 0.03 0.14 0.05 0.17
50% 0.96 0.04 0.96 0.04 0.97 0.04 50% 0.06 0.02 0.08 0.03 0.08 0.02
0.89 0.99 0.89 0.99 0.80 0.99 0.04 0.14 0.04 0.14 0.05 0.15
096  0.04 0.07  0.02
LFCM 0.89 0.99 LFCM 0.04 0.13
(c) Forest
Algorithm
rseFCM spFCM oFCM
Sample | avg. std. avg. std. avg. std.
size min. max. | min. max. | min. max.
1% 0.039 0.013 | 0.036 0.007 | 0.033 0.003
0.018 0.077 | 0.015 0.069 | 0.024 0.038
25% 0.037 0.008 | 0.035 0.003 | 0.032 0.004
0.024  0.075 | 0.027 0.040 | 0.023 0.040
59 0.040 0.010 | 0.038 0.012 | 0.033 0.004
0.028 0.074 | 0.017 0.081 0.021 0.041
10% 0.036  0.006 | 0.037 0.006 | 0.033 0.004
0.023 0.070 | 0.026  0.075 | 0.019 0.040
25% 0.038 o0.011 | 0.038 0011 | 0.033 0.005
0.015 0.075 | 0012 0.077 | 0.016 0.040
35% 0.035 0.005 | 0.040 0.012 | 0.037 0.011
0.023  0.058 | 0.022 0.076 | 0.023 0.079
50% 0.037 0.008 | 0.036 0.007 | 0.033 0.011
0.023  0.073 | 0.003 0.060 | 0.011 0.077
0.037  0.009
LFCM 0.027  0.077

Values are calculated from 50 trials. Italic entries indicates that the mean ARI of the sampled algorithm was equal to the mean ARI of
LFCM (at a 5% significance level). Bold values indicates that the mean ARI of the sampled algorithm was greater than the mean ARI of
LFCM (at a 5% significance level).
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pixel has an integer value between 0 and 255. We normalize the
pixel values to the interval [0, 1] by dividing by 255 and concate-
nate each image into a 784-dimensional feature vector. For the
kernel-based algorithms, a degree 5 inhomogeneous polynomial
kernel was used, which was shown to be effective in [19], [20],
and [52].

Forest® (n =581012,c = 7,d = 54): These data are com-
posed of cartographic variables that are obtained from United
States Geological Survey and United State Forest Service
(USFES) data [53]. There are 10 quantitative variables, such as
elevation and horizontal distance to hydrology, 4 binary wilder-
ness area designation variables, and 40 binary soil-type vari-
ables. These features were collected from a total of 581 012
30 x 30 m cells, which were then determined to be one of 7
forest cover types by the USFS. We normalized the features to
the interval [0, 1] by subtracting the minimum and then dividing
by the subsequent maximum.

1) Vector Data Algorithms: The speedup results of the VL
data algorithms on the 2D15 dataset are shown in Fig. 3(a),
and the ARI results are displayed in Table III(a). The rseFCM
algorithm is the fastest, with spFCM second, and oFCM third.
The spFCM and oFCM algorithms also display degradation
in speedup at the 1% sample size, where the number of data
chunks is greater than the number of objects in each chunk
(there are 50 objects in each of the 100 chunks). The ARI, in
Table I1I(a), shows that the VL data algorithms perform on par
with LFCM. Italicized entries indicate the that mean ARI of
the respective sampled algorithm and LFCM are statistically
equal.’ Bold values indicate that the mean ARI of the respective
sampled algorithm is greater than that of LFCM. This table
clearly shows the degradation in accuracy exhibited by rse FCM
and spFCM with small sample sizes. The best overall results,
in terms of accuracy and speedup taken together, occur at the
10% sample size. Note that Table III shows three things. First, it
shows the match of all four algorithms’ partitions to the ground
truth partition of the data. Second, it shows the match of the three
approximation algorithms to LFCM. In this second comparison,
oFCM best matches LFCM across the whole range of sample
sizes because the oFCM results are statistically equal to or better
than those of LFCM. Finally, the table shows that the standard
deviation of the ARI, over the 50 runs, decreases as the sample
size is increased—the algorithms are more consistent with larger
sample sizes.

