
1

An Efficient Formulation of the Improved Visual Assessment of
Cluster Tendency (iVAT) Algorithm

Timothy C. Havens, Senior Member, IEEE, and James C. Bezdek, Fellow, IEEE

Abstract—The VAT algorithm is a visual method for de-
termining the possible number of clusters in, or the cluster
tendency of, a set of objects. The improved VAT (iVAT) algo-
rithm uses a graph-theoretic distance transform to improve the
effectiveness of the VAT algorithm for “tough” cases where VAT
fails to accurately show the cluster tendency. In this paper we
present an efficient formulation of the iVAT algorithm which
reduces the computational complexity of the iVAT algorithm
from O(N3) to O(N2). We also prove a direct relationship
between the VAT image and the iVAT image produced by our
efficient formulation. We conclude with three examples display-
ing clustering tendencies in three of the Karypis data sets that
illustrate the improvement offered by the iVAT transformation.
We also provide a comparison of iVAT images to those produced
by the Reverse Cuthill-Mckee (RCM) algorithm; our examples
suggest that iVAT is superior to the RCM method of display.

Index Terms—clustering, cluster tendency, visualization, VAT

I. INTRODUCTION

Consider a set of objects O = {o1, . . . , oN}, where the

objects could be the set of all bass guitars manufactured

before 1970, celebrity cats, genes in a microarray experiment,

the radar-signatures of explosive hazards encountered in

Afghanistan, pelagic fish in the Northern hemisphere, etc.

Clustering is the process by which the natural groupings in

O are determined, such that the objects in each group exhibit

more similarity to one another than to objects in other groups.

Clustering has also been called exploratory data analysis,

unsupervised learning, numerical taxonomy, typology, and

partitioning [1]. Some good general references on clustering

include [1–8].

In conventional (object-data) cluster analysis, the objects

are separated into groups according to their features �xi ∈ R
p,

where �xi is the p-dimensional feature vector of the ith
object and each element of �xi is a numerical feature such

as weight, height, gene-expression, or voltage. An alternative

form of data is relational data, where only the relationship

between pairs of objects is known. This type of data is es-

pecially prevalent in document-analysis and bioinformatics.

Relational data typically consists of the N2 values of a square

This material is based upon work supported by the National Science
Foundation under Grant #1019343 to the Computing Research Association
for the CI Fellows Project.

T.C. Havens is with the Department of Computer Science and Engineer-
ing, Michigan State University, East Lansing, MI 48824, USA (correspond-
ing author: phone: 231-360-8444 email: havenst@gmail.com).

J.C. Bezdek is with the Department of Electrical and Computer En-
gineering, University of Missouri, Columbia, MO 65211, USA (email:
jcbezdek@gmail.com).

dissimilarity matrix D, where Dij = d(oi, oj) is the pair-

wise dissimilarity (or distance) between objects oi and oj .

For instance, numerical data X can always be converted to

D by Dij = ‖�xi− �xj‖ (any vector norm on R
p). There are,

however, similarity and dissimilarity relational data sets that

do not begin as numerical object data; for these, there is no

choice but to use a relational algorithm. Hence, relational

data represent the “most general” form of input data.

Although clustering is typically thought of as only the act

of separating objects into the proper groups, cluster anal-

ysis actually consists of three concise questions: i) cluster
tendency—how many clusters are there? ii) partitioning—

which objects belong to which cluster and to what degree?

iii) cluster validity—are the partitions “good”? Because

most clustering algorithms require the number of clusters

as an input, cluster tendency is an important problem in

cluster analysis. The Visual Assessment of cluster Tendency
(VAT) algorithm [9] addresses this question by reordering

the dissimilarity matrix D so that, ideally, the number of

clusters is displayed as the number of “dark blocks” along

the diagonal. Recently, an improved VAT (iVAT) algorithm

was proposed [10] which first transforms D using a graph-

theoretic distance transform. Then VAT is used on the trans-

formed dissimilarity matrix. Thus, the iVAT algorithm can be

interpreted as a feature extraction technique. The examples

shown in [10] suggest that iVAT significantly improves the

contrast of the “dark blocks” in most VAT images, resulting

in an easier determination of the cluster tendency.

In this paper, we present a efficient formulation of the

iVAT algorithm which significantly reduces its computational

complexity. Our iVAT implementation begins by finding

the VAT reordered dissimilarity matrix and then performs

a distance transform on this matrix. We show that the

resulting matrix is an iVAT image. Section II describes the

efficient iVAT algorithm, some examples are presented and

comparisons are made in Section III, and Section IV presents

a short discussion and some ideas for future research.

A. Matrix Reordering Methods

It is considered that Petrie, in 1899, was the first to use

matrix permutation for discovering trends in measurement

data [11]. However, in 1909, Czekanowski apparently pre-

sented the first method for clustering in dissimilarity data

using a visual approach [12]. Czekanowski reordered, by

hand, a 13 × 13 dissimilarity matrix that represented the

average difference in various skulls, showing that the skulls

roughly clustered into two distinct groups. These pieces of

2

history and other important milestones on the use of heat

maps to visualize clusters are described in detail in [13].

Tryon [14] later presented another method for visual

clustering in dissimilarity data. Here is a rough description of

his method; (i) plot a graph of each row in the data—a matrix

of pair-wise correlation coefficients, (ii) visually aggregate

subsets of the graphs into clusters, (iii) find the mean profile

(a prototype graph representing the elements of a group)

for each cluster of correlation profiles, and (iv) present the

final results as a set of clustered profile graphs with their

prototypes. This procedure—almost 70 years old—contains

most of the elements of the current work on visual clustering:

create a visual representation of D, reorder it to D∗ (Tryon

did this implicitly, he did not construct an explicit reordering

of D), create a visual representation D∗, and finally, extract

clusters from D∗ using the visual evidence. Tryon did this by

hand in 1939 for a 20×20 data set collected at the University

of California, Berkeley. For tiny data sets, methods such as

these are useful. But for the data sets typically encountered

today, automation is essential.

