Preliminaries Covering \mathbb{A}_9 Covering \mathbb{A}_{11} Covering M_{24}

Covering Groups with Proper Subgroups

Michael Epstein*, Spyros Magliveras, Daniela Nikolova-Popova

Department of Mathematical Sciences Florida Atlantic University

> ACA 2015 Conference August 26-30, 2015

Outline

2 Covering A_9

3 Covering A_{11}

4 Covering M₂₄

伺 ト イヨト イヨト

э

Finite and Minimal Covers

Definition

A finite cover of a group G is a collection $C = \{H_1, ..., H_n\}$ of proper subgroups of G such that $G = \bigcup_{i=1}^n H_i$. Such a cover C is called *minimal* if $|C| \leq |\mathcal{D}|$ for every finite cover \mathcal{D} of G.

Covers cont'd

Not every group admits a finite cover by proper subgroups (e.g. cyclic groups). However,

Fact

Any group with a finite noncyclic homomorphic image is a union of finitely many proper subgroups.

Throughtout the remainder of this talk we will onkly be concerned with finite noncyclic groups.

Covering Numbers

Definition

Let G be a group with a finite noncyclic homomorphic image. The covering number, $\sigma(G)$, of G is the size of a minimal cover of G, i.e. $\sigma(G) = \min\{|\mathcal{C}| : \mathcal{C} \text{ is a finite cover of } G\}$.

▲ □ ▶ ▲ □ ▶ ▲

Primary Elements

Definition

Let $g \in G$. We say that g is a *principal element* of G if the cyclic subgroup $\langle g \rangle$ generated by g is maximal among cyclic subgroups of G.

Note that a collection $\{H_1, ..., H_n\}$ of proper subgroups of G is a cover of G if and only if $\bigcup_{i=1}^n H_i$ contains all of the principal elements of G.

- 4 同 6 4 日 6 4 日 6

Maximal Subgroups

Suppose that C is a cover of a finite group G by proper subgroups. Replacing each member of C by maximal subgroup of G containing it, we obtain a cover C' of G by maximal subgroups and $|C'| \leq |C|$. Consequently, when computing the covering number of a finite group, it suffices to consider covers by maximal subgroups.

Some Known Results

- M.J. Tomkinson: If G is a finite solvable group and p^α is the order of the smallest chief factor of G with more than one complement then σ(G) = p^α + 1.
- R.A. Bryce, V. Fedri, and L. Serena: If $G \cong PSL(2, q), PGL(2, q)$ or GL(2, q) and $q \neq 2, 5, 7, 9$, then $\sigma(G) = \frac{1}{2}q(q+1)$ if q is even and $\sigma(G) = \frac{1}{2}q(q+1) + 1$ if q is odd.
- A. Maróti: $\sigma(\mathbb{S}_n) = 2^{n-1}$ if *n* is odd and $n \neq 9$, and $\sigma(\mathbb{S}_n) \leq 2^{n-1}$ if *n* is even.

□ > < = > <

What is Known about $\sigma(\mathbb{A}_n)$

- A. Maróti: σ(A_n) ≥ 2ⁿ⁻² with equaility if and only if n ≡ 2 (mod 4).
- J.H.E Cohn: $\sigma(\mathbb{A}_5) = 10$.
- R.A. Bryce et al.: $\mathbb{A}_6 \cong PSL(2,9) \Rightarrow \sigma(\mathbb{A}_6) = 16.$
- L-C Kappe and J. Redden: $\sigma(\mathbb{A}_7) = 31, \sigma(\mathbb{A}_8) = 71$, and $127 \le \sigma(\mathbb{A}_9) \le 157$.
- R.F. Morse: $141 \leq \sigma(A_9)$.

The Mathieu Groups and Their Covering Numbers

The Mathieu groups M_{11} , M_{12} , M_{22} , M_{23} , and M_{24} were the first sporadic simple groups to be discovered. Each is a multiply transitive group and each can be realized as the automorphism group of a Steiner system.

