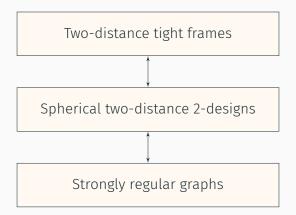
SPHERICAL EMBEDDINGS OF STRONGLY REGULAR GRAPHS

Alexey Glazyrin The University of Texas Rio Grande Valley August 27, 2015 Algebraic Combinatorics and Applications The first annual Kliakhandler Conference

This is a joint work with Alexander Barg, Kasso Okoudjou, and Wei-Hsuan Yu.



A finite collection of vectors $S = \{x_i, 1 \le i \le N\} \subset \mathbb{R}^n$ is called a finite frame for the Euclidean space \mathbb{R}^n if there are constants $0 < A \le B < \infty$ such that for all $x \in \mathbb{R}^n$

$$A||x||^2 \le \sum_{i=1}^N \langle x, x_i \rangle^2 \le B||x||^2. \tag{1}$$

If A = B, then S is called an A-tight frame.

An equivalent condition for A-tight frames is $Ax = \sum_{i=1}^{N} \langle x, x_i \rangle x_i$ for all $x \in \mathbb{R}^n$.

If in addition $||x_i|| = 1$ for all i, then S is a unit-norm tight frame.

Theorem (Benedetto-Fickus, 2003)

 ${\sf lf}\,{\sf N}>{\sf n}\,{\sf then}$

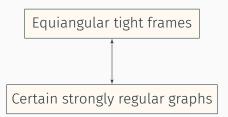
$$\sum_{i,j=1}^N \langle x_i, x_j \rangle^2 \geq \frac{N^2}{n}$$

with equality if and only if S is a tight frame.

(2)

A finite collection of unit vectors $S \subset \mathbb{R}^n$ is called a spherical two-distance set if there are two numbers a and b such that the inner products of distinct vectors from S are either a or b. If at the same time S is a finite unit-norm tight frame, we call it a two-distance tight frame.

If $a + b \neq 0$, the definition of a tight frame immediately shows that S must be regular, i.e. the distribution of inner products is the same for each vector x_i . If the two inner products of a two-distance tight frame S satisfy the condition a = -b, then it is called an equiangular tight frame.



See Waldron (Linear Alg. Appl., vol. 41, pp. 2228-2242, 2009).

For a natural number t, a finite set of vectors $S = \{x_i, 1 \leq i \leq N\} \subset \mathbb{S}^{n-1} \text{ is called a spherical t-design if for any polynomial } f(x) \text{ of degree at most t}$

$$\frac{1}{|\mathbb{S}^{n-1}|} \int_{x \in \mathbb{S}^{n-1}} f(x) d\sigma(x) = \frac{1}{N} \sum_{i=1}^{n} f(x_i).$$
(3)

Examples:

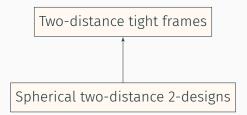
- · Icosahedron and dodecahedron are 5-designs
- · 120-cell and 600-cell are 11-designs
- · Root systems
- $\cdot\,$ Minimal vectors of the Leech lattice form an 11-design

 $S=\{x_i, 1\leq i\leq N\}\subset \mathbb{S}^{n-1}$ is a spherical 2-design if and only if

$$\sum_{i,j=1}^N \langle x_i,x_j\rangle^2 = \frac{N^2}{n} \text{ and } \sum_{i=1}^N x_i = 0 \tag{4}$$

 $S=\{x_i, 1\leq i\leq N\}\subset \mathbb{S}^{n-1}$ is a spherical 2-design if and only if

$$\sum_{i,j=1}^N \langle x_i,x_j\rangle^2 = \frac{N^2}{n} \text{ and } \sum_{i=1}^N x_i = 0 \tag{4}$$

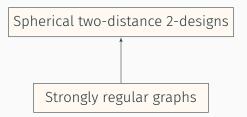


A regular graph of degree k on v vertices is called strongly regular if every two adjacent vertices have λ common neighbors and every two non-adjacent vertices have μ common neighbors. We use the notation SRG(v, k, λ , μ) to denote such a graph.

Examples:

- \cdot Cycle of length 5
- · Petersen graph
- · Hoffman-Singleton graph
- Conference graphs
- \cdot n \times n rook's graphs

Delsarte, Goethals, and Seidel obtained a spherical embedding of $\Gamma = SRG(v, k, \lambda, \mu)$ by associating a basis of \mathbb{R}^v with the vertices of Γ , projecting these vectors on an eigenspace of the adjacency matrix of Γ , and normalizing lengths of projections. They also showed that this embedding forms a two-distance 2-design. Delsarte, Goethals, and Seidel obtained a spherical embedding of $\Gamma = SRG(v, k, \lambda, \mu)$ by associating a basis of \mathbb{R}^v with the vertices of Γ , projecting these vectors on an eigenspace of the adjacency matrix of Γ , and normalizing lengths of projections. They also showed that this embedding forms a two-distance 2-design.

