On the Shadow Geometries of W(23, 16)

Assaf Goldberger¹ Yossi Strassler² Giora Dula³

¹School of Mathematical Sciences Tel-Aviv University

²Dan Yishay

³Department of Computer Science and Mathematics Netanya College

26-30.08.2015 Algebraic Combinatorics and Applications Conference

Definition

A weighing matrix W of size n and weight k is a $\{0, 1, -1\}$ matrix that satisfies

$$WW^T = W^T W = kI_n.$$

We say that W is a W(n, k) matrix.

Examples:

- Hadamard matrices are W(n, n).
- Conference matrices are W(n, n-1).
- Signed permutation matrices are W(n, 1).

Examples and questions

- The following are $W(2,k), 1 \le k \le 2$ $\begin{pmatrix} I_2 & | & 1 & 1 \\ 1 & -1 \end{pmatrix}$
- The following are $W(3, k), 1 \le k \le 3$

$$\begin{pmatrix} I_3 & | \phi & | \phi \end{pmatrix}$$

• The following are $W(4, k), 1 \le k \le 4$

/1	0	0	0	1	1	0	0	0	1	1	1	1	1	1	1 \
0	1	0	0	1	$^{-1}$	0	0	1	0	1	$^{-1}$	1	$^{-1}$	1	-1
0	0	1	0	0	0	1	1	1	$^{-1}$	0	1	1	1	$^{-1}$	-1
\ 0	0	0	1	0	0	1	$^{-1}$	-1	$^{-1}$	1	0	1	-1	$^{-1}$	1/

- For which *n* and *k* $W(n, k) \neq \emptyset$ is an open question.
- Hadamard conjecture: $W(n, n) \neq \emptyset$ for every $n = 4k, k \in \mathbb{N}$.

Facts about weighing matrices

- Applications: Chemistry, Spectroscopy, Quantum Computing and Coding Theory.
- The main mathematical interest is to exhibit a concrete W(n, k) or to prove that it does not exist.
- To date the smallest Hadamard matrix whose existence is unknown is *H*(668).
- To date, the weighing matrix with smallest *n* whose existence is unknown is *W*(23, 16).
- In this note we present a concrete W(23, 16).

Fact

For odd n, a W(n, k) exists $\implies k$ is a perfect square.

Facts about weighing matrices

- Applications: Chemistry, Spectroscopy, Quantum Computing and Coding Theory.
- The main mathematical interest is to exhibit a concrete W(n, k) or to prove that it does not exist.
- To date the smallest Hadamard matrix whose existence is unknown is *H*(668).
- To date, the weighing matrix with smallest *n* whose existence is unknown is *W*(23, 16).
- In this note we present a concrete W(23, 16).

Fact

For odd *n*, a W(n, k) exists $\implies k$ is a perfect square.

• Let $W = (w_{i,j})$ be any weighing matrix. Let S, the associated shadow matrix, be defined by $S = (1 - w_{i,j}^2)$.

Then

$$SS^T \equiv S^T S \equiv nJ_n + kI_n \mod 2.$$

where $J_n = (1)_{n \times n}$.

- Our method:
 - Geometrizing (=Finding W mod 2, s.t. WW^T ≡ W^TW ≡ kI_n mod 2) =(finding S).
 - **2** Coloring (= Signing $J_n S$)

Shadow Geometry of W(4,2)

•
$$W = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & - & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & - \end{pmatrix} = \begin{pmatrix} H_2 & 0_2 \\ 0_2 & H_2 \end{pmatrix}$$

• $S = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0_2 & J_2 \\ J_2 & 0_2 \end{pmatrix}$
• $SS^T = \begin{pmatrix} 2 & 2 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 2 \end{pmatrix} = 2W^s.$

▶ ★@ ▶ ★ 臣 ▶ ★ 臣 ▶

æ

- The shadow geometry of W(23, 16) was introduced in A. Goldberger, On the finite geometry of W(23, 16), http://arxiv.org/abs/1507.02063.
- Necessary conditions for the existence of the shadow geometry of W(23, 16) were given, alluding its non existence.
- It is a nice twist that those conditions serve to construct the shadow geometry.
- We used the shadow geometry to color it.

Definition

- A shadow geometry with parameters (n, k) is a finite set \mathcal{P} ,
- $|\mathscr{P}| = n$ of elements called points together with a family \mathscr{L} ,
- $|\mathscr{L}| = n$ of subsets of \mathscr{P} called <u>lines</u>, such that
 - L Each line contains n k points.
 - P Each pair of distict lines intersects at $n \mod 2$ points.
- LD Each point lies in n k lines.
- PD Each pair of distinct points lies in $n \mod 2$ lines.
 - Remark: Two members of ${\mathscr L}$ may have an equal underlying set.