Fig. 3(b) shows the speedup of the VL data algorithms on
the MNIST data. Not surprisingly, the rseFCM is again the
fastest algorithm, with spFCM and oFCM showing very slight
speedups. In Table ITI(b), we see that the oFCM has the highest
ARI; however, notice that, overall, these ARI scores are much
lower than what was seen with the 2D15 data. In essence, all
the algorithms, including LFCM, are performing very poorly on
these data (in terms of accuracy relative to ground-truth labels).
These results are only slightly better than random assignment

8The Forest dataset can be downloaded at http://uisacad2.uis.edu/dstar/
data/clusteringdata.html.

9We used a paired two-sided T-test at a 5% significance level, assuming
unequal population variances.
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Fig. 4. Speedup of VL kernel FCM algorithms on 2D15 dataset. (a) Speedup.

(b) akFCM/okFCM Speedup.

of cluster labels. Therefore, we hesitate to conclude that these
results indicate that any algorithm is preferable, but of the three
approximations, rseFCM seems to best match LFCM for the
MNIST data across the range of sample sizes. Again, we see
that the standard deviation of the results decreases as sample
size increases. Interestingly, the spFCM and oFCM algorithms
produced their best maximum ARI, 0.22 and 0.20, respectively,
at the 1% sample size. We have seen this behavior in related
studies [20] with this dataset. We believe that the effect of out-
liers is dampened at low sample sizes. Note that LFCM has the
lowest maximum ARI of 0.13.

The results of the vector data clustering experiment on the
Forest data are similar to results for the MNIST experiment.
First, Fig. 3(c) shows that rseFCM is the most efficient algo-
rithm; however, for these data, the spFCM and oFCM show a
better relative speedup than with the 2D15 and MNIST data.
This is because the Forest data are much larger than the other
two datasets. Table III(c) shows that all the algorithms, includ-
ing LFCM, show low accuracy compared with the ground-truth
labels. Again, these results are not much better than random as-
signment but show that rseFCM and spFCM perform on par with
LFCM. Interestingly, rseFCM does not show the same degra-
dation in accuracy at small sample sizes, as was present in the
previous experiments. We believe that this is because, even with
small sample sizes, the number of objects in the sample is still
quite large relative to the number of clusters. Hence, there is a
greater probability that all the clusters are well represented in
the reduced dataset. For these data, the oFCM algorithm suffers,
producing a lower mean ARI than LFCM (except for the 35%
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TABLE IV
ARI OF VL KERNEL FCM ALGORITHMS

(a) 2D15
Algorithm
rsekFCM spkFCM okFCM akFCM
Sample | avg. std. avg. std. avg. std. avg. std.
size min. max. | min. max. | min. max. | min. max.
1% 0.77 0.09 | 0.78 009 | 092 004 | 090 005
0.64 0.90 0.57 0.90 0.89 0.99 0.81 0.99
2.5% 0.86 0.06 0.88 0.06 0.91 0.07 0.92 0.04
0.77 0.99 0.81 0.98 0.82 0.99 0.89 0.99
59 0.86 0.07 | 0.87 005 | 092 005 | 092 006
0.74 0.99 0.75 0.91 0.82 0.99 0.81 0.99
10% 0.90 0.04 0.90 0.08 0.94 0.04 0.90 0.05
0.82 0.99 0.74 0.99 0.89 0.99 0.81 0.99
25% 092 005 | 090 007 | 090 006 | 091 005
0.83 0.99 0.76 0.99 0.77 0.99 0.82 0.99
35% 0.89 0.05 091 0.07 0.87 0.07 0.89 0.03
0.82 0.99 0.82 0.99 0.73 0.99 0.80 0.91
50% 089 006 | 090 003 | 089 008 | 091 003
0.80 0.99 0.88 0.99 0.80 0.99 0.89 0.99
093  0.05
KFCM 0.82 0.99
(b) MNIST (c) akFCM Small Sample Sizes
Algorithm akFCM
rsekFCM spkFCM okFCM akFCM Sample | avg. std.
Sample | avg. std. avg. std. avg. std. avg. std. size min.  max.
size min. max. | min. max. | min. max. | min. max. 0.02% 0.033  0.000
0.5% 0.000 0.000 | 0.000 0.000 | 0.001 0.000 | 0.027 0.000 0.033  0.033
0.000  0.000 | 0.000 0.000 | 0.001 0.001 0.027 0.027 0.04% 0.024  0.000
1% 0.000  0.000 | 0.000 0.000 | 0.000 0.000 | 0.027  0.000 0.024  0.024
0.000  0.000 | 0.000 0.000 [ 0.000 0.000 | 0.027 0.027 0.07% 0.029  0.000
2.5% 0.000 0.000 | 0.000 0.000 | 0.001 0.000 | 0.027 0.000 0.029  0.029
0.000  0.000 | 0.000 0.000 | 0.001 0.001 0.027 0.027 0.1% 0.025  0.000
50, 0.001  0.000 | 0.001 0.000 | 0.001 0.000 | 0.027 0.000 0.025  0.025
0.000  0.001 0.001 0.001 0.001 0.001 0.027  0.027
10% 0.001  0.000 | 0.000 0.000 | 0.001 0.000
0.000  0.001 0.000  0.000 | 0.001 0.001
0.027  0.000
KFCM 0.027  0.027