- P. E. Holmes: $\sigma(M_{11}) = 23$, $\sigma(M_{22}) = 771$, and $\sigma(M_{23}) = 41079$.
- L-C Kappe, D. Nikolova-Popova and E. Swartz: $\sigma(M_{12}) = 208.$

伺 ト く ヨ ト く ヨ ト

Outline

3 Covering \mathbb{A}_{11}

4 Covering M₂₄

э

A ►

(*) *) *) *)

Maximal Subgroups of \mathbb{A}_9

We begin with the conjugacy classes of maximal subgroups of \mathbb{A}_9 (from the Atlas of Finite Groups):

Class	Isomorphism Type	Number
\mathcal{M}_1	\mathbb{A}_8	9
\mathcal{M}_2	\mathbb{S}_7	36
\mathcal{M}_3	$(\mathbb{A}_6 imes \mathbb{Z}_3) : \mathbb{Z}_2$	84
\mathcal{M}_4	$L_2(8)$: \mathbb{Z}_3	120
\mathcal{M}_5	$L_2(8)$: \mathbb{Z}_3	120
\mathcal{M}_6	$(\mathbb{A}_5 imes \mathbb{A}_4) : \mathbb{Z}_2$	126
\mathcal{M}_7	\mathbb{Z}_3^3 : \mathbb{S}_4	280
\mathcal{M}_8	\mathbb{Z}_3^2 : 2A ₄	840

| 4 同 🕨 🔺 🖹 🕨 🤘

Principal Elements of \mathbb{A}_9

We also determine the principal elements of A_9 :

Cycle Type	Order	Number
$4^2 \cdot 1^1$	4	11340
$6^1 \cdot 2^1 \cdot 1^1$	6	30240
$7^1 \cdot 1^2$	7	25920
9^{1}	9	40320
$5^1 \cdot 2^2$	10	9072
$4^1 \cdot 3^1 \cdot 2^1$	12	15120
$5^1 \cdot 3^1 \cdot 1^1$	15	24192

・ 同 ト ・ ヨ ト ・ ヨ ト

An Upper Bound for $\sigma(\mathbb{A}_9)$

- The subgroups from \mathcal{M}_1 and \mathcal{M}_2 cover all principal elements except those of order 9.
- It turns out that the elements of order 9 can be covered with 56 subgroups from each of classes \mathcal{M}_4 and \mathcal{M}_5 .
- An upper bound for the covering number of \mathbb{A}_9 is 9 + 36 + 112 = 157.

Is This Cover Minimal?

Theorem

The covering number of A_9 is 157.

Sketch of the Proof.

- Construct the 40902 × 1615 incidence matrix between the cyclic subgroups generated by the principal elements and the maximal subgroups of A₉.
- Ose integer linear programming to compute the minimal number of subgroups sufficient to cover the principal elements.

□→ < □→</p>

Preliminaries Covering Ag Covering A11 Covering M24

Outline

2 Covering A_9

3 Covering A_{11}

4 Covering M₂₄

э

伺 ト イヨト イヨト

Maximal Subgroups of \mathbb{A}_{11}

We begin the same way as before, with the conjugacy classes of maximal subgroups of \mathbb{A}_{11} :

Class	Isomorphism Type	Number
\mathcal{M}_1	\mathbb{A}_{10}	11
\mathcal{M}_2	S9	55
\mathcal{M}_3	$(\mathbb{A}_8 imes \mathbb{Z}_3) : \mathbb{Z}_2$	165
\mathcal{M}_4	$(\mathbb{A}_7 imes \mathbb{A}_4) : \mathbb{Z}_2$	330
\mathcal{M}_5	$(\mathbb{A}_6 imes \mathbb{A}_5) : \mathbb{Z}_2$	462
\mathcal{M}_6	M_{11}	2520
\mathcal{M}_7	M_{11}	2520