Given W(n, k), the conditions $WW^T = W^TW = kI_n$ imply that S defined above is an associated shadow geometry such that:

Point Each column of S corresponds to a point.

Line Each row of S corresponds to a line.

In The j^{th} point lies on the i^{th} line if and only if $S_{i,j} = 1$. Differently stated: *S* is the incidence matrix of the geometry.

- The following operations are well known to preserve weighing matrices.
 - rows swap.
 - columns swap.
 - \bigcirc multiplying any row by -1.
 - multiplying any column by -1.
- Swaps extend naturally to the associated shadow matrix S.
- One can use those equivalence operation to bring *W* and *S* to a normal form.
- Different normal forms have been used by different authors.

- We normalize the associated shadow matrix S such that all the 1 digits of the top row live on the first n k columns. $(1, 1, \dots 1_{n-k}, 0, 0, \dots 0_k)$.
- We refer to the top row as the baseline.
- We will write ahead a set of equalities concerning the baseline.
- By symmetry, the same equalities hold with respect to any line.

- A choice of a baseline determines an associated local geometry with respect to this baseline.
- The local geometry is the part of the geometry that interacts with the baseline.
- The associated incidence matrix is a submatrix of *S*.
- Dualy choosing a basepoint there exists an associated dual local geometry with respect to this basepoint.
- Let $m \in \{0,1\}$ be so that $n \equiv m \mod 2$. Define $t = \lfloor \frac{n-k-m}{2} \rfloor$. The number of intersection points between any two lines may be $m + 2i, \forall 0 \le i \le t$.

- Let z_{m+2i} denote the number of lines intersecting the baseline with m + 2i points.
- The following equations hold

$$\sum_{i=0}^{t} z_{m+2i} = n-1$$

$$\sum_{i=0}^{t} (m+2i) z_{m+2i} = (n-k)(n-k-1)$$

- There are finitely many t + 1-tupples (z_i) that solve the equations.
- Any such t + 1-tupple is called a a type for W(n, k).

Suppose given $q \in \mathbb{N}$, set $n = q^2 + q + 1$, $k = q^2$. Then n - k = q + 1, m = 1 and the above equalities become:

$$z_1 + z_3 + \dots + z_{2[rac{q}{2}]+1} = q^2 + q$$

 $z_1 + 3z_3 + \dots + (2[rac{q}{2}]+1)z_{2[rac{q}{2}]+1} = (q+1)q$

Subracting the equation gives:

$$2z_3 + \dots + 2[\frac{q}{2}]z_{2[\frac{q}{2}]+1} = 0$$

Which implies that $z_3 = z_5 = z_{2\lfloor \frac{q}{2} \rfloor + 1} = 0$, $z_1 = q^2 + q$ so that the shadow geometry becomes the well known projective geometry.

Suppose given $q \in \mathbb{Z}$, $k > q^2$. Then $n = q^2 + q + 1$ is an odd number and n - k < q + 1, m = 1 and the above equalities become:

$$z_1 + z_3 + \dots + z_{2[rac{q}{2}]+1} = q^2 + q$$

 $z_1 + 3z_3 + \dots + (2[rac{q}{2}]+1)z_{2[rac{q}{2}]+1} < (q+1)q$

Subracting the equation gives:

$$2z_3 + \cdots + 2[\frac{q}{2}]z_{2[\frac{q}{2}]+1} < 0$$

This implies that some of z_3, z_5, \cdots must be negative, which is a contradiction, impying a well known result that there are no weighing matrices with such n and k.

- Given n, k and a corresponding type (z_{m+2t}, z_{m-2+2t}, · · · , z_m) there are matrices LG_{n×n-k} whose incidence relations correspond to the type.
- We will row normalize *LG* by descending order of the weights (i.e. decreasing *z_i*).
- Within a fixed z_i we normalize by increasing order of binary value.
- Any such matrix has to satisfy a parity condition discussed ahead.

- Given a geometry matrix *S* every two distinct points (columns) lie on a *n* mod 2 number of mutual lines (rows). (parity conditions).
- This must hold for the submatrices *LG* discussed above.
- Any matrix $LG_{n \times n-k}$ needs to satisfy $\binom{n-k}{2}$ parity condition.
- The parity conditions are equivalent to $LG^T LG = n \mod 2$ on the non diagonal terms.
- The parity conditions are necessary for *LG* to be a submatrix of a full geometry matrix *S*.