Cattell [15] introduced the idea of visual representation

of D∗ by an image. He presented an image I(D∗) of D∗

created by hand-shading the pixels of a matrix D with one of

three “intensities”. Reordering was done by hand. In 1957,

Sneath [16] was the first to introduce an element of modern

computing into this procedure; he constructed the matrix D
with a computer, but the matrix D∗ and subsequent image

of it I(D∗) were still built by hand.

Subsequent refinements of Cattell’s and Sneath’s ideas fol-

lowed the general evolution of computers themselves. Flood-

gate and Hayes [17] presented a hand rendered image similar

to Sneath’s, but reordering of D was done computationally

using single-linkage clustering. Apparently, Ling [18] was

the first to automate the creation of the image I(D∗) of

D∗ with an algorithm called SHADE, which was used after

application of the complete linkage hierarchical clustering

scheme and served as an alternative to visual displays of

hierarchically nested clusters via the standard dendrogram.

SHADE used 15 level halftone intensities (created by over-

striking standard printed characters) to approximate a digital

representation of the lower triangular part of the reordered

dissimilarity matrix. SHADE apparently represents the first

completely automated approach to finding D∗ and viewing

I(D∗). However, SHADE is computationally expensive be-

cause it is tied to a specific clustering method, complete

linkage, and, of course, the creation of images by computer

is far more advanced than the method developed by Ling.

Closely related to SHADE, but presented more in the

spirit of finding rather than displaying clusters found with

a relational clustering algorithm, is the “graphical method of

shading” described by Johnson and Wichern in [19]. They

provide this informal description: (i) arrange the pair-wise

distances between points in the data into several classes of 15

or fewer, based on their magnitudes, (ii) replace all distances

in each class by a common symbol with a certain shade

of gray, (iii) reorganize the distance matrix so that items

with common symbols appear in contiguous locations along

the main diagonal (darker symbols correspond to smaller

distances), and (iv) identify groups of similar items by the

corresponding patches of dark shadings. A more formal

approach to this problem is the work of Tran-Luu [20], who

proposed reordering the data into an “acceptable” block form

based on optimizing several mathematical criteria of image

“blockiness”. The reordered matrix is then imaged and the

number of clusters is deduced visually by a human observer.

However, these methods require optimizing an objective

function; thus, success often comes at a high computational

cost.

Similarity-based intensity images, formed using kernel

functions, have been used in [21] and [22] to provide

guidance in determining the number of clusters (tendency

assessment, in spirit of the VAT and iVAT algorithms), but

no useful ordering scheme is offered there to facilitate the

approach.

Graph-based methods for reordering matrices are numer-

ous. Perhaps the most simple are breadth-first search and

depth-first search [23]. These search algorithms, which also

work with weighted graphs, add vertexes (objects) to the

matrix image in the order in which vertices are searched.

Although these methods share the low time complexity of

VAT, O(N2), the results are known to be very susceptible to

initialization.

Other methods only work with un-weighted connected

graphs. A good general reference on many of these meth-

ods is [24], including descriptions and comparisons. These

methods include the degree ordering, Reverse Cuthill-Mckee
(RCM) [25], and King’s [26] algorithms. The Sloan algo-

rithm [27] is a recent advance that seems better than these

algorithms because of its lower time complexity. All these

algorithms attempt to move non-zero elements closer to the

diagonal. This is essentially the goal of cluster tendency visu-

alization. However, they only work with binary connection

matrices. Dissimilarity matrices can easily be converted to

binary matrices by thresholding. But the results are very

sensitive to this threshold value and, for this reason, these

algorithms are not good methods for determining cluster

tendency in weighted graphs or proximity (dissimilarity)

data.

A recent innovation is spectral ordering, in which the

sum of all edge lengths used is minimized [23]. Spectral

ordering sorts the matrix entries according to an Eigen-based

decomposition of the graph’s Laplacian matrix. This method

is shown to be effective and stable, but suffers from very high

computational complexity, O(N6) for the data we examine

in this paper.

B. VAT and iVAT

The VAT algorithm displays an image of reordered and

scaled dissimilarity data [9]. Each pixel of the grayscale VAT

image I(D∗) displays the scaled dissimilarity value between

two objects. White pixels represent high dissimilarity, while

black represents low dissimilarity. Each object is exactly

3

similar with itself, which results in zero-valued (black)

diagonal elements in I(D∗). The off-diagonal elements of

I(D∗) are scaled to the range [0, 1]. A dark block along the

diagonal of I(D∗) is a sub-matrix of “similarly small” dis-

similarity values; hence, the dark block represents a cluster of

objects that are relatively similar to each other. Thus, cluster

tendency is shown by the number of dark blocks along the

diagonal of the VAT image.

The VAT algorithm is based on (but not identical to) Prim’s

algorithm [28] for finding the minimum spanning tree (MST)

of a weighted connected graph [9]. Algorithm 1 lists the steps

of the VAT algorithm. Note that the objective of finding the

MST in D is to obtain the sequence of indices in which

edges are added to the tree. Subsequently, the indices are

used to effect the reordering of D; in particular, the MST

is not cut, as in single linkage clustering, to find partitions

of the data. The resulting VAT-reordered dissimilarity matrix

D∗ can be normalized and mapped to a gray-scale image

with black representing the minimum dissimilarity and white

the maximum.

Algorithm 1: VAT Reordering Algorithm [9]

Input: D — N ×N dissimilarity matrix

Data: K = {1, 2, . . . , N}; I = J = ∅;
P = (0, 0, . . . , 0).