・ 同 ト ・ 三 ト ・

Preliminaries Covering Ag Covering A11 Covering M24

Principal Elements of A_{11}

Cycle Type	Order	Number
$5^2 \cdot 1^1$	5	798336
$6^1\cdot 3^1\cdot 2^1$	6	1108800
$6^1 \cdot 2^1 \cdot 1^3$	6	554400
$8^1\cdot 2^1\cdot 1^1$	8	2494800
$9^1 \cdot 1^2$	9	2217600
11^{1}	11	3628800
$6^1 \cdot 4^1 \cdot 1^1$	12	1663200
$4^2 \cdot 3^1$	12	415800
$4^1\cdot 3^1\cdot 2^1\cdot 1^2$	12	831600
$7^1 \cdot 2^2$	14	712800
$5^1 \cdot 3^2$	15	443520
$5^1\cdot 3^1\cdot 1^3$	15	443520
$5^1\cdot 4^1\cdot 2^1$	20	997920
$7^1\cdot 3^1\cdot 1^1$	21	1900800 🕫 🗸 🗄 🗸 🖶 🗸

Epstein, Magliveras, Popova

Covering Groups with Proper Subgroups

æ

Handling Subgroups of Order 11

In this case we are able to determine the covering number without resorting to linear programming. The first step is proving the following:

Proposition

The 2520 subgroups form class \mathcal{M}_6 (or \mathcal{M}_7) are sufficient to cover the cyclic subgroups of \mathbb{A}_{11} of order 11. Moreover, these cyclic subgroups cannot be covered with fewer than 2520 maximal subgroups of \mathbb{A}_{11} .

An immediate consequence is that the covering number of \mathbb{A}_{11} is at least 2520.

・ 同・ ・ ヨ・

An Upper Bound for the Covering Number

Each principal element σ not of order 11 satifies at least one of the following:

- σ fixes a point.
- σ fixes a 2-subset of $\{1, 2, ..., 11\}$.
- σ fixes a 3-subset of $\{1, 2, ..., 11\}$.

Consequently we can cover \mathbb{A}_{11} by 11+55+165+2520=2751 maximal subgroups.

Preliminaries Covering Ag Covering A11 Covering M24

Establishing the Lower Bound

We claim that this cover is minimal. The idea of the proof is as follows: Suppose C is a cover of A_{11} by maximal subgroups, and let $x_i = |\mathcal{M}_i \cap C|, i = 1, ..., 5$. Then,

1
$$x_3 + x_4 \ge 165$$

2
$$x_1 < 11 \Rightarrow x_3 + x_4 + x_5 \ge 330$$
, and

$$x_2 < 55 \Rightarrow x_2 + x_3 + x_4 + x_5 \ge 221.$$

A 3 1

The lower Bound cont'd

- The basic idea is that we overestimate the number of elements of certain primary types that get covered by a collection of subgroups to obtain an inequality involving the *x_i*.
- The trick is to get estimates that are accurate enough to be useful.

The lower Bound cont'd

For example, we can look at the elements of type $4^2 \cdot 3^1$ which appear only in the maximal subgroups from classes \mathcal{M}_3 and \mathcal{M}_4 . Each subgroup from class \mathcal{M}_3 or \mathcal{M}_4 contains exactly 2520 of these elements, and there are a total of 415800 of them in \mathbb{A}_{11} . Then we must have $2520(x_3 + x_4) \ge 415800$, and so $x_3 + x_4 \ge 415800/2520 = 165$. Preliminaries Covering Ag Covering A11 Covering M24

Main Result cont'd

Having established these claims, one has that if ${\mathcal C}$ is a minimal cover of ${\mathbb A}_{11},$ then

- $x_1 = 11$
- *x*₂ = 55
- $x_3 + x_4 \ge 165$ and
- $|\mathcal{C} \cap (\mathcal{M}_6 \cup \mathcal{M}_7)| \ge 2520.$

Consequently $|\mathcal{C}| \geq 11+55+165+2520=2751,$ thereby establishing

Theorem

The covering number of \mathbb{A}_{11} is 2751.