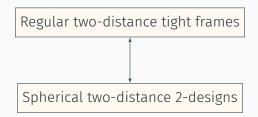


If S is a regular 2-distance tight frame in \mathbb{R}^n , then S is either an n-dimensional spherical 2-design, or is similar to an (n-1)-dimensional spherical 2-design contained in a subsphere of radius $\sqrt{1-1/n}$.

Proof.

Let $s = \sum_{i=1}^{N} x_i$. The value $t := \langle x_i, s \rangle$ is the same for all i. Using an equivalent definition of tight frames, we get $\frac{N}{n}s = \sum_{i=1}^{N} tx_i = ts$. Hence either s = 0 or $t = \frac{N}{n}$.

If S is a regular 2-distance tight frame in \mathbb{R}^n , then S is either an n-dimensional spherical 2-design, or is similar to an (n-1)-dimensional spherical 2-design contained in a subsphere of radius $\sqrt{1-1/n}$.

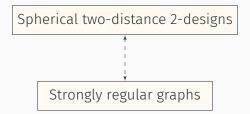


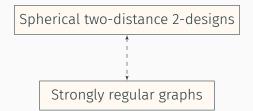
If S is a regular two-distance tight frame, then its associated graph Γ_1 (and Γ_2 as the complement of Γ_1) is a strongly regular graph.

Proof.

Use a theorem by Delsarte, Goethals, Seidel for 2-designs or just check the definition of tight frames carefully.

If S is a regular two-distance tight frame, then its associated graph Γ_1 (and Γ_2 as the complement of Γ_1) is a strongly regular graph.





Question

What two-distance spherical embeddings of SRG's form 2-designs?

For a given SRG(v, k, λ , μ) which is not a complete or empty graph, its adjacency matrix has three mutually orthogonal eigenspaces (subspaces) that correspond to three eigenvalues: the all-one vector **1** with eigenvalue k and subspaces E₁ and E₂.

Projecting an orthonormal basis of \mathbb{R}^n on **1** and normalizing gives a trivial 1-dimensional embedding, where all inner products are 1.

Projections on E_1 or on E_2 after normalization give two-distance 2-designs.

Direct orthogonal sum of two spherical embeddings is a spherical embedding.

For a given $\Gamma = SRG(N, k, \lambda, \mu)$, any two-distance spherical embedding may be represented as a direct orthogonal sum of the trivial and Delsart-Goethals-Seidel embeddings.

Proof.

Since the Gram matrix is positive definite, the set of possible values of scalar products a and b associated to embeddings of Γ forms a triangle on (a, b)-plane with vertices corresponding to the trivial and two Delsarte-Goethals-Seidel embeddings. Therefore, any pair (a, b) may be obtained as a non-negative linear combination of scalar products from these embeddings.

Theorem

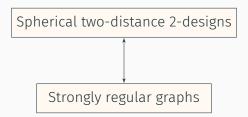
Any spherical two-distance 2-design with graph $\Gamma = SRG(N, k, \lambda, \mu)$ for one of the distances is either one of two Delsarte-Goethals-Seidel embeddings, or a regular (N - 1)-dimensional simplex.

Proof.

Use the previous proposition and the description of embeddings via eigenspaces of the adjacency matrix of Γ.

Theorem

Any spherical two-distance 2-design with graph $\Gamma = SRG(N, k, \lambda, \mu)$ for one of the distances is either one of two Delsarte-Goethals-Seidel embeddings, or a regular (N - 1)-dimensional simplex.



Theorem

Let S be a regular two-distance tight frame in \mathbb{R}^n . Then S forms a spherical two-distance 2-design or a shifted 2-design. In either case S can be obtained as a spherical embedding of a strongly regular graph. Under spherical embedding, every strongly regular graph gives rise to three different two-distance 2-designs and therefore, to six different two-distance tight frames, two of which are regular simplices.

$SRG(N, k, \lambda, \mu)$	2-design (n, N, a, b)
	shifted 2-design (n, N, a, b)
(10, 6, 3, 4)	$(4, 10, \frac{1}{6}, -\frac{2}{3}); (5, 10, \frac{1}{3}, -\frac{1}{3});$
	$(5, 10, \frac{1}{3}, -\frac{1}{3}); (6, 10, \frac{4}{9}, -\frac{1}{9})$
(15, 8, 4, 4)	$(5, 15, \frac{1}{4}, -\frac{1}{2}); (9, 15, \frac{1}{6}, -\frac{1}{4});$
	$(6, 15, \frac{3}{8}, -\frac{1}{4}); (10, 15, \frac{1}{4}, -\frac{1}{8})$
(16, 10, 6, 6)	$(5, 16, \frac{1}{5}, -\frac{3}{5}); (10, 16, \frac{1}{5}, -\frac{1}{5});$
	$(6, 16, \frac{1}{3}, -\frac{1}{3}); (11, 16, \frac{3}{11}, -\frac{1}{11})$

THANK YOU!