Select (i, j) ∈ argmaxp∈K,q∈K Dpq.1

Set P (1) = i; I = {i}; and J = K− {i}.2

for r = 2, . . . , N do
Select (i, j) ∈ argminp∈I,q∈J Dpq .3

Set P (r) = j; Replace I← I ∪ {j} and4

J← J− {j}.
Obtain the ordered dissimilarity matrix D∗ using the

ordering array P as: D∗pq = DP (p),P (q), for

1 ≤ p, q ≤ N .

Output: Reordered dissimilarity D∗

Reference [10] proposed an improved VAT (iVAT) algo-

rithm that uses a path-based distance measure from [29].

Consider D to represent the weights of the edges of a fully-

connected graph. The path-based distance is defined as

D′ij = min
p∈Pij

max
1≤h<|p|

Dp[h]p[h+1], (1)

where p ∈ Pij is an acyclic path in the set of all acyclic

paths between vertex i (oi) and vertex j (oj), p[h] is the

index of the hth vertex along path p, and |p| is the number

of vertices along the path. Hence, Dp[h]p[h+1] is the weight

of the hth edge along path p. Essentially the cost of each

path p, for the distance in Eq.(1), is the maximum weight of

its |p| edges. The distance between i and j is the minimum-

cost path in Pij . In the spirit of other algorithms, such as

the dimensionality reduction method in [30], that perform a

distance transform as a preprocessing step, the authors of the

original iVAT paper [10] first transform D into D′ using a

shortest-path algorithm, where the cost is computed by (1);

then they use VAT on the transformed dissimilarity matrix.

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

X−coord.

Y−
co

or
d.

(a) 3 Lines object data

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

X−coord.

Y−
co

or
d.

(b) Boxes and Stripe object data

(c) 3 Lines VAT image - I(D∗) (d) Boxes and Stripe VAT image
- I(D∗)

(e) 3 Lines iVAT image -
I(D′∗)

(f) Boxes and Stripe iVAT image
- I(D′∗)

Fig. 1: VAT and iVAT images of dissimilarity data where

VAT “fails”

The iVAT images show considerable improvement over VAT

images in showing the cluster tendency for “tough” cases.

Figure 1 illustrates the ability of iVAT to show correct

cluster tendency for two cases where VAT “fails”. Views

(a,b) show object data upon which the Euclidean norm was

used to compute dissimilarity data D. Views (c,d) show the

respective VAT images of the 3 Lines and Boxes and Stripe
data. The VAT image of the 3 Lines data clearly does not

show the preferable tendency of 3 clusters. Although the VAT

image of the Boxes and Stripe data shows the four tightly

grouped clusters as 4 distinct dark blocks in the lower-right of

the image, the large wavy cluster (the stripe) is not distinctly

shown. In both cases, the iVAT images, shown in views (e,f),

clearly indicate the preferred cluster tendency—3 clusters in

the 3 Lines data and 5 clusters in the Boxes and Stripe data.

Computing D′ directly from (1) can be thought of as a

shortest path problem. The Floyd-Warshall algorithm [31] is

an algorithm that solves this problem for all N2 pairs of

lowest-cost paths in a connected graph with N nodes. The

Floyd-Warshall algorithm has a complexity of O(N3). The

4

complexity of the VAT algorithm is O(N2); thus, the total

complexity of iVAT as proposed in [10] is O(N3 +N2) =
O(N3).

In this paper we propose an efficient formulation which

reduces the computational complexity of the iVAT distance

transform in Eq.(1) to O(N2). Thus the total complexity

of the iVAT formulation presented here is O(N2 + N2) =
O(N2). In Section II we show that i) the iVAT dissimilarity

matrix D′ can be computed directly from the VAT-reordered

data D∗ (see Algorithm 2) and ii) the matrix D′ computed by

our algorithm is already in VAT-order. We denote the iVAT

transformed dissimilarity matrix D′ as D′∗ to indicate that

it is a VAT-ordered matrix.

II. EFFICIENT IVAT

Algorithm 2 outlines the efficient formulation of iVAT.

In contrast to the iVAT formulation in [10], we start by

applying VAT to the input dissimilarity matrix, and then

transform the VAT-reordered dissimilarity data into the iVAT

image with our recursive algorithm, which we will call

efiVAT. The transformation sequence for our efficient iVAT

is thus VAT(D) = D∗ → efiVAT(D∗) = D′∗, whereas

the computational sequence for the original (non-recursive)

version of iVAT is D→ D′ → VAT(D′) = D′∗.
Line 1 of Algorithm 2 requires (r − 1) comparisons and

Line 3 requires (r − 2) comparisons, for a total of (2r − 3)
operations.1 The total number of operations in Algorithm 2

is thus (2N2 − 3N), which is O(N2) complexity. We were

able to reduce the complexity to O(N2) by using VAT itself

as a preprocessing step. In contrast to the iVAT formulation

in [10], we start with VAT and then transform the VAT-

reordered dissimilarity data into the iVAT image with our

algorithm.

Algorithm 2: Efficient calculation of iVAT image

Input: D∗ - VAT-reordered dissimilarity matrix

Data: D′∗ = [0]
N×N

for r = 2, . . . , N do
j = argmink=1,...,r−1 D

∗
rk1

D′∗rc = D∗rc, c = j2

D′∗rc = max
{
D∗rj , D

′∗
jc

}
, c = 1, . . . , r − 1, c 	= j3

D′∗ is symmetric, thus D′∗rc = D′∗cr.

The lemmas presented here show that the iVAT image

can be recursively computed from the VAT image using

Algorithm 2 and, also, suggest that our algorithm is an

example of dynamic programming.

1We would like to note that the number of operations in the VAT→iVAT
pair can be further reduced by noticing that there is a coupling between
our VAT and iVAT algorithms, as shown in Algorithms 1 and 2. The object
indexed j chosen in line 1 of our efficient iVAT is exactly the same object
indexed i in line 3 of VAT. Thus, one can store these indices from VAT and
reuse them in iVAT, essentially eliminating the argmin operation in line 1
of iVAT. This does not change the overall complexity of our efficient iVAT
implementation; it is still quadratic. However, our empirical observations
on reusing this index show a reduced run-time by a factor of 2-3 for big
dissimilarity matrices.

