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(Interaction) Testing

I Let F = {F1, . . . ,Fk} be a set of k factors.
I For each Ff ∈ F let Vf be the set of possible levels or

values for factor Ff .
I A t-way interaction is a set F of t factors, and a value
νf ∈ Vf for each factor Ff ∈ F . The parameter t is the
strength; we assume that t ≤ k .

I A test is a k -tuple indexed by the factors, so that the
coordinate indexed by Fi contains an entry of Vi .

I A test suite is a collection of tests; when there are N
tests, it is natural to write this as an N × k array.
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(Interaction) Testing

I When tests are run, each may pass or fail.
I We suppose that failures are caused by s-way

interactions with s ≤ t .
I And our goal is to first determine whether there are

any s-way interactions with s ≤ t causing faults, and
if so to determine the interactions that cause the
faults.



Fault Location and
Resolvable Set

Systems

Charles J.
Colbourn,

colbourn@asu.edu
with Bingli Fan
(Beijing) and

Daniel Horsley
(Melbourne)

(Interaction) Testing
Example

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 0 1 2 2 2 2 2 2 2 2 2 2 2
0 1 1 1 1 0 1 2 2 0 0 0 0 1 1 1 2 2 2 2
0 2 2 2 2 2 2 0 1 0 0 0 0 1 2 2 0 1 1 1
1 0 1 1 1 2 2 0 1 0 1 1 2 0 0 1 1 0 1 2
1 1 2 2 2 1 0 1 0 2 1 1 0 0 2 1 2 2 1 0
1 2 0 1 2 0 2 1 0 2 0 2 2 1 0 2 1 0 2 1
1 2 1 0 2 2 1 2 0 1 2 1 1 0 1 2 0 2 0 1
1 2 1 2 0 2 1 1 2 2 1 0 1 2 0 0 2 1 0 0
2 0 2 2 2 0 1 2 2 1 2 2 0 2 2 0 1 0 1 2
2 1 0 2 1 2 0 2 2 2 1 2 2 0 1 2 0 1 2 0
2 1 2 0 1 1 2 0 2 1 0 1 1 2 1 0 2 0 2 1
2 1 2 1 0 1 2 2 1 1 2 0 2 1 0 0 1 2 0 0
2 2 1 1 1 1 0 1 0 0 2 2 1 2 2 1 0 1 0 2
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Occurrences of Interactions

I Let A be an N × k array forming a test suite for
factors F = {F1, . . . ,Fk}, indexing the rows by
{1, . . . ,N}.

I The t-way interaction T = {(fi , νi) : 1 ≤ i ≤ t}
appears in row j if, for 1 ≤ i ≤ t , the entry of A in row
j , column fi is symbol νi .

I Let ρ(T ) be the set of row indices of A in which
interaction T appears.
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Covering Arrays

I If interaction T causes a failure, test suite A can
detect it only if ρ(T ) 6= ∅ (and under our assumptions,
it will detect it if ρ(T ) 6= ∅).

I A covering array of strength t is a test suite so that
ρ(T ) 6= ∅ whenever T is a t-way interaction.

I There is a huge literature on covering array
construction!

I If some interaction of strength at most t causes a
fault, at least one test in the covering array must fail,
so we can certify the presence of a fault (or the
absence of any fault caused by such an interaction).

I But can we find the faults?
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Locating Arrays

I Let T be a set of interactions. Define

ρ(T ) =
⋃

T∈T
ρ(T )

I If the set of interactions each causing failure is
precisely T , then the set of tests that fail is precisely
ρ(T ).

I We would like to use the set of tests in which failure
has occurred to determine the set of interactions
causing failures.
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Locating Arrays

I A (d , t)-locating array is a test suite in which
whenever T1 and T2 are sets, each containing at
most d t-way interactions,

ρ(T1) = ρ(T2) if and only if T1 = T2

I We limit a priori the number of interactions causing
faults, because if this number is arbitrary, location
cannot be accomplished even using all possible
tests.

I In contrast with covering arrays, very little is known
about locating arrays.
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Locating Arrays

I How can we use a locating array to determine the
faulty interactions?

I We can start by looking at all tests that pass, and
declaring every interaction in each as not faulty.
However, we cannot be sure in general that the
interactions that remain are in fact the faulty ones.

I So we could ask for a stronger condition that would
ensure that faulty interactions are precisely those
that do not appear in any test that passes.
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Detecting Arrays

I A (d , t)-detecting array is a test suite in which
whenever T1 is a set containing at most d t-way
interactions, and T is a t-way interaction,

ρ(T ) ⊆ ρ(T1) if and only if T ∈ T1
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Locating Arrays

I Because little is known about locating and detecting
arrays, it makes sense to start at the beginning.

