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A t − (v , k, λ) design is a finite incidence structure D = (P,B, I)
satisfying the following requirements:

1 |P| = v ,

2 every element of B is incident with exactly k elements of P,

3 every t elements of P are incident with exactly λ elements of
B.

Every element of P is incident with exactly r = λ(v−1)
k−1 elements of

B. The number of blocks is denoted by b. If b = v (or equivalently
k = r) then the design is called symmetric.

If D is a t-design, then it is also a s-design, for 1 ≤ s ≤ t − 1.
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A graph is regular if all its vertices have the same degree; a
regular graph is strongly regular of type (v , k , λ, µ) if it has v
vertices of degree k , and if any two adjacent vertices are together
adjacent to λ vertices, while any two non-adjacent vertices are
together adjacent to µ vertices.

Let M be the incidence matrix of a symmetric design. If M is
symmetric matrix with constant diagonal, then M is the adjacency
matrix of a strongly regular graph.
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Theorem 1 [J. D. Key, J. Moori]

Let G be a finite primitive permutation group acting on the set
Ω of size n. Further, let α ∈ Ω, and let ∆ 6= {α} be an orbit of the
stabilizer Gα of α. If

B = {∆g : g ∈ G}

and, given δ ∈ ∆,

E = {{α, δ}g : g ∈ G},

then D = (Ω,B) is a symmetric 1− (n, |∆|, |∆|) design. Further,
if ∆ is a self-paired orbit of Gα then Γ(Ω, E) is a regular
connected graph of valency |∆|, D is self-dual, and G acts as an
automorphism group on each of these structures, primitive on
vertices of the graph, and on points and blocks of the design.
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Instead of taking a single Gα-orbit, we can take ∆ to be any union
of Gα-orbits. We will still get a symmetric 1-design with the
group G acting as an automorphism group, primitively on points
and blocks of the design.
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Theorem 2 [DC, V. Mikulić]

Let G be a finite permutation group acting primitively on the
sets Ω1 and Ω2 of size m and n, respectively. Let α ∈ Ω1,
δ ∈ Ω2, and let ∆2 = δGα be the Gα-orbit of δ ∈ Ω2 and
∆1 = αGδ be the Gδ-orbit of α ∈ Ω1.
If ∆2 6= Ω2 and

B = {∆2g : g ∈ G},

then D(G , α, δ) = (Ω2,B) is a 1− (n, |∆2|, |∆1|) design with m
blocks, and G acts as an automorphism group, primitive on
points and blocks of the design.
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In the construction of the design described in Theorem 2, instead
of taking a single Gα-orbit, we can take ∆2 to be any union of
Gα-orbits.

Corollary 1

Let G be a finite permutation group acting primitively on the sets
Ω1 and Ω2 of size m and n, respectively. Let α ∈ Ω1 and
∆2 =

⋃s
i=1 δiGα, where δ1, ..., δs ∈ Ω2 are representatives of

distinct Gα-orbits. If ∆2 6= Ω2 and

B = {∆2g : g ∈ G},

then D(G , α, δ1, ..., δs) = (Ω2,B) is a 1-design
1− (n, |∆2|,

∑s
i=1 |αGδi |) with m blocks, and G acts as an

automorphism group, primitive on points and blocks of the design.
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In fact, this construction gives us all 1-designs on which the
group G acts primitively on points and blocks.

Corollary 2

If a group G acts primitively on the points and the blocks of a
1-design D, then D can be obtained as described in Corollary 1,
i.e., such that ∆2 is a union of Gα-orbits.
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We can interpret the design (Ω2,B) from Corollary 1 in the
following way:

the point set is Ω2,

the block set is Ω1 = αG ,

the block αg ′ is incident with the set of points
{δig : g ∈ Gαg

′, i = 1, . . . s}.
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Theorem 3 [DC, V. Mikulić, A. Švob]

Let G be a finite permutation group acting transitively on the
sets Ω1 and Ω2 of size m and n, respectively. Let α ∈ Ω1 and
∆2 =

⋃s
i=1 δiGα, where δ1, ..., δs ∈ Ω2 are representatives of

distinct Gα-orbits. If ∆2 6= Ω2 and

B = {∆2g : g ∈ G},

then the incidence structure D(G , α, δ1, ..., δs) = (Ω2,B) is a

1− (n, |∆2|, |Gα|
|G∆2

|
∑s

i=1 |αGδi |) design with m·|Gα|
|G∆2

| blocks. Then

the group H ∼= G/
⋂

x∈Ω2
Gx acts as an automorphism group on

(Ω2,B), transitive on points and blocks of the design.