Without loss of generality, let the objects in any VAT-

reordered object data O∗ also represent the vertices of a fully

connected graph, where the individual vertices are denoted as

o∗i , i = 1, . . . , N . For ease of notation, I denote the vertices

simply by the objects’ indexes, i = 1, . . . , N . The edge

weights of this graph are either given, if the input data are

not derived from object vectors, or computed by your chosen

vector norm or dissimilarity function d,

edge weightij = d(i, j) = D∗ij . (2)

Then,

dmin(I, J) = min
∀i∈I,∀j∈J

D∗ij (3)

Lemma II.1. Consider a vertex k, 1 < k < N , and the sets
of vertices, I = {1, . . . , k − 1} and J = {k + 1, . . . , N}.
Then,

dmin(I, k) ≤ dmin(I, J). (4)

Proof: Recall that VAT is a special case of Prim’s

algorithm and, thus, computes the minimum-spanning-tree
(MST) of a set of vertices (objects) by adding the vertex

which is closest to the already ordered vertices. By the

definition of VAT, (4) is true.

Remark 1. In the case where each edge has a unique weight,

then dmin(I, k) < dmin(I, J) can be shown to be true [32].

The next lemma proves that line 2 in Algorithm 2 is valid.

Note that D∗ and D′ are symmetric distance matrices.

Lemma II.2. Consider the vertices k, 1 < k ≤ N , and
l, 1 ≤ l < k, and the sets of vertices I = {1, . . . , k− 1} and
J = {k + 1, . . . , N}, where J = ∅ if k = N . If

D∗kl = dmin(I, k), (5)

then the path-based distance (1) between k and l is

D′kl = D∗kl. (6)

Proof: Lemma II.1 shows that dmin(I, k) ≤ dmin(I, J),
which can be extended to D∗kl = dmin(I, k) ≤ dmin(I, J).
Thus,

D∗kl ≤ min
p

max
1≤h<|p|

Dp[h]p[h+1], (7)

for all paths p ∈ Pkl that include a vertex in J . Equation (5)

shows that

D∗kl = min
p

max
1≤h<|p|

Dp[h]p[h+1], (8)

for all paths p ∈ Pkl that include a vertex in I . Thus, D′kl =
D∗kl.

Finally, if we consider (8) for the special case of k = N ,

it is easy to see that the lemma holds true.

Remark 2. Notice that D∗kl in Lemma II.2 is the weight of

the MST edge that connects vertex k to the sub-tree I .

The next lemma proves that line 3 of our algorithm is

valid.

5

Lemma II.3. Consider the vertices k, 1 < k ≤ N , and
l, 1 ≤ l < k, and the sets of vertices I = {1, . . . , k− 1} and
J = {k + 1, . . . , N}, where J = ∅ if k = N . If

D∗kl > dmin(I, k) (9)

and
s = argmin

1≤t<k
D∗kt, (10)

then the path-based distance (1) between k and l,

D′kl = max{D∗ks, D′sl}. (11)

Proof: Lemma II.3 is proved by showing that the path

p ∈ Pkl that produces the minimum max1≤h<|p|D∗p[h]p[h+1]

is the path along the MST edges between vertices k and l.
Lemma II.2 shows that D∗ks ≤ dmin(I, J). Thus, all paths

p ∈ PkI through the vertices J have an edge with a weight

≥ D∗ks. In other words, D∗ks is the least costly path from

vertex k to the sub-tree I , where l ∈ I . By definition, D′sl is

the value of the maximum edge weight along the least costly

path from s to l, thus D′kl = max{D∗ks, D′sl}.
Remark 3. Notice that D∗ks is the weight of the (k − 1)th
edge added the MST by Prim’s algorithm. Additionally, it

can be shown that D′sl is the weight of the (l − 1)th edge

added to the MST. Thus, all the distance values in D′ are the

weights of the maximum MST edge that is traversed between

vertices k and l. This logic can also be extended to show that

the path p which produces each value of D′ is the path along

the MST.

Equations (8) and (11) are applied recursively, starting

with k = 2, to calculate D′ from D∗. Now we show that

the result of this recursive calculation is an iVAT image,

D′ = D′∗.
The properties of a VAT image are:

1) The first vertex in the ordering is one of the set of

vertices that satisfy

k = argmax
∀i

{
max
∀j

Dij

}
. (12)

2) The ordering of the vertices is that which could be

computed using Prim’s algorithm.

First, we show that D′ satisfies the first VAT property

by showing that the first row in D′—the distances between

vertex 1 and all other vertices—contains an element that is

the maximum of D′.

Lemma II.4. D′ satisfies

max
∀i

D′1i = max
∀i,j

D′ij . (13)

Proof: The path-based distance D′1i is the value of

the maximum weighted edge along the MST path between

vertices 1 and i. Hence, max∀i D′1i is the value of the

maximum weighted MST edge because all MST edges are

traversed on at least one path p ∈ PMST
1,∀j , where PMST

1,∀j
denotes all possible paths between vertex 1 and all other

vertices that are on the MST. Additionally, all the elements of

D′ are MST edge weights. Thus, max∀i D′1i = max∀i,j D′ij .

Remark 4. An interesting consequence of Lemma II.4 is

that it can be simply modified to show that any vertex can

be chosen as the initial vertex in iVAT.

Next, we show that D′ satisfies the second VAT property by

first defining

d′min(I, J) = min
∀i∈I,∀j∈J

D′ij . (14)

Lemma II.5. Consider the vertex 1 < k < N and the sets
of vertices, I = {1, . . . , k − 1} and J = {k + 1, . . . , N}.
The dissimilarity matrix D′ satisfies

d′min(I, k) ≤ d′min(I, J). (15)

Notice that this Lemma essentially shows that the property

of D∗ proven in Lemma II.1 applies to D′.
Proof: Consider the MST edges that must be cut in order

to produce the MST subtree I and the MST subtrees in J .