Outline

2 Covering A₉

3 Covering A_{11}

э

A ►

(*) *) *) *)

The Maximal Subgroups of M_{24}

Class	Isomorphism Type	Number
\mathcal{M}_1	M ₂₃	24
\mathcal{M}_2	$M_{22}:\mathbb{Z}_2$	276
\mathcal{M}_3	$\mathbb{Z}_2^4:\mathbb{A}_8$	759
\mathcal{M}_4	$M_{12}:\mathbb{Z}_2$	1288
\mathcal{M}_5	\mathbb{Z}_2^6 : $\mathbb{Z}_3.\mathbb{S}_6$	1771
\mathcal{M}_6	$L_{3}(4) : \mathbb{S}_{3}$	2024
\mathcal{M}_7	\mathbb{Z}_2^6 : $(L_3(2)\setminus\mathbb{S}_3)$	3795
\mathcal{M}_8	$L_2(23)$	40320
\mathcal{M}_9	$L_{2}(7)$	1457280

э

Principal Elements of M_{24}

Cycle Type	Order	Number
$8^2\cdot 4^1\cdot 2^1\cdot 1^2$	8	15301440
$10^2 \cdot 2^2$	10	12241152
$11^2 \cdot 1^2$	11	22256640
$12^1\cdot 6^1\cdot 4^1\cdot 2^1$	12	20401920
12 ²	12	20401920
$14^1\cdot 7^1\cdot 2^1\cdot 1^1a$	14	17487360
$14^1\cdot 7^1\cdot 2^1\cdot 1^1b$	14	17487360
$15^1\cdot 5^1\cdot 3^1\cdot 1^1a$	15	16321536
$15^1\cdot 5^1\cdot 3^1\cdot 1^1b$	15	16321536
$21^1 \cdot 3^1 a$	21	11658240
$21^1 \cdot 3^1 b$	21	11658240
$23^1 \cdot 1^1 a$	23	10644480
$23^1 \cdot 1^1 b$	23	10644480

Epstein, Magliveras, Popova Covering Groups with Proper Subgroups

< ロ > < 同 > < 三 > <

An Upper Bound for $\sigma(M_{24})$

We note that $\mathcal{M}_1 \cup \mathcal{M}_4 \cup \mathcal{M}_6$ is a cover of M_{24} by 3336 subgroups, and therefore we have $\sigma(M_{24}) \leq 3336$.

- A - B - M

Establishing the Lower Bound

Suppose that C is a cover of M_{24} by maximal subgroups and let $x_i = |C \cap M_i|$ for i = 1, ..., 9. As we did for A_{11} , we derive a system of linear inequalities in the x_i .

- A 🗄 🕨 A

Establishing the Lower Bound

For example, consider the elements with cycle type $23^1 \cdot 1^1$ which appear in the subgroups from classes \mathcal{M}_1 and \mathcal{M}_8 only. There are 40320 principal cyclic subgroups of order 23 in each subgroup from class \mathcal{M}_1 , and 24 in each subgroup from class \mathcal{M}_8 . Consequently,

 $40320x_1 + 24x_8 \ge 967680.$

Simplifying, we have

 $1680x_1 + x_8 \ge 40320.$

Establishing the Lower Bound

Proceeding accordingly with the elements of types $21^1 \cdot 3^1$, 12^2 , $10^2 \cdot 2^2$, and $12^1 \cdot 6^1 \cdot 4^1 \cdot 2^1$ we derive the following system of linear inequalities:

- $1680x_1 + x_8 \ge 40320$
- $15x_6 + 8x_7 \ge 30360$
- $3960x_4 + 2880x_5 + 1344x_7 + 253x_8 \ge 5100480$
- $308x_2 + 99x_4 + 24x_5 \ge 42504$
- $385x_2 + 140x_3 + 165x_4 + 120x_5 + 28x_7 \ge 106260$.

(人間) システレ イテレ

Establishing the Lower Bound

These inequalities, along with the conditions $0 \le x_i \le |\mathcal{M}_i|$ must be satisfied for any cover C of \mathcal{M}_{24} . We find the minimum value of $x_1 + x_2 + ... + x_9$ subject to these constraints using linear programming, which is indeed 3336, thereby establishing

Theorem

The covering number of M_{24} is 3336.

Thank you for listening!

æ

<ロト <部ト < 注ト < 注ト