Corollary 3

If a group G acts transitively on the points and the blocks of a
1-design D, then D can be obtained as described in Theorem 3.
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Using the described approach we have constructed a number of
2-designs and strongly regular graphs from the groups U(3, 3),
U(3, 4), U(3,5), U(3, 7), U(4, 2), U(4, 3), U(5, 2), L(2, 32),
L(2, 49), L(3, 5), L(4, 3), S(6, 2) and He.
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Let Fq be the finite field of order q. A linear code of length n is
a subspace of the vector space Fn

q. A k-dimensional subspace of Fn
q

is called a linear [n, k] code over Fq.
For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn

q the number
d(x , y) = |{i |1 ≤ i ≤ n, xi 6= yi}| is called a Hamming distance.
The minimum distance of a code C is
d = min{d(x , y) |x , y ∈ C , x 6= y}.
A linear [n, k , d ] code is a linear [n, k] code with the minimum
distance d .
An [n, k , d ] linear code can correct up to

⌊
d−1

2

⌋
errors.

The dual code C⊥ is the orthogonal complement under the
standard inner product (, ). A code C is self-orthogonal if
C ⊆ C⊥ and self-dual if C = C⊥.
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Codes constructed from block designs have been extensively
studied.

E. F. Assmus Jnr, J. D. Key, Designs and their codes,
Cambridge University Press, Cambridge, 1992.

A. Baartmans, I. Landjev, V. D. Tonchev, On the binary codes
of Steiner triple systems, Des. Codes Cryptogr. 8 (1996),
29–43.

V. D. Tonchev, Quantum Codes from Finite Geometry and
Combinatorial Designs, Finite Groups, Vertex Operator
Algebras, and Combinatorics, Research Institute for
Mathematical Sciences 1656, (2009) 44-54.
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An automorphism of a code is any permutation of the coordinate
positions that maps codewords to codewords.

The code CF (D) of the design D over the finite field F is the
vector space spanned by the incidence vectors of the blocks over F.
It is known that Aut(D) ≤ Aut(CF (D)).
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Any linear code is isomorphic to a code with generator matrix in
so-called standard form, i.e. the form [Ik |A]; a check matrix then
is given by [−AT |In−k ]. The first k coordinates are the
information symbols and the last n − k coordinates are the
check symbols.

Permutation decoding was first developed by MacWilliams in
1964, and involves finding a set of automorphisms of a code called
a PD-set.
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Definition 1

If C is a t-error-correcting code with information set I and check
set C, then a PD-set for C is a set S of automorphisms of C
which is such that every t-set of coordinate positions is moved by
at least one member of S into the check positions C.

The property of having a PD-set will not, in general, be invariant
under isomorphism of codes, i.e. it depends on the choice of
information set.
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If S is a PD-set for a t-error-correcting [n, k, d ]q code C , and
r = n − k, then

|S | ≥
⌈
n

r

⌈
n − 1

r − 1

⌈
. . .

⌈
n − t + 1

r − t + 1

⌉
. . .

⌉⌉⌉
.

Good candidates for permutation decoding are linear codes with a
large automorphism group and the large size of the check set
(small dimension).

By the construction described in Teorem 3 we can construct
designs admitting a large transitive automorphism group. Codes of
these designs are good candidates for permutation decoding.
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Let A be the incidence matrix of a design D = (P,B, I). A
decomposition of A is any partition B1, . . . ,Bs of the rows of A
(blocks of D) and a partition P1, . . . ,Pt of the columns of A
(points of D).

For i ≤ s, j ≤ t define

αij = |{P ∈ Pj | PIx}|, for x ∈ Bi arbitrarily chosen,
βij = |{x ∈ Bi | PIx}|, for P ∈ Pj arbitrarily chosen.

We say that a decomposition is tactical if the αij and βij are well
defined (independent from the choice of x ∈ Bi and P ∈ Pj ,
respectively).
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Let D = (P,B, I) be an incidence structure and G ≤ Aut(D).
The group action of G induces a tactical decomposition of D.

Let D be a 2− (v , k , λ) design. Denote the G−orbits of points by
P1, . . . ,Pn, G−orbits of blocks by B1, . . . ,Bm, and put |Pr | = ωr ,
|Bi | = Ωi , 1 ≤ r ≤ n, 1 ≤ i ≤ m. Denote by γij the number of
points of Pj incident with a representative of the block orbit Bi .
For these numbers the following equalities hold:

n∑
j=1

γij = k , (1)

m∑
i=1

Ωi

ωj
γijγis = λωs + δjs · (r − λ) . (2)
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Definition 2

A (m × n)-matrix M = (γij) with entries satisfying conditions (1)
and (2) is called an orbit matrix for the parameters 2− (v , k, λ)
and orbit lengths distributions (ω1, . . . , ωn), (Ω1, . . . ,Ωm).