By definition of VAT and Prim’s algorithm the weight of the

MST edge that connects k to I is less than or equal to the

weights of the MST edges that connect I to the subtrees in

J (if this was not true, then the vertices would be differently

ordered by VAT). All MST paths from I to J must pass

through the MST edges that are cut, thus the lower-bound

on d′min(I, J) is the weight of these edges. The lower-bound

on d′min(I, k) is the weight of the MST edge that connects

k to I; hence, d′min(I, k) ≤ d′min(I, J).
Note that a special case to consider is where there is one

MST subtree in J and this is connected to I through an MST

edge to vertex k. In this special case, it is easy to see that all

MST paths from I to J must pass through k and thus (15)

is true.

Remark 5. There are many possible VAT-reorderings of D′

because there are many ties in the path-based distances and

any object could be chosen as the initial object. Lemmas

II.4 and II.5 show that D′, as calculated by the formulas

in Lemmas II.2 and II.3, is already in one possible VAT

reordering. And, arguably, this ordering of D′ is the “best”

reordering because it is also the VAT-reordering of the

original dissimilarity matrix.

III. NUMERICAL EXAMPLES

The data sets used as examples in this section were initially

created by the Karypis Lab for evaluating the CHAMELEON

clustering algorithm [33] and can be downloaded at

http://glaros.dtc.umn.edu/gkhome/cluto. Each

data set is composed of 8,000 two-dimensional objects;

hence, they can be easily visualized using 2D data plots.

The dissimilarity data were built with a Euclidean distance

relation. Figures 2(a,e,i) show plots of the data sets.

As view (a) illustrates, the first data set is composed

of 6 dense regions with “noise” objects throughout and a

“sine wave”-like structure that connects all the groups. View

(b) demonstrates iVAT on this data set. The iVAT image

6

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

x-coord.

y-
co

or
d.

(a) Object data (b) iVAT image

1

2

3
4

5

6

(c) Partitioned iVAT image

0 100 200 300 400 500 600
0

50

100

150

200

250

300

1

2 3

4

5

6

x-coord.

y-
co

or
d.

(d) Corresponding object data groups

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

160

x-coord.

y-
co

or
d.

(e) Object data (f) iVAT image

1
2

3
4

5
6

(g) Partitioned iVAT image

0 200 400 600 800 1000
0

20

40

60

80

100

120

140 123456

x-coord.

y-
co

or
d.

(h) Corresponding object data groups

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

x-coord.

y-
co

or
d.

(i) Object data (j) iVAT image

1

2

3

5

4

6 7

(k) Partitioned iVAT image

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

1
2

3

4
5

6

7

x-coord.
y-

co
or

d.

(l) Corresponding object data groups

Fig. 2: Three examples of iVAT images of dissimilarity data built by Euclidean distance of 2-dimensional object data. Groups

shown in views (c,d,g,h,k,l) were picked and labeled by identifying corresponding dark blocks in the iVAT image.

clearly shows 3 distinct dark blocks, with a substructure that

indicates 6 clusters. We have (manually) outlined the 6 dark

blocks in view (c) and the corresponding plot of the 6 groups

of objects in view (d).

View (e) of Fig. 2 shows a data set composed of 6

dense regions connected by a line-like structure, with noise

throughout. The iVAT image, in view (f), clearly shows 6

dark blocks. Views (g) and (h) demonstrate the these 6 dark

blocks correspond to the 6 letters in ‘GEORGE’ (for George

Karypis).

Finally, view (i) of Fig. 2 illustrates a data set that is

composed of groups of differing sizes and density. There are

four large dense regions on the left and one smaller dense

region on the middle-left. A less dense region is shown on

the right, next to an upside-‘Y’ structure that encapsulates a

dense circular region at the bottom-right. Overall, we believe

that these object data comprise 8 clusters. iVAT is partially

successful for this data set as it only is able to show 7 of the

8 clusters. Views (k,l) shows the correspondence between

the 7 dark blocks in the iVAT image and groups in the

object data. As these images illustrate, iVAT is unable to

delineate the cluster in the upper-left (indexed by the number

‘4’). This is because these two groups are joined by a line

of close-proximity objects, shown by the arrow. The local

density of this “bridge” of objects is similar to that of the

two clusters they connect, denoted ‘4’. It would seem that

iVAT would have similar troubles with the ‘GEORGE’ data

set because of the horizontal line across the middle. However,

the density of the objects in this horizontal line is less than

the density of the objects in the six letter-shaped clusters.

Thus, iVAT is able to distinguish these clusters accurately.

Like any clustering algorithm, iVAT will “fail” on certain

types of data. However, we believe that the examples in Fig. 2

show that iVAT is effective at showing the cluster tendency of

data sets that are composed of odd-shaped groups obscured

by both noise (or outliers) and spoofing objects, such as the

sine-wave in view (a) and horizontal line in view (e).

For a final comparison, the VAT images of the data sets

in Fig. 2 are shown in Fig. 3. While the VAT image in view

(b) of the ‘GEORGE’ data set might suggest 6 clusters, the

other VAT images do not show any clear cluster tendency.

Recall that the VAT images are in the same matrix order

as the iVAT images. Furthermore, the iVAT images show

that the objects are ordered correctly; that is, the objects in

7

(a) VAT image of Fig. 2(a) (b) VAT image of Fig. 2(e)

(c) VAT image of Fig. 2(i)

Fig. 3: VAT images of examples shown in Fig. 2

each group are ordered next to each other. Thus, any matrix

reordering method that shows the dissimilarity data directly

is going to suffer from the same problem that VAT does.

For example, one could use any of the graph-based methods

by thresholding D into a binary connection matrix C. Then,

the reordered C and a corresponding reordered D could be

viewed.