I For covering arrays, the story begins at strength
t = 2, because covering arrays of strength 1 are
trivial – just pick tests so that every value of every
factor appears at least once.

I But what about locating and detecting arrays?
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Locating Arrays

I Even for strength 1, the number of tests needed is
unknown.

I We focus on the case when every factor has the
same number of values, and in which there is at most
one “interaction” causing failure.

I We recast the problem in somewhat different
language.

I In an N × k test suite on v symbols, every column is
a partition of {1, . . . ,N} into v parts; the parts
correspond exactly to the ρ()s for the v values for this
factor.
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Resolvable Set Systems

I So looking at the partitions arising from the columns,
we get k parallel classes of sets (partitions) on
{1, . . . ,N}, each having v sets (parts).

I What does (1,1)-detecting mean? No set contains
another. This leads to the Sperner partition systems
studied by Meagher and Li.

I What does (1,1)-locating mean? No two sets are
equal. This appears not to have been studied!
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Resolvable Set Systems

I So, in our new language, here is the problem: Let
(Sij : 1 ≤ i ≤ k ,1 ≤ j ≤ v) be subsets of {1, . . . ,N}
so that for every 1 ≤ i ≤ k , the sets (Sij : 1 ≤ j ≤ v)
partition {1, . . . ,N}, and Sij = Si ′j ′ only if i = i ′ and
j = j ′.

I Call such a collection of sets an (N, v)-disjoint set
partition.

I We are to determine the largest value of k in an
(N, v)-disjoint set partition.
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The Easy Case: v = 2

I If, for every set X with {1} ⊆ X ⊆ {1, . . . ,N}, we
form the partition (X , {1, . . . ,N} \ X ), then no two
such partitions can share a set.

I So it is easy to make 2N−1 partitions.
I And, because there are 2N sets, with two in each

partition, no more than 2N−1 partitions can be made.
I So the exact answer when v = 2 is 2N−1.
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Necessary Conditions
Set Partitions Yield Integer Partitions

Si1 · · · Siv ⇒ |Si1| · · · |Siv |

I Call a multiset of integer partitions of N each into v
(nonegative integer) parts (N, v)-admissible if the
total number of parts equal to ` is at most

(N
`

)
for

every 0 ≤ ` ≤ N
I What is the largest number of partitions in an

(N, v)-admissible set?
I This is a basic upper bound on the number of

partitions in the set partition as well.
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Integer Partitions

I Formulate a “simple” linear program.
I Variables correspond to (all possible) integer

partitions of N with v parts each, and are constrained
to be nonnegative.

I There is an inequality for each part size ` saying that
the number of parts of size ` does not exceed

(N
`

)
.

I Maximize the sum of variables.
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Integer Partitions
Greedy

I Inspection of the structure of solutions leads to a
fairly simple characterization of the maximum when
N 6≡ v − 1 (mod v):

I for 0 ≤ ` < bN
v c, take

(N
`

)
partitions with one part of `

and v − 1 parts equal to bN−`
v−1 c or dN−`

v−1 e.
I Now take partitions with all parts bN

v c or dN
v e to use

as many parts of size bN
v c as possible.

Messy calculations with binomial coefficients verify
that this is feasible for all bN

v c < ` ≤ N, and this gives
the maximum number of (integer) partitions.
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Sufficient Conditions
Integer Partitions Yield Set Partitions

I Given an (N, v)-admissible set of k integer partitions
{(ni1, . . . ,niv : 1 ≤ i ≤ v}, can we form an
(N, v)-disjoint set partition having k set partitions?

I How can we turn the set sizes into the actual sets, so
that no set is used twice?
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Baranyai’s Theorem

I The (`v , v)-admissible set of
(
`v
`

)
/v integer partitions

each equal to (`, . . . , `) yields an (`v , v)-disjoint set
partition having

(
`v
`

)
/v set partitions.

I Key things used in the proof:
I All sets used have the same size.
I All sets of size ` are used, each exactly once.

I So Baranyai’s result is a very very special case of
what we want.
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Brouwer-Schrijver proof: Baranyai’s Theorem

I Idea: We build up the sets one element at a time,
writing N = `v

I We start with
(N
`

)
/v set partitions of ∅ into parts

(∅, . . . , ∅).
I For σ from 1 to N in turn, each set partition

(S1, . . . ,Sv ) is a set partition of {1, . . . , α− 1}.
I We will determine to which of S1, . . . ,Sv we add

symbol σ.
I Before iteration σ, every j-subset of {1, . . . , σ − 1}

must appear as a part exactly
(N−α−1

`−j

)
times.