Values are calculated from 50 trials. Italic indicates that the mean ARI of the sampled algorithm was equal to the mean ARI
of kKFCM (at a 5% significance level). Bold indicates that the mean ARI of the sampled algorithm was greater than the mean

ARI of KFCM (at a 5% significance level).

sample size). However, notice that the standard deviation of
oFCM decreases with sample size—contrary to previous exper-
iments. Hence, oFCM is producing a more consistent solution
at smaller sample sizes, which is also supported by the greater
minimum ARI at small sizes. Again, our conjecture is that out-
liers have less of an effect at small sample sizes. Even taking
this into account, these results clearly show that oFCM is overall
inferior for this dataset.

Let us turn now to the kernel-based clustering algorithms.

2) Kernel Algorithms: Fig. 4(a) shows the speedup of the
VL kernel algorithms on the 2D15 data. The data were trans-
formed with an RBF kernel. View (a) shows that the rsekFCM
is the fastest algorithm, and spkFCM is the second fastest al-
gorithm. It is difficult to see the akFCM and okFCM speedup
results; hence, view (b) shows the speedup of the akFCM and
okFCM algorithms separately. This plot shows that okFCM is
slightly faster than akFCM. At sample sizes >20%, the akFCM
algorithm is actually slower than the literal kKFCM because of
the inverse calculation. As Table IV(a) shows, okFCM and ak-
FCM maintain good performance, even at small sample sizes

(later, we will further investigate the performance of akFCM at
very small sample sizes). Furthermore, the standard deviation
of the results shows that okFCM and akFCM produce very con-
sistent solutions. The rsekFCM and spkFCM algorithms both
suffer at small sample sizes, similar to what was seen in the
2D15 vector data experiment shown in Table III(a). At sample
sizes >10%, all algorithms perform on par with literal KFCM.
Comparing Table IV(a) with Table III(a) shows that the kernel
algorithms (using the chosen kernel) are ~5% worse at matching
the ground truth than the vector data counterparts. However, it
has been shown that kernel clustering is very effective for many
types of data; hence, this experiment shows that our algorithms
are effective at producing clusters that are statistically equal to
those by literal kernel FCM.

The results of the VL kernel algorithms on the MNIST data,
shown in Fig. 5 and Table IV(b), tell a different story. Fig. 5(a)
shows that akFCM is the most efficient at sample sizes <2%,
with a maximum speedup of about 180 at a 0.5% sample size.
The other algorithms exhibit a nearly constant speedup of around
30 across all sample sizes tested. The most striking results are
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Fig. 5. Performance of VL kernel FCM algorithms on MNIST dataset.

(a) Speedup factor. (b) akFCM speedup factor.

the ARIs shown in Table IV(b). The akFCM algorithm performs
as well (or slightly better) as the literal KFCM at all sample sizes;
however, the other algorithms show markedly inferior perfor-
mance. We believe that this is because the MNIST data do not
cluster well relative to its 0-9 ground-truth labels. Hence, the
cluster structure is degraded by the sampling aspect of the spk-
FCM, okFCM, and rsekFCM algorithms. The take-away lesson
here, however, is that akFCM best captures the clusters identi-
fied by the literal KFCM algorithm.

To examine how akFCM behaves at very small sample sizes,
we compiled additional results from akFCM on the MNIST
dataset. Fig. 5(b) shows the speedup, and Table IV(c) shows
the ARI for 0.02%, 0.04%, 0.07%, and 0.1% sample sizes.
The akFCM algorithm is able to achieve a speedup factor of
about 1200 at the 0.02% sample size, while still achieving good
clustering performance relative to the literal KFCM.