Reducing LG matrices

• For the case n = 18, k = 14 and the type

 $(z_4, z_2, z_0) = (0, 6, 11)$ there are 462 normalized *LG* matrices, but none of them satisfy all the parity conditions, as explained in the next slide.

- For the case n = 18, k = 14 and the type

 (z₄, z₂, z₀) = (1, 4, 12) there are 126 normalized LG matrices, and 21 of them satisfy the parity conditions.
- For the case n = 23, k = 16 and the type

 (z₇, z₅, z₃, z₁) = (3, 0, 1, 18) it can be shown that any LG matrix can not satisfy the parity conditions.

Explanation for the first type of (n, k) = (18, 14)

- There are $\binom{4}{2} = 6$ ways fill two digits in 4 places.
- Index the fillings by $\mathscr{F}_6 = \mathscr{F} = \{1, 2, 3, 4, 5, 6\}.$
- Those can be ordered arbirarily say in a non decreasing order.
- The type $(z_4, z_2, z_0) = (0, 6, 17)$ indicates that we need to fill in 6 positions elements from \mathscr{F}_6 .
- After normalization the matrices LG correspond to non decreasing sequences of functions 𝓕₆ → 𝓕₆.
- There are $\binom{11}{5} = 462$ such functions.

Explanation for the first type of (n, k) = (18, 14) continued

• For example the baseline and the sequence (1, 2, 3, 3, 4, 4) corresponds the matrix $LG_{18,4} = \begin{pmatrix} A_{7,4} \\ 0_{11,4} \end{pmatrix}$.

•
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$
.
• $LG^{T}LG = \begin{pmatrix} 3 & 1 & 1 & 3 \\ 1 & 4 & 3 & 2 \\ 1 & 3 & 4 & 2 \\ 3 & 2 & 2 & 5 \end{pmatrix} \neq 0 \mod 2$.

聞 と く き と く き と

The hook (reish) matrix

- Once a *LG* submatrix which satisfies the parity conditions has been established, it is of the following form $\begin{pmatrix} X_{n-k\times n-k} \\ Z_{k\times n-k} \end{pmatrix}$.
- The matrix X and the dual local geometry can be used to complete the data to the following hook type matrix.

$$\begin{pmatrix} X_{n-k\times n-k} & Y_{n-k\times k} \\ Z_{k\times n-k} & ??_{k\times k} \end{pmatrix}$$

- We remark that in principle the types of the local and the local dual geometries need not be the same.
- But for all the 7 geometries we happend to find for (n, 16), n = 23, 25, 27, 29 it came out that X was symmetric, Y = Z^T and the local and dual local types were the same.

For the case n = 23 k = 16 we got the following reish matrix: $\begin{pmatrix} X_{7\times7} & Y_{7\times16} \\ Z_{16\times7} & C_{16\times16} \end{pmatrix}$ With and both the LG and the dual LG have the type $(z_7, z_5, z_3, z_1) = (2, 0, 4, 16).$

- **→** → **→**

æ

Our total reish matrix with the core zero equals

reish =

Λ	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
V	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 /

The core matrix $C_{16\times 16}$ has the following form:

 $C = \begin{pmatrix} t_{1,1} & t_{1,2} & t_{1,3} & t_{1,4} \\ t_{2,1} & t_{2,2} & t_{2,3} & t_{2,4} \\ t_{3,1} & t_{3,2} & t_{3,3} & t_{3,4} \\ t_{4,1} & t_{4,2} & t_{4,3} & t_{4,4} \end{pmatrix}$

where each $t_{i,j}$ is a 4 × 4 matrix. Thus C is a 4 × 4 block matrix of 4 × 4 matrices (tiles) , and there is a tiling process (finding the tiles) needed to be completed.

- The 1st row of the core matrix must intersect the 4th (5th, 6th, 7th) row of the whole matrix by one or three points.
- This can be indicated on the matrix on page 24.
- The total weight of this row must be 6.
- 6 must be partitioned as 1 + 1 + 1 + 3, (up to ordering).
- The same is true for all rows and columns in the core matrix.

- Each row in each tile has either 1 or 3 digits so altogether there are 2i digits ∀2 ≤ i ≤ 6.
- In the core matrix one can permute the rows 1-4 with any permutation, and similarly for columns 1-4.
- This permutations allow to normalize the top left tile, but not necessarily the tiles in the same row and column tile.
- There are 2⁹ (non normalized) possible tiles.
- There are 7 normalized tiles.