I After iteration σ, every j-subset of {1, . . . , σ} must
appear as a part exactly

(N−α
`−j

)
times.
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Brouwer-Schrijver proof: Baranyai’s Theorem

I Form a directed graph, with vertices s, t , and a
vertex for each set partition for {1, . . . , σ − 1}, and a
vertex for each set of size at most ` that contains σ.

I Add an arc from t to s carrying flow
(N
`

)
/v .

I Add an arc from s to each partition carrying flow 1.
I Add an arc from every j-subset of {1, . . . , σ}

containing σ to t carrying flow
(N−α
`−j

)
.

I When partition P contains a j-set S, add an arc from
P to S ∪ {σ} with flow `−j

N−σ−1 .
I This is a circulation – flow conservation holds

everywhere.
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Brouwer-Schrijver proof: Baranyai’s Theorem

I But then by the integer flow theorem, there is an
integer flow obtained by rounding each of the
fractions up or down.

I Look at the edges from partitions to sets that get a
flow of 1, and add σ to the corresponding sets.
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Extending Baranyai’s Theorem

I Key things used in the proof:
I All sets used have the same size.
I All sets of the allowed size are used, each exactly

once.
I To relax the first, allow sets of different sizes but keep

track not only of the set built so far, but also its target
size. Specifically, introduce vertices for the sets
containing σ for each of the allowed set sizes.

I A j-subset of {1, . . . , σ} that is to form a set of size ν
has an arc to t with flow

(N−α
ν−j

)
.

I A partition P that is to contain a set of size ν but that
contains a j-subset S of {1, . . . , σ− 1} in this position
now has an arc to (S ∪ {σ}, ν) with flow ν−j

N−σ−1 .
I So we can deal with many set sizes at the same time.
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Extending Baranyai’s Theorem

I Key things used in the proof:
I (All sets used have the same size no longer.)
I All sets of the allowed sizes are used, each exactly

once.
I This is a problem! For general collections of sizes of

sets, we cannot simultaneously use all sets of each
size while keeping them as partitions.

I Try, for example, sets of size 8 and smaller on 15
points with three sets per partition. Then we have to
exhaust

(15
8

)
sets of size 8, but each must appear

with a set of size at most 3, and
∑3

i=0
(15

i

)
<
(15

8

)
.
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Extending Baranyai’s Theorem

I To repair this, we could try to relax the requirement
that every set of each allowed size appears, but this
seems problematic.

I Instead, extend from integer partitions of N to integer
partitions whose sum is at most N, and to set
partitions of subsets of {1, . . . ,N}.

I So if we have an (N, v)-admissible set of k integer
partitions {(ni1, . . . ,niv : 1 ≤ i ≤ v}, whenever a part
of size ` is present but does not appear

(N
`

)
times,

we can add sufficiently many copies of partitions of `
into a single part to make up the deficit.

I The extension of the integer flow argument is “easy”.
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Extending Baranyai’s Theorem

I The extension of the integer flow argument is “easy”.
I We must account for partitions of integers less than

N, because in these cases the new symbol α may
not be added to the set in the partition; rather it is
just skipped.

I To do this, we add a single vertex γ. Then whenever
a partition of ` with single part ` is being built, if S is
the set already built, add the directed edge from this
partition to γ with flow N−σ−`+|S|+1

N−σ−1 . And add a
directed edge from γ to t , computing the flow value
so as to ensure flow conservation.

I This establishes the result that we need.
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Extending Baranyai’s Theorem

Theorem
Let I = {(πi1, . . . , πi`i ) : 1 ≤ i ≤ k} be a collection of
integer partitions of integers each at most N, so that
every part of size ` for 0 ≤ ` ≤ N appears at most

(N
`

)
times. Then there exist sets {(Si1, . . . ,Si`i ) : 1 ≤ i ≤ k} of
subsets of {1, . . . ,N} so that Sij has πij elements,
Sij ∩ Sij ′ = ∅ unless j = j ′, and Sij 6= Si ′j ′ unless i = i ′ and
j = j ′.
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Back to Locating

I Using this theorem, we can determine the largest
number of columns in a (1,1)-locating array on v
symbols with N rows exactly when every column has
the same number of symbols.

I This generalizes easily to arrays in which different
columns have possible different numbers of symbols.

I What about locating two faults? We would need (1)
no two sets equal, (2) no set equal to the union of
two others, and (3) the union of any two sets is not
the same as the union of any other two.