Orbit matrices are often used in construction of designs with a
presumed automorphism group. Construction of designs admitting
an action of the presumed automorphism group consists of two
steps:

1 Construction of orbit matrices for the given automorphism
group,

2 Construction of block designs for the obtained orbit matrices.

The intersection of rows and columns of an orbit matrix M that
correspond to non-fixed points and non-fixed blocks form a
submatrix called the non-fixed part of the orbit matrix M.
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Example

The incidence matrix of the symmetric (7,3,1) design

0 1 1 1 0 0 0

1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 0 0 1 0 0 1

0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0


Corresponding orbit matrix for Z3

1 3 3

1 0 3 0

3 1 1 1
3 0 1 2
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Theorem 4 [M. Harada, V. D. Tonchev]

Let D be a 2-(v , k, λ) design with a fixed-point-free and
fixed-block-free automorphism φ of order q, where q is prime.
Further, let M be the orbit matrix induced by the action of the
group G = 〈φ〉 on the design D. If p is a prime dividing r and λ
then the orbit matrix M generates a self-orthogonal code of
length b|q over Fp.

Using Theorem 4 Harada and Tonchev constructed a ternary
[63,20,21] code with a record breaking minimum weight from the
symmetric 2-(189,48,12) design found by Janko.
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Theorem 5 [V. D. Tonchev]

If G is a cyclic group of a prime order p that does not fix any point
or block and p|(r − λ), then the orbit matrix M generates a
self-orthogonal code over Fp.

Theorem 6 [DC, L. Simčić]

Let D be a 2-(v , k , λ) design with an automorphism group G
which acts on D with f fixed points, h fixed blocks, v−f

w point

orbits of length w and b−h
w block orbits of length w . If a prime p

divides w and r − λ, then the non-fixed part of the orbit matrix M
for the automorphism group G generates a self-orthogonal code of
length b−h

p over Fp.
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Theorem 7

Let Ω be a finite non-empty set, G ≤ S(Ω) and H a normal
subgroup of G . Further, let x and y be elements of the same
G -orbit. Then |xH| = |yH|.

Theorem 8

Let Ω be a finite non-empty set, H � G ≤ S(Ω) and xG =
h⊔

i=1

xiH,

for x ∈ Ω. Then a group G/H acts transitively on the set
{xiH | i = 1, 2, . . . , h}.
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Let D be a 2-(v , k, λ) design with an automorphism group G , and
H � G . Further, let H acts on D with f fixed points, h fixed
blocks, v−f

w point orbits of length w and b−h
w block orbits of length

w . If a prime p divides w and r − λ, then the non-fixed part of the
orbit matrix M for the automorphism group H generates a
self-orthogonal code C of length b−h

p over Fp, and G/H acts as an
automorphism group of C .

If G acts transitively on D, then G/H acts transitively on C . Thus,
we can construct codes admitting a large transitive automorphism
group, which are good candidates for permutation decoding.
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In 2009 M. Behbahani and C. Lam introduced the notion of orbit
matrices of strongly regular graphs. They have studied orbit
matrices of strongly regular graphs that admit an automorphism
group of prime order.
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Definition 3

A (t × t)-matrix R = [rij ] with entries satisfying conditions

t∑
j=1

rij =
t∑

i=1

ni
nj
rij = k (3)

t∑
s=1

ns
nj
rsi rsj = δij(k − µ) + µni + (λ− µ)rji (4)

is called a row orbit matrix for a strongly regular graph with
parameters (v , k, λ, µ) and orbit lengths distribution (n1, . . . , nt).

27 / 30
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Definition 4

A (t × t)-matrix C = [cij ] with entries satisfying conditions

t∑
i=1

cij =
t∑

j=1

nj
ni
cij = k (5)

t∑
s=1

ns
nj
ciscjs = δij(k − µ) + µni + (λ− µ)cij (6)

is called a column orbit matrix for a strongly regular graph with
parameters (v , k, λ, µ) and orbit lengths distribution (n1, . . . , nt).
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Theorem 9

Let Γ be a srg(v , k , λ, µ) with an automorphism group G which
acts on the set of vertices of Γ with v

w orbits of length w . Let R
be the row orbit matrix of the graph Γ with respect to G . If q is a
prime dividing k , λ and µ, then the matrix R generates a
self-orthogonal code of length v

w over Fq.

Remark In this case the row orbit matrix is equal to the column
orbit matrix.
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Let Γ be a srg(v , k , λ, µ) with an automorphism group G , and
H � G . Further, let H acts on the set of vertices of Γ with v

w
orbits of length w . Let R be the row orbit matrix of the graph Γ
with respect to H. If q is a prime dividing k, λ and µ, then the
matrix R generates a self-orthogonal code C of length v

w over Fq,
and G/H acts as an automorphism group of C .

If G acts transitively on Γ, then G/H acts transitively on C . So,
we can construct codes admitting a large transitive automorphism
group, which are good candidates for permutation decoding.
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