Figure 4 shows the results of using the RCM algorithm to

reorder the data sets in Fig. 2. First, we thresholded D to

produce a connection matrix Cα by

(Cα)ij =

{
1 Dij < α
0 else

, ∀i, j (16)

where α is a threshold. For the examples shown here, we

used a threshold of α = 50, which we empirically determined

as the threshold that produced the most pleasing results. In

practice, one could choose a few different thresholds and

look at all the results (albeit, at a computational cost) or

choose the threshold by some statistical method. Views (c,d)

of Fig. 4 demonstrates that, like VAT, the RCM algorithm

is able to accurately show the 6 clusters in the ‘GEORGE’

data set. However, the other RCM images show no cluster

structure at all—arguably, the results in views (a,b,e,f) are

even worse than the VAT results. Clearly, iVAT produces

much more useful visualizations of the cluster tendency of

these data sets.

A. Run-Time Comparison

Figure 5 shows the normalized run-time of the RCM and

iVAT matrix reordering methods. The run-time values were

normalized to the run-time of the RCM method on a 500×
500 matrix. Each value in the plot is the mean of 5 runs on

a dissimilarity matrix computed by a Euclidean relation on

(a) RCM connection image of
Fig. 2(a)

(b) RCM dissimilarity image
of Fig. 2(a)

(c) RCM connection image of
Fig. 2(e)

(d) RCM dissimilarity image
of Fig. 2(e)

(e) RCM connection image of
Fig. 2(i)

(f) RCM dissimilarity image
of Fig. 2(i)

Fig. 4: RCM images of examples shown in Fig. 2

objects randomly placed in the 2-dimensional unit square.

The evaluations were performed on a machine with an Intel

Core 2 Duo, running at 2.2 GHz, with 4 GB of memory

using the MATLAB [34] technical computer software.

The iVAT alorithm has, on average, a constant factor of

2 greater run-time than the RCM method. Our empirical

observations of the results of these algorithms clearly show

that the iVAT method is preferred; hence, a constant factor

difference in run-time is acceptable.

B. iVAT Compared to RCM on Path-Based Distance

For our last experiment, we compared iVAT to the RCM

algorithm operated on the path-based distance in (1). To our

knowledge, our iVAT method is the most efficient instanti-

ation of the all-pairs, shortest-path problem for the specific

path-based distance in (1). Hence, we use our iVAT method

to compute the path-based dissimilarity matrix; then we use

RCM to produce the reordered matrix for visualization.

Figures 6-8 shows the results of the RCM visualization

for multiple values of the threshold α, in (16), with D′ as

the input dissimilarity matrix.

8

500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

400

500

600

Matrix size

N
or

m
al

iz
ed

 ru
n−

tim
e

RCM

iVAT

Fig. 5: Run-time comparison of RCM and iVAT matrix

reordering methods — values are normalized to RCM run-

time on a 500× 500 matrix.

(a) α = 8 (b) α = 7

(c) α = 6

Fig. 6: The results of the RCM algorithm on the path-based

dissimilarity D′ for the data shown in Fig. 2(a). α is the

threshold used to create the binary connection matrix. The

mean value of D′ for this data set is 13.

The RCM visualization of the first data set—plotted in

Fig. 2(i)—shows that the effectiveness of the RCM vi-

sualization in showing the correct number of clusters is

very sensitive to the threshold α chosen. View (a) shows

a threshold of α = 8, view (b) of α = 7, and view (c) of

α = 6. The mean value of the input dissimilarity matrix D′

for this data set is 13. The visualization in view (a) shows 4

clusters, while view (b) shows 6 clusters and view (c) shows,

arguably, 8 clusters. If we look back at the object data in

Fig. 2(i), we see that there are 6 clusters in this data set.

Hence, a threshold of α = 7 is necessary for RCM, operated

on D′, to accurately show the tendency of this data set. A

(a) α = 8 (b) α = 6

(c) α = 4

Fig. 7: The results of the RCM algorithm on the path-based

dissimilarity D′ for the data shown in Fig. 2(e). α is the

threshold used to create the binary connection matrix. The

mean value of D′ for this data set is 8.

threshold of α = 8 is too high and a threshold of α = 6
is too low. We argue that this evidence alone is enough for

us to tout the relatively good performance of iVAT. First, in

order to produce the RCM images in Fig. 6, we first had

to transform the distance matrix to the path-based distance

matrix D′. Because iVAT is the most efficient way to do this,

we already have the iVAT image before the RCM image is

even computed. Finally, RCM is shown in this example to be

very sensitive to the threshold chosen. Hence, we recommend

using the iVAT image directly to judge the cluster tendency

of a data set. For the sake of completeness, we now examine

this same procedure on the other two data sets shown in

Fig. 2.

Figures 7 and 8 show the results of using RCM on the

transformed distance matrix D′ for different thresholds α
for the data sets in Fig. 2, views (e) and (i), respectively. As

was seen in the previous example, the effectiveness of RCM

used on D′ is very sensitive to the threshold α chosen. It

only takes a small change in α to go from a visualization

that shows too many clusters to a visualization that shows too

few. This provides further evidence that our iVAT algorithm

is more effective than RCM, even if RCM is used on the

transformed distance matrix D′.

IV. DISCUSSION AND CONCLUSION

The iVAT algorithm proposed in [10] was shown to

improve the quality of VAT images, which ideally improves

the interpretability of clustering tendency. The efficient for-

mulation we propose in this paper significantly reduces the

computational complexity of the iVAT algorithm; our formu-

9

(a) α = 13 (b) α = 10

(c) α = 8

Fig. 8: The results of the RCM algorithm on the path-based

dissimilarity D′ for the data shown in Fig. 2(i). α is the

threshold used to create the binary connection matrix. The

mean value of D′ for this data set is 14.

lation has a complexity of O(N2), compared to O(N3) for

the formulation presented in [10]. Moreover, our algorithm

produces both the VAT and iVAT images, which is not the

case for the original iVAT method.

