Lattice Basis Reduction techniques based on the LLL algorithm

Bal K. Khadka

Michigan Technological University, Houghton, Michigan 49931, USA

August 26 - August 30, 2015

イロト イポト イラト イラト

Contents

- 1 Introduction
- 2 Goal
- 3 Basis Reduction
- 4 Lattice Diffusion and Sublattice Fusion Algorithm
- 5 Hill Climbing Algorithm
- 6 Experiment & Results

7 References

8 The End.

• • • • •

Introduction

Lattice Basis:

Given *m* linearly independent vectors $B = (b_1, b_2, ..., b_m)^T$ in Euclidean *n*-space \mathbb{R}^n where $m \le n$, the lattice \mathcal{L} generated by them is defined as $\mathcal{