The normalized tiles ordered by weight

$$T4N = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} T6_1N = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$T6_2N = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} T8N = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
And the other normalized tiles are defined by
$$T10_iN = J - T6_iN, i = 1, 2 \text{ and } T12N = J - T4N.$$

- As each row has weight 6, then each layer of tiles has total weight 24.
- After reordering the tiles this allows only few sequences of tiles in each layer.
- (*T*12*N*, *T*4*N*, *T*4*N*, *T*4*N*), (*T*10*_iN*, *T*6*_jN*, *T*4*N*, *T*4*N*)
- (*T*8*N*, *T*8*N*, *T*4*N*, *T*4*N*), (*T*8*N*, *T*6_{*i*}*N*, *T*6_{*j*}*N*, *T*4*N*)
- $(T6_iN, T6_jN, T6_kN, T6_lN)$
- The above list carries 14 ordered sequences.

- By reordering the tiles we may bring the heaviest tile to the top left position.
- We may further normalize the heaviest tile to its normal form.
- In the reish of the heaviest tile we may not normalize the other tiles to their normal form, unless they are T4.
- If we did not normalize the T4, we can normalize the 3 \times 3 core and then the 2 \times 2 core.

• Choosing the sequence T12N, T4N, T4N, T4N and plugging it in the reish of the core gives the matrix

$\int J_3$	$J_{3 \times 4}$	0 _{3×4}	$0_{3 \times 4}$	$0_{3 \times 4}$	0 _{3×4})
$J_{4\times 3}$	$0_{4 \times 4}$	<i>K</i> 1	K2	K3	<i>K</i> 4
0 _{4×3}	$K1^T$	T12N	T4N	T4N	T4N
0 _{4×3}	$K2^T$	T4N	?	?	?
0 _{4×3}	$K3^T$	T4N	?	?	?
$\setminus_{0_{4\times 3}}$	$K4^T$	T4N	?	?	? /

The second layer of the inner core, continued

- Each of the 4 lines in the second layer should intersect each of the 4 lines in the first layer by an odd number of points.
- There are 16 orthogonality conditions on 2²⁷ fillings. If they were in general position we would be left with 2¹¹ fillings.
- Unfortunately there are 2¹⁸ solutions for the second layer.
- There are $\binom{4}{2}$ parity conditions and also the condition that the 3 digits in each tile can not occur in the same line. This reduces the solutions to only 1224 cases.
- Each solution is a second layer completing the first layer.

- Any solution for the second layer is by symmetry also a solution for the third layer.
- A double loop on the solutions for the second later is run, and each pair of solutions has to satisfy orthogonality and the (1,1,1,3) conditions.
- This leaves only 1008 solutions for the second and third layers.

- For any of the 1008 solution above we try the fourth layer.
- Each solution has to satisfy orthogonality, the (1, 1, 1, 3) and parity conditions, both horizontally and vertically.
- This leaves only 576 solutions for all the core matrix.
- On any full matrix check the equation SS^{T} has odd elements. This leaves 144 'kosher' geometries.

Our first normalized geometry for (n, k) = (23, 16)

• Some of the geometry matrices found can be normalized to the form

$\int J_3$	$J_{3 \times 4}$	0 _{3×4}	$0_{3 \times 4}$	$0_{3 \times 4}$	$0_{3\times 4}$)
$J_{4\times 3}$	$0_{4 \times 4}$	<i>K</i> 1	K2	K3	K4
0 _{4×3}	$K1^T$	T12N	T4N	T4N	T4N
0 _{4×3}	$K2^T$	T4N	<i>T</i> 12	Τ4	Τ4
0 _{4×3}	$K3^T$	T4N	<i>T</i> 4	<i>T</i> 12	<i>T</i> 4
$\setminus 0_{4\times 3}$	$K4^T$	T4N	<i>T</i> 4	Τ4	T12/

- Observe the that the reish of the core is symmetric.
- The 3×3 inner core is not symmetric.