In every test of VAT versus iVAT we have either seen

or run, the iVAT image was at least as good (visually)

as the VAT image. Our conjecture is that iVAT images

will always be equal to or superior to VAT images, but to

date we have not discovered a way to prove this. Because

this is a subjective evaluation, it may not be provable at

all. Nonetheless, until a counterexample is discovered, we

believe that with our formulation, there is no reason not to

default to iVAT in every instance.

Additionally, we have inserted our efficient formulation of

iVAT Eq.(1) into the improved co-VAT (co-iVAT) algorithm

for visual assessment of clustering tendency in rectangular

dissimilarity data [35, 36]. The co-iVAT algorithm seemed

to improve the quality of co-VAT images much the same as

the iVAT images do for VAT.

We are currently working on extending the iVAT algorithm

to the scalable versions of VAT and co-VAT, scalable VAT
(sVAT) [37], bigVAT [38], and scalable co-VAT (scoVAT)

[39]. These algorithms work with very-large data, or data

that is unloadable on standard computers. Perhaps counter-

intuitively, the importantance of complexity reduction—from

O(N3) to O(N2)—for this particular application shrinks

as N increases, because it become impossible to display

very-large dissimilarity images due to resolution limitations

imposed by current graphics hardware. Algorithms, such as

bigVAT and sVAT, like VAT, are also O(N2) on the data they

process. Their success depends not on improving complexity

reduction, but rather, on processing a manageable sample of

the input data matrix for accurate display purposes. Like

VAT, however, the performance of these algorithms will

suffer for “tough” data sets (see Fig. 3). Indeed, the efficient

iVAT method developed in this paper will apply directly to

bigVAT and sVAT, resulting in an improved visualization of

very-large data with a complexity of O(N2).

We are also examining iVAT images as inputs to the Clus-
tering in Ordered Dissimilarity Data (CLODD) [40], Dark
Block Extraction (DBE) [41], and Cluster Count Extraction
(CCE) [42] algorithms.

REFERENCES

[1] S. Theodoridis and K. Koutroumbas, Pattern Recogni-
tion, 4th ed. San Diego, CA: Academic Press, 2009.

[2] R. Duda, P. Hart, and D. Stork, Pattern Classification,

2nd ed. Wiley-Interscience, October 2000.

[3] J. Hartigan, Clustering Algorithms. New York: Wiley,

1975.

[4] R. Xu and D. Wunsch II, Clustering. Psicataway, NJ:

IEEE Press, 2009.

[5] A. Jain, M. Murty, and P. Flynn, “Data clustering: A

review,” ACM Computing Surveys, vol. 31, no. 3, pp.

264–323, September 1999.

[6] A. Jain and R. Dubes, Algorithms for Clustering Data.

Englewood Cliffs, NJ: Prentice-Hall, 1988.

[7] D. Jiang, C. Tang, and A. Zhang, “Cluster analysis for

gene expression data: a survey,” IEEE Trans. Knowl-
edge Engr., vol. 16, no. 11, pp. 1370–1386, Nov. 2004.

[8] A. Jain, “Data clustering: 50 years beyond k-means,”

in Machine Learning and Knowledge Discovery in
Databases, ser. Lecture Notes in Computer Science,

W. Daelemans, B. Goethals, and K. Morik, Eds.

Springer Berlin / Heidelberg, 2008, vol. 5211, pp. 3–4.

[9] J. Bezdek and R. Hathaway, “VAT: A tool for visual

assessment of (cluster) tendency,” in Proc. IJCNN,

Honolulu, HI, 2002, pp. 2225–30.

[10] L. Wang, T. Nguyen, J. Bezdek, C. Leckie, and K. Ra-

mamohanarao, “iVAT and aVAT: enhanced visual anal-

ysis for cluster tendency assessment,” in Proc. PAKDD,

Hyderabad, India, Jun. 2010.

[11] W. Petrie, “Sequences in prehistoric remains,” J. An-
thropological Inst. Great Britain and Ireland, vol. 29,

pp. 295–301, 1899.

[12] J. Czekanowski, “Zur differentialdiagnose der

neandertalgruppe,” Korrespondenzblatt der Deutschen
Gesellschaft fr Anthropologie, Ethnologie und
Urgeschichte, vol. 40, pp. 44–47, 1909.

[13] L. Wilkinson and M. Friendly, “The history of the

cluster heat map,” The American Statistician, vol. 63,

no. 2, pp. 179–184, 2009.

[14] R. Tryon, Cluster Analysis. Ann Arbor, MI: Edwards

Bros., 1939.

[15] R. Cattell, “A note on correlation clusters and cluster

10

search methods,” Psychometrika, vol. 9, pp. 169–184,

1944.

[16] P. Sneath, “A computer approach to numerical taxon-

omy,” J. Gen. Microbiol., vol. 17, pp. 201–226, 1957.

[17] G. Floodgate and P. Hayes, “The Adansonian taxonomy

of some yellow pigmented marine bacteria,” J. Gen.
Microbiol., vol. 30, pp. 237–244, 1963.

[18] R. Ling, “A computer generated aid for cluster analy-

sis,” Communications of the ACM, vol. 16, no. 6, pp.

355–361, 1973.

[19] D. Johnson and D. Wichern, Applied Multivariate
Statistical Analysis, 6th ed. Englewood Cliffs, NJ:

Prentice Hall, 2007.

[20] T. Tran-Luu, “Mathematical concepts and novel heuris-

tic methods for data clustering and visualization,” Ph.D.

dissertation, U. of Maryland, College Park, MD, 1996.

[21] M. Girolami, “Mercer kernel-based clustering in feature

space,” IEEE Trans. Neural Networks, vol. 13, pp. 780–

784, 2002.