C. Performance on Large Image Data

MRI-16, 17, 18: These data consist of the Tl-channel of
magnetic resonance (MR) images of the brain. Each dataset
consists of an MRI volume with 96 (512 x 512) 12-bit images
obtained in the axial plane using a 1.5-Tesla Siemens Sonata
with a standard head coil. We have three volumes, denoted MR 1-
16, MR1-17, and MR 1-18.'° These images are first processed to
remove air and skull pixels. The remaining pixels in each of the

0The three MRI datasets used in this paper correspond to the MNOI16,
MNO17, and MNO18 datasets, respectively, used in [16].
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Fig. 6. 1-Channel (T1) MRI Slices, ¢ = 3, n = 512 x 512 x 96 (from MR1-
16). (a) Slice - 30. (b) Slice - 40. (c) Slice - 50. (d) Slice - 60.

96 images are unrolled into 1-D (pixel-value) feature vectors.
The feature vectors from each of the 96 slices are combined,
creating a dataset comprising about 4 million 1-D objects. Fig. 6
shows examples of four slices from the MR1-16 data (before
skull and air removal).

MR3-16, 17, 18: These data are the 3-sequence (proton den-
sity (PD), T1, and T2) data of the MR1 datasets. Each dataset
consists of an MRI volume with 96 3-sequence (512 x 512) 12-
bit images obtained in the same data collection as the 1-channel
data. We denote these data as MR3-16, MR3-17, and MR3-18.
Like the MR1 datasets, the MR3 images are first processed to
remove air and skull pixels. The remaining pixels in each of the
96 3-sequence images are unrolled into 3-D (one dimension per
sequence) feature vectors: one for each pixel. These 3-D vec-
tors from each of the 96 volume slices are combined, creating a
dataset comprised of about 4 million 3-D objects.

We tested three sample sizes, 0.1%, 1%, and 10%. Speedup
and ARI were calculated relative to the LFCM solution and
averaged over 21 random initializations and samplings. The
order in which the samples were presented to the algorithms
was also randomized. Table V shows the performance of the
VL clustering algorithms relative to the performance of LFCM.
The bold values in each table indicate that one algorithm was
statistically superior in performance, compared with the others
(the mean value was greater than the other three algorithms).
Italicized values indicate one algorithm was statistically inferior
in performance (the mean value was less than the other three
algorithms). Statistical significance was measured by a paired
two-sided 7-test at the 5% significance level.

Let us first look at the performance of the VL algorithms
on the 1-D MRI image volumes at the 0.1% sample size. The
left three columns of data in Table V(a) show the results. First,
notice that the brFCM algorithm is clearly superior to the others.
In all three image volumes, brFCM is able to achieve a speedup
of >100, with the next best algorithm being rseFCM, with a
speedup of about 20. Furthermore, brFCM is able to achieve
a perfect ARI of 1, with respect to the LFCM partition, in all
three image volumes. However, notice that the other algorithms
also perform very well. If we had to choose a “worst” algorithm
it would be spFCM; however, spFCM’s worst performance is
an ARI of 0.92 on volume 18, which is still a very accurate
result. oFCM is the least efficient algorithm, but, like brFCM,
it achieves a perfect ARI. At the 0.1% sample size, the number
of cluster centers accumulated by oFCM is greater than the
number of objects in each data chunk; hence, oFCM’s efficiency
is degraded.

Now, let us look at the 3-D MRI image experiments in the
right three columns of Table V. For these volumes, we do not use
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TABLE V
RESULTS OF VL FCM ALGORITHMS ON MRI DATA

(a) 0.1% sample size

Data Set MRI1 MR3
Volume 16 17 16 17 18
SU ARI | SU ARI | SU ARI | SU ARI | SU ARI | SU ARI
rseFCM | 22 097 | 21 0.99 | 21 1 29 097 |25 097 | 22 097
spFCM 13 098 13 093 13 092] 16 09 | 14 097 | 12 1
oFCM 2 1 2 1 3 1 2 0.78 2 0.78 2 0.85
brFCM | 108 1 108 1 107 1
(b) 1% sample size
Data Set MRI1 MR3
Volume 16 17 18 16 17 18
SU ARI | SU ARI | SU ARI | SU ARI | SU ARI | SU ARI
rseFCM | 18 0.99 | 18 1 18 1 24 1 21 099 | 18 1
spFCM | 13 098 | 12 099 | 12 098 | 13 096 | 11 098 | 10 1
oFCM 4 1 4 1 4 1 2 0.93 2 0.78 2 1
brFCM | 50 1 52 1 53 1
(c) 10% sample size
Data Set MRI1 MR3
Volume 16 17 18 16 17 18
SU ARI | SU ARI | SU ARI | SU ARI | SU ARI | SU ARI
rseFCM 7 1 7 1 7 1 8 1 8 1 6 1
spFCM 8 0.98 8 0.99 8 0.98 7 0.96 6 0.97 5 1
oFCM 4 1 4 1 4 1 3 1 2 1 2 1
brFCM 8 1 9 1 9 1

Bold indicates that the mean value was greater than the mean value of other three algorithms (at 5% significance level). Italic
indicates that the mean value was less than the mean value of other three algorithms (at 5% significance level).