The first geometry matrix for n = 23 k = 16 specifically

(1 1 1	0 0 0																					
-	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
_	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	0	0	0	1	0	0	0	0	1	1	1	1	0	0	0	1	0	0	0	1	0	0	0
	0	0	0	1	0	0	0	1	0	1	1	0	1	0	0	0	1	0	0	0	1	0	0
	0	0	0	1	0	0	0	1	1	0	1	0	0	1	0	0	0	1	0	0	0	1	0
	0	0	0	1	0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	0	0	0	1
	0	0	0	0	1	0	0	1	0	0	0	1	1	1	0	0	1	0	0	0	0	1	0
	0	0	0	0	1	0	0	0	1	0	0	1	1	0	1	1	0	0	0	0	0	0	1
	0	0	0	0	1	0	0	0	0	1	0	1	0	1	1	0	0	0	1	1	0	0	0
	0	0	0	0	1	0	0	0	0	0	1	0	1	1	1	0	0	1	0	0	1	0	0
	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	1	1	0	0	1	0	0
	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	1	1	0	1	1	0	0	0
	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1	1	0	0	0	1
_	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	1	1	1	0	0	1	0
	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1	1	0
	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0	0	1	1	1	0	1
	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	1	1
1	0	0	0	0	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	1	1 /

Our specific W in W(23, 16)

(0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	_	_	_	_	_	_	_	- 1
0	0	0	0	0	0	0	1	1	1	1	_	_	_	_	1	1	1	1	_	_	_	_
	Ô	0	1	1	1	1	0	0	0	0	_	1	1	_	_	1	_	1	_	1	1	_
	0	0	T	T	1	1	1	0	0	1	0	0	0	0		1		1	1	1	T	1
	0	0	-	_	1	T	1	_	-	T	0	1	0	1	_	T	_	T	T	-	_	
0	0	0	1	_	1	_	T	_	1	_	_	T	_	1	0	0	0	0	_	1	_	
0	0	0	-	1	1	_	_	1	1	_	1	_	_	1	_	1	_	1	0	0	0	0
1	1	1	0	1	_	_	1	0	0	0	0	1	_	_	0	_	_	1	0	_	1	1
1	1	1	0	_	1	1	0	1	0	0	_	0	_	1	1	0	_	_	1	0	1	-
1	1	1	0	_	_	1	0	0	1	0	1	_	0	_	_	1	0	_	_	1	0	1
1 1	1	1	0	1	1	_	0	0	0	1	_	_	1	0	_	_	1	0	1	1	_	0
1	1	-	1	0	-	1	ñ	Ŭ	1	-	Ο	Ο	ñ	1		0	1	1	1	-	0	Ľ
	1	_	T	0	-	T	1	_	T	_	0	0	1	1	_	1	1	T	T	_	1	_
1	1	-	_	0	T	-	T	0	_	_	0	0	1	0	0	1	T	_	_	_	T	0
1	1	-	-	0	-	-	_	_	0	1	0	1	0	0	1	1	_	0	0	1	-	-
1	1	_	1	0	1	1	_	1	_	0	1	0	0	0	1	_	0	1	_	0	_	1
1	_	_	_	1	0	1	0	1	1	_	_	1	0	_	0	0	0	_	1	0	_	1
1	_	_	1	_	0	_	_	0	1	1	_	_	1	0	0	0	_	0	0	_	1	1
1	_	_	_	1	0	1	1	_	0	1	0	_	_	1	0	_	0	0	_	1	1	0
1	_	_	1	_	0	_	1	1	_	0	1	0	_	_	_	0	0	0	1	1	0	_
		1	1		1	_	0	T	1	0	1	0	1		1	0	0	1	0	0	0	_
	_	1	_	_	T	0	0	_	T	_	1	0	1	_	1	_	0	T	0	0	0	_
1	-	1	1	1	_	0	1	0	_	_	0	_	1	1	1	1	_	0	0	0	-	0
1	_	1	1	1	1	0	_	_	0	1	1	1	_	0	0	1	1	_	0	_	0	0
$\backslash 1$	_	1	_	_	_	0	_	1	_	0	_	1	0	1	_	0	1	1	_	0	0	0/
http	://	/w\	νw	.er	nb	a.u	vm	n.eo	du/	/ jo	din	itz,	/ho	cd/	′W	23	16.	txt				

æ

∢∄⊁ ∢≣⊁

э

Our second normalized geometry for (n, k) = (23, 16)

• The rest of the geometry matrices found can be normalized to the form

$\int J_3$	$J_{3 \times 4}$	0 _{3×4}	$0_{3 \times 4}$	$0_{3 \times 4}$	0 _{3×4} \
$J_{4\times 3}$	$0_{4 \times 4}$	<i>K</i> 1	K2	K3	K4
0 _{4×3}	$K1^T$	T12N	T4N	T4N	T4N
0 _{4×3}	$K2^T$	T4N	<i>T</i> 8	Τ8	Τ4
0 _{4×3}	$K3^T$	T4N	<i>T</i> 8	Τ4	Τ8
$\setminus 0_{4 \times 3}$	$K4^T$	T4N	<i>T</i> 4	<i>T</i> 8	T8 /

- Observe the that the reish of the core is symmetric.
- The 3×3 inner core is not symmetric.
- All the geometries containing a *T*12 could be normalized to one of the two forms above.