[22] D. Zhang and S. Chen, “Clustering incomplete data

using kernel-based fuzzy c-means algorithm,” Neural
Processing Letters, vol. 18, pp. 155–162, 2003.

[23] D. West, Introduction to Graph Theory, 2nd ed. Pren-

tice Hall, Inc., 2001.

[24] C. Mueller, B. Martin, and A. Lumsdaine, “A compari-

son of vertex ordering algorithms for large graph visual-

ization,” in Proc. Int. Asia-Pacific Symp. Visualization,

Sydney, Australia, Feb. 2007, pp. 141–148.

[25] A. George and J. Liu, Computer Solution of Large
Sparse Positive Definite Systems. Prentice-Hall, 1981.

[26] I. King, “An automatic reordering scheme for simulta-

neous equations derived from network analysis,” Int. J.
Numerical Methods in Engineering, vol. 2, p. 523533,

1970.

[27] S. Sloan, “An algorithm for profile and wavefront

reduction of sparse matrices,” Int. J. Numerical Methods
in Engineering, vol. 23, pp. 239–251, 1986.

[28] R. Prim, “Shortest connection networks and some gen-

eralisations,” Bell System Tech. J., vol. 36, pp. 1389–

1401, 1957.

[29] B. Fisher, T. Zoller, and J. Buhmann, “Path based

pairwise data clustering with application to texture seg-

mentation,” Energy Minimization Methods in Computer
Vision and Pattern Recognition, vol. 2134, pp. 235–250,

2001.

[30] J. Tenenbaum, V. de Silva, and J. Langford, “A global

geometric framework for nonlinear dimensionality re-

duction,” Science, vol. 290, no. 5500, pp. 2319–2323,

Dec. 2000.

[31] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,

Introduction to Algorithms, 3rd ed. Cambridge, MA:

MIT Press, 2009.

[32] T. Havens, J. Bezdek, J. Keller, M. Popescu, and

J. Huband, “Is VAT really single linkage in disguise?”

Ann. Math. Artif. Intell., vol. 55, no. 3-4, pp. 237–251,

2009.

[33] G. Karypis, E. Han, and V. Kumar, “CHAMELEON: a

hierarchical clustering algorithm using dynamic model-

ing,” IEEE Computer, vol. 32.

[34] Using MATLAB, The Mathworks, Natick, MA, Novem-

ber 2000.

[35] T. Havens, J. Bezdek, and J. Keller, “A new implemen-

tation of the co-VAT algorithm for visual assessment

of clusters in rectangular relational data,” in Artficial
Intelligence and Soft Computing, Part I. Berlin:

Springer, Apr. 2010, pp. 363–371.

[36] J. Bezdek, R. Hathaway, and J. Huband, “Visual assess-

ment of clustering tendency for rectangular dissimilarity

matrices,” IEEE Trans. Fuzzy Systems, vol. 15, no. 5,

pp. 890–903, October 2007.

[37] R. Hathaway, J. Bezdek, and J. Huband, “Scalable

visual asseessment of cluster tendency for large data

sets,” Pattern Recognition, vol. 39, no. 7, pp. 1315–

1324, July 2006.

[38] J. Huband, J. Bezdek, and R. Hathaway, “bigVAT:

visual assessment of cluster tendency for large data

sets,” Pattern Recognition, vol. 38, no. 11, pp. 1875–

1886, November 2005.

[39] L. Park, J. Bezdek, and C. Leckie, “Visualization of

clusters in very large rectangular dissimilarity data,” in

Proc. 4th Int. Conf. Autonomous Robots and Agents,

G. S. Gupta and S. Mukhopadhyay, Eds., Feb. 2009,

pp. 251–256.

[40] T. Havens, J. Bezdek, J. Keller, and M. Popescu,

“Clustering in ordered dissimilarity data,” Int. J. Intell.
Syst., vol. 24, no. 5, pp. 504–528, May 2009.

[41] L. Wang, C. Leckie, K. Rao, and J. Bezdek, “Automati-

cally determining the number of clusters from unlabeled

data sets,” IEEE Trans. Knowledge Engr., vol. 21, no. 3,

pp. 335–350, March 2009.

[42] I. Sledge, T. Havens, J. Huband, J. Bezdek, and

J. Keller, “Finding the number of clusters in ordered

dissimilarities,” Soft Computing, vol. 13, no. 12, pp.

1125–1142, October 2009.

Tim Havens is an NSF / CRA Computing Inno-
vation Fellow in the Department of Computer Sci-
ence and Engineering at Michigan State University.
He received an M.S. in electrical engineering from
Michigan Tech University in 2000 and a Ph.D.
in electrical and computer engineering from the
University of Missouri in 2010. Prior to his Ph.D.
work, he was employed at MIT Lincoln Labora-
tory where he specialized in the simulation and
modeling of directed energy and global positioning
systems. He received a best paper award from the

Midwest Nursing Research Society (2009). He is a senior member of the
IEEE and an accomplished jazz bassist.

His research interests include machine learning, clustering, fuzzy logic,
informatics, and pattern recognition.

11

Jim Bezdek received the Ph.D. in Applied Math-
ematics from Cornell University in 1973. Jim is
past president of NAFIPS, IFSA and the IEEE CIS;
founding editor of the International Journal of Ap-
proximate Reasoning and the IEEE Transactions
on Fuzzy Systems; life fellow of the IEEE and
IFSA; and a recipient of the IEEE 3rd Millennium,
IEEE CIS Fuzzy Systems Pioneer, and IEEE (TFA)
Rosenblatt medals.

Jim’s interests include woodworking, cluster
validity, motorcycles, pattern recognition, cigars,

clustering in very large data, fishing, visual methods for clustering, blues
music, wireless sensor networks, poker, and co-clustering in rectangular
relational data. Jim retired in 2007 and will be coming to a university near
you soon (especially if there is fishing nearby).