TABLE VI
RESULTS OF VL VECTOR DATA ALGORITHMS ON 4D3 UNLOADABLE DATA
Run-time (sec) SV —ull
Sample size 0.001% 0.01% 0.1% 0.001% 0.01% 0.1%
avg. std. avg. std. avg. std. avg. std. | avg. std. | avg.  std.
rseFCM | 0.004 0.010 0.30 0.09 0.9 0.54 0.11 | 031 0.04 | 028 0.02
SpFCM | 1.3 hrs 02 hrs | 1.1 hrs 0.2 hrs | 1.1 hrs 0.1 hrs | 0.28 0 0.28 0 0.28 0
oFCM | 9.1 hrs 09 hrs | 3.2 hrs 04 hrs | 1.8 hrs 0.2 hrs | 0.28 0 0.28 0 0.28 0
LFCM* avg. 38%* std. 9.3 avg. 0.28 std. 0

*LFCM results run on a 50 million-sized dataset with same 4D3 distribution.
**Extrapolated to 5 billion-sized dataset, LFCM would require approximately 1 h.

brFCM, as it was designed for 1-D (grayscale) images where
binning is quick and efficient. For these volumes, rseFCM is
the preferred algorithm, with a speedup of about 25, and an
ARI near to 1. spFCM performs comparably with rseFCM,
but at a slightly lesser speedup. Again, oFCM is slow when
compared with the other algorithms. And, for these images,
oFCM produces noticeably inferior ARI results.

The results in these three tables are pretty important, as many
VL datasets will be feature vectors from VL images. We strongly
recommend brFCM as the preferred algorithm for 1D image
data, while rseFCM seems best for VL image data in more
than one dimension. On these data, the speedup of rseFCM
was significantly degraded by the sampling procedure; hence, if
more efficient sampling is used, we anticipate improvement in
the speed of rseFCM.

D. Performance on Unloadable Data

For our last experiment, we demonstrate the VL vector data
FCM algorithms on an unloadable dataset. Because we cannot

compare with LFCM for this data size, we constructed a dataset
that should be accurately clustered. Hence, the performance of
the VL algorithms can be measured by how well they find the
apparent clusters and measuring the run-time in seconds. The
4D3 data are composed of 5 billion objects that are randomly
drawn (with equal probability) from three 4-D Gaussian distri-
butions. The parameters of the distributions are ;i1 = (0,0, 0, 0),
Mo = (5,5,0,0),/,63 = (0,0,5,5),311(121 = 22 = 23 =1.To
cluster this dataset using LFCM would require nearly 300 GB
of memory. In order to show how the VL algorithms could be
used to process this dataset on a normal PC, we tested at sample
sizes of 0.001%, 0.01%, and 0.1%, requiring approximately 3,
30, and 300 MB of memory, respectively. We also compared
against LFCM run on a 50 million-sized dataset with the same
distribution.

Table VI shows the results of this experiment. Because the
dataset is so large, we skipped the extension step and had the
algorithms only return cluster centers. Hence, we are unable to
compute ARI directly. Instead, we use the sum of the distances
between the cluster centers and the true means of the three
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Fig. 7. Recommendation trees of VL FCM and kFCM algorithms. (a) FCM
Algorithms. (b) kFCM Algorithms.

Gaussian clouds to show accuracy. As expected, rseFCM is
the fastest algorithm by a significant margin. However, at small
samples sizes, rseFCM suffers; the average distance between the
cluster centers and the true distribution means increases. Fur-
thermore, the rseFCM results are less consistent, as evidenced by
the standard deviation. In contrast, spFCM and oFCM achieve
virtually the same solution every time, regardless of the sample
size. To put this result in perspective, we ran LFCM on a man-
ageably sized dataset—>50 million objects—with the same 4D3
distribution. Over 50 runs, LFCM showed the same clustering
accuracy as both spFCM and oFCM, which further supports
our claim that the streaming VL FCM schemes are effective
at achieving the same partitions as LFCM. Finally, if we ex-
trapolate the LFCM run-time to 5 billion objects, the algorithm
would require approximately 1 h, which is on par with spFCM’s
run-time. We stress, though, that running LFCM on this dataset
is impossible for the system we have available. Finally, oFCM
displays a longer run-time than spFCM because of the last clus-
tering step and data accumulation overhead. In the future, we
will examine distributed architectures, which may lend well to
hybrid instantiations of oFCM and spFCM (ideally harnessing
the strengths of both).