Our second normalized geometry for (n, k) = (23, 16), specifically

I.	пе	oui	ICI	Ber	יוווע	= LI y	. 11	au	ICE	5 1	Jui	iu v	Lall	De	2 110		Iall	zeu	ιυ	' LI		UIII		
/	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\
I	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
L	1	1	1	1	1	1	1	0	0	Ó	0	0	0	0	0	0	0	0	0	0	Ó	0	0	
L	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	-
L	1	1	1	l õ	ñ	ñ	ñ	n n	ñ	ñ	ñ	1	1	1	1		ñ	õ	ñ	õ	õ	ñ	ñ	
L	1	1	1		ñ	ñ	ñ	ő	ñ	ň	ñ	n i	Ō	Ô	Ô	1	1	1	1	ň	ň	ñ	ñ	
L	1	1	1		0	0	0	0	0	ñ	ñ	ň	ñ	0	õ		ñ	¹	0	1	1	1	1	
L	-		0	1	0	0	0	0	1	1	1	1	0	0	0	1	0	0	0	1	0	0	0	-
l	0	0	0		0	0	0	1	- -	1	1	1	1	0	0		1	0	0	1	1	0	0	
L	0	0	0		0	0	0	1	1	1	1		1	1	0		1	1		0	1	1	0	
l	0	0	0		0	0	0	1	1	1	1	0	0	1	1		0	1	1	0	0	1	1	
l		0	0	1	0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	0	0	0	1	-
l	0	0	0	0	1	0	0	1	0	0	0	1	1	1	0	0	1	0	0	0	0	1	0	
L	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	1	1	1	0	0	0	1	
Ł	0	0	0	0	1	0	0	0	0	1	0	1	0	1	1	0	0	0	1	1	0	0	0	
L	0	0	0	0	1	0	0	0	0	0	1	1	0	0	0	1	1	0	1	0	1	0	0	_
ł	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	1	0	1	1	1	0	
L	0	0	0	0	0	1	0	0	1	0	0	0	1	1	1	0	0	0	1	0	0	1	0	
ł	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	1	0	0	0	1	0	1	1	
L	0	0	0	0	0	1	0	0	0	0	1	1	1	0	1	0	1	0	0	1	0	0	0	
ł	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	1	1	1	0	0	1	0	0	
L	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0	1	0	0	1	1	1	
۱	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1	1	0	0	0	1	
١	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	1	0	1	1
	•																							

The other geometry matrices found can be nermalized to the form

Assaf Goldberger, Yossi Strassler, Giora Dula

Shadow Geometries

the type and tiling for n = 25 and k = 16

- The geometry we found had the type

 (z₉, z₇, z₅, z₃, z₁) = (4, 0, 4, 0, 16) for both the local and the dual local geometry.
- Again the core of 16×16 is divided to 4×4 tiles each of which is 4×4 matrix.
- Again each line and point intersect each tile with 1 or 3 digits.
- now n k = 9 so we need to present 8 digits and this is possible only as 3 + 3 + 1 + 1.
- This time the sum of the digits along one layer and column layer equals 32.

the reish matrix is of the form

1	′ J ₅	$J_{5 \times 4}$	0 _{5×4}	$0_{5 \times 4}$	$0_{5 \times 4}$	$0_{5 \times 4}$)
	$J_{4 \times 5}$	$0_{4 imes 4}$	<i>K</i> 1	K2	K3	<i>K</i> 4	
	0 _{4×5}	$K1^T$	0 _{4×4}	$0_{4 \times 4}$	$0_{4 \times 4}$	0 _{4×4}	
	$0_{4 \times 5}$	$K2^T$	0 _{4×4}	$0_{4 \times 4}$	$0_{4 \times 4}$	$0_{4 \times 4}$	
	$0_{4 \times 5}$	$K3^T$	0 _{4×4}	$0_{4 \times 4}$	$0_{4 \times 4}$	$0_{4 \times 4}$	
	0 _{4×5}	$K4^T$	0 _{4×4}	$0_{4 \times 4}$	$0_{4 \times 4}$	$0_{4 \times 4}$)
ar	nd is sy	mmete	ric.				