VI. DISCUSSION AND CONCLUSIONS

As this paper shows, there are many ways to attack clustering
of VL data with FCM. Fig. 7 summarizes our recommendations
for using the algorithms we tested. Note that we assume that time
is not the predominant problem; hence, accuracy and feasibil-
ity are the main focus points, with efficiency (or acceleration)
a secondary concern. Hence, if your data can be loaded into
memory, we suggest using the literal implementation of FCM
or kKFCM. Some of our experiments suggest that improvement
in accuracy can be obtained by the VL data algorithms, but this
improvement was always negligible.

If your data cannot be loaded into memory, then you must
first choose whether you are going to cluster the vector data
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directly or use a kernel method (kernel methods could help you
find nonspherical clusters, but are computationally expensive).
If your vector data can be binned efficiently (and accurately), we
suggest the brFCM algorithm. This algorithm had the best per-
formance in our experiments on clustering large 1-D MRIimage
volumes and is scalable. The oFCM algorithm produced results
equal to LFCM at most sample sizes for the vector data; how-
ever, this algorithm accumulates a set of cluster centers from
each data chunk. For extremely large data, this accumulation
can be a problem. Furthermore, oFCM was the least efficient
of the VL vector data algorithms and was the least accurate
for the 3-D MRI images. The rseFCM, spFCM, rsekFCM, and
spkFCM are the only scalable solutions for multidimensional
data (the binning aspect of brFCM is troublesome for multidi-
mensional data), but oFCM and okFCM can be made scalable
by using a scalable algorithm for the last clustering step or
by incrementally clustering as centers accumulate. The spFCM
and spkFCM algorithms are the only scalable algorithms here
that use the entire dataset but performance suffers at low sam-
ple rates. Hence, we recommend an incremental application of
oFCM and okFCM for extremely large datasets where brFCM
and akFCM are infeasible. Recall that akFCM produced very
comparable clusters to kKFCM at very small sample sizes; hence,
always consider whether s could be further reduced as akFCM
is empirically and theoretically an accurate solution.

In the future, we will continue to develop and investigate
scalable solutions for VL fuzzy clustering. Our experiments
showed that the rsekFCM, spkFCM, and okFCM produced less-
than-desirable results, compared with the literal KFCM solution.
Hence, we are going to examine other ways by which the kKFCM
solution can be approximated for VL data, with an emphasis
on scalability and accuracy. Furthermore, we wish to examine
where kernel solutions would be best used. Is it possible to use
cluster validity indices to choose the appropriate kernel or to
choose when a kernelized algorithm is appropriate? We will
look at this in the future.

Another question that arises in clustering of VL data is validity
or, in other words, the quality of the clustering. Many cluster
validity measures require full access to the objects’ vector data
or to the full kernel (or relational) matrix. Hence, we aim to
extend some well-known cluster validity measures for use on
VL data by using similar extensions as presented here.

The only algorithms proposed that are not called “incremen-
tal” are LFCM, rseFCM, akFCM, and rsekFCM. While the
other algorithms do process data in a distributed fashion, they
really process it “one chunk at a time.” We have yet to en-
counter a truly incremental version of FCM (or any other VL
clustering scheme) that is capable of true online streaming anal-
ysis, that is, an algorithm that operates “one vector at a time,”
as they arrive from a sensor. This important objective will be
a major focus of our ongoing research about clustering VL
data.

Finally, we would like to emphasize that clustering algo-
rithms, by design, are meant to find the natural groupings in
unlabeled data (or to discover unknown trends in labeled data).
Thus, the effectiveness of a clustering algorithm cannot be ap-
propriately judged by pretending it a classifier and presenting
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classification results on labeled data, where each cluster is con-
sidered to be a class label. Although we did compare against
ground-truth labels in this paper, we used these experiments
to show that some of the VL fuzzy clustering schemes were
successful in producing similar partitions to those produced by
literal FCM, which was our bellwether of performance. This
will continue to be our standard for the work ahead.
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