Observe the tiling of the core matrix

(T12N	<i>T</i> 12	T4N	T4N
	T12	Τ4	Τ4	T12N
	T4N	Τ4	T12	<i>T</i> 12
	T4N	T12N	T12	Τ4 /

the geometry of 25, 16 specifically

1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	1	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
=	0	0	0	0	0	1	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	1	0	0	0
	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	0	1	0	1	0	0	0	1	0	0
	0	0	0	0	0	1	0	0	0	1	1	0	1	1	0	1	1	0	0	1	0	0	0	1	0
	0	0	0	0	0	1	0	0	0	1	1	1	0	0	1	1	1	0	0	0	1	0	0	0	1
_	0	0	0	0	0	0	1	0	0	1	1	1	0	0	1	0	0	0	1	0	0	0	1	1	1
	0	0	0	0	0	0	1	0	0	1	1	0	1	1	0	0	0	1	0	0	0	1	0	1	1
	0	0	0	0	0	0	1	0	0	1	0	1	1	0	0	0	1	0	0	0	1	1	1	0	1
_	0	0	0	0	0	0	1	0	0	0	1	1	1	0	0	1	0	0	0	1	0	1	1	1	0
	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	1	1	1	0	1	0	1	1
	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	1	1	0	1	0	1	1	1
	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	1	0	1	1	1	1	1	0
_	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	1	1	1	1	1	0	1
	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	1	1	1	0	1	1	0	0	1	0
	0	0	0	0	0	0	0	0	1	0	1	0	0	1	0	1	1	0	1	1	1	0	0	0	1
	0	0	0	0	0	0	0	0	1	0	0	1	0	1	1	0	1	1	1	1	0	1	0	0	0
/	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	1	0	1	1	0	1	0	1	0	0 /

Observe that this matrix is symmetric!!!

Our reish for the matrix is:

	$\int J_7$	$J_{7\times4}$	0 _{7×4}	$0_{7 \times 4}$	$0_{7 \times 4}$	$0_{7 \times 4}$)
	$J_{4 \times 7}$	$0_{4\times4}$	<i>K</i> 1	K2	K3	<i>K</i> 4	
	0 _{4×7}	$K1^{T}$	0 _{4×4}	$0_{4 \times 4}$	$0_{4 \times 4}$	0 _{4×4}	
	0 _{4×7}	$K2^T$	0 _{4×4}	$0_{4 \times 4}$	$0_{4 \times 4}$	$0_{4 \times 4}$	
	0 _{4×7}	$K3^T$	0 _{4×4}	$0_{4 \times 4}$	$0_{4 \times 4}$	$0_{4 \times 4}$	
	$\setminus 0_{4\times7}$	$K4^T$	0 _{4×4}	$0_{4 \times 4}$	$0_{4 \times 4}$	$0_{4 \times 4}$,
a	nd it co	rrespor	nds to t	he typ	е		
(z_{11}, z_9, z_9	z_7, z_5, z_5	$(3, z_1) =$	= (6, 0,	4, 0, 0,	16)	

- If T is a tile then J-T is a tile and both have 1 or 3 digits in each row and column
- Therefore

$$(J - T1)(J - T2)^{T} = JJ^{T} - JT2^{T} - T1J^{T} + T1T2^{T}.$$

• It follows that $(J - T1)(J - T2)^T$ and $T1T2^T$ have the corresponding terms equal mod 2.

The core of our (n, k) = (27, 16) geometry

- As n k = 11, the 10 core digits should be partitioned as 3 + 3 + 3 + 1.
- replacing each core tile *T* in (*n*, *k*) = (23, 16) with *J* − *T* changes 1 + 1 + 1 + 3 to 3 + 3 + 3 + 1.
- This change replaces $T1T2^{T}$ by $(J T1)(J T2)^{T}$ which has the same parity in all terms.
- This gives the following core

(T4N	T12N	T12N	T12N
	T12N	Τ4	<i>T</i> 12	T12
	T12N	<i>T</i> 12	Τ4	T12
	T12N	<i>T</i> 12	<i>T</i> 12	T4 /

• This gives a full Shaddow geometry.

• Our reish for the matrix is:

(J_9	$J_{9 \times 4}$	$0_{9 \times 4}$	$0_{9 \times 4}$	$0_{9 \times 4}$	$0_{9 \times 4}$	
	$J_{4 imes 9}$	$0_{4 \times 4}$	<i>K</i> 1	K2	K3	<i>K</i> 4	
	$0_{4 imes 9}$	$K1^{T}$	0 _{4×4}	$0_{4 \times 4}$	$0_{4 \times 4}$	0 _{4×4}	_
	$0_{4\times9}$	$K2^T$	0 _{4×4}	$0_{4 \times 4}$	$0_{4 \times 4}$	$0_{4 \times 4}$	
	$0_{4 imes 9}$	$K3^T$	0 _{4×4}	$0_{4 \times 4}$	$0_{4 \times 4}$	$0_{4 \times 4}$	
	$0_{4 imes 9}$	$K4^T$	$0_{4 \times 4}$	$0_{4 \times 4}$	$0_{4 \times 4}$	$0_{4 \times 4}$)

- It corresponds to the type $(z_{13}, z_{11}, z_9, z_7, z_5, z_3, z_1) = (8, 0, 4, 0, 0, 0, 16).$
- The core is obtained from that of n = 21, k = 16 by adjoinning each tile T to becomes J - T.
- This gives a full geometry.

The geometry for (n, k) = (21, 16)

• The reish matrix is

1	J_1	$J_{1 imes 4}$	$0_{1\times 4}$	$0_{1 \times 4}$	$0_{1 \times 4}$	$0_{1 \times 4}$	
	$J_{4 \times 1}$	$0_{4 \times 4}$	<i>K</i> 1	K2	K3	<i>K</i> 4	
	$0_{4 imes 1}$	$K1^{T}$	0 _{4×4}	$0_{4 \times 4}$	$0_{4 \times 4}$	$0_{4 \times 4}$	
	$0_{4 imes 1}$	$K2^T$	$0_{4 \times 4}$	$0_{4 \times 4}$	$0_{4 \times 4}$	$0_{4 \times 4}$	
	$0_{4 imes 1}$	$K3^T$	0 _{4×4}	$0_{4 \times 4}$	$0_{4 \times 4}$	$0_{4 \times 4}$	
	$0_{4\times 1}$	$K4^T$	0 _{4×4}	$0_{4\times4}$	$0_{4\times4}$	$0_{4 imes 4}$	

- Each line and point intersect each tile in a single digit,
- It holds that 1 + 1 + 1 + 1 = n k 1 = 21 16 1.
- As in any projective geometry of order $q \in \mathbb{Z}$, it holds that $z_1 = q^2 + q = 20$.

The reish of the core

- The reish of the inner core can be normalized so that it will include only *I*₄ matrices.
- After this normalization S becomes

$\int J_1$	$J_{1 imes 4}$	0 _{1×4}	01	L×4	$0_{1\times 1}$	4	$0_{1\times 4}$
$J_{4\times 1}$	$0_{4 \times 4}$	<i>K</i> 1	ŀ	< 2	K3		K4
0 _{4×1}	$K1^T$		4	<i>I</i> ₄	I_4	I_4	
0 _{4×1}	$K2^T$		4	?	?	?	_
0 _{4×1}	$K3^T$		4	?	?	?	
$\setminus 0_{4 \times 1}$	$K4^T$		4	?	?	?)

- All the matrices denoted with question marks are permutation matrices.
- The well known projective geometry P²(𝔽₄) has a matrix of this form.

- The 4 permutation matrices on each of rows and columns of the core must sum up to J.
- Each row 10-21 determines a permutation $\sigma = (i_1, i_2, i_3, i_4)$ where i_i is the position of the digit 1 in the j^{th} tile.
- Thus each layer gives a 4×4 latin square.

Multiple Latin Squares

- Denote $\mathscr{F} = \mathscr{F}_4 = \{1, 2, 3, 4\}.$
- The latin square defined by rows 10-13 can be presented as a function *ls* : 𝔅² → 𝔅 each of which partial functions are 1-1.
- Similarly rows 14-17 and 18-21 give latin squares.
- All those latin squares can be put together in a function
 3ls: 𝔅² → 𝔅³ such that each coordinate projection of 3ls into 𝔅 is a latin square.

Mutually orthogonal Latin Squares

- The above 3/s is a subgraph of \mathscr{F}^5 with the property that any projection into coordinates \mathscr{F}^2 is 1-1 and onto.
- This object is known as a triple of Mutually Orthogonal Latin Squares (MOLS).
- For a given number $q \in \mathbb{Z}$, there exists at most q 1-upple of MOLS.
- For a given number q ∈ Z, (there exists a q − 1-upple of q × q MOLS) ⇔ (There exists a planar projective geometry of order q).
- It is conjectured that the above condition holds \leftarrow q is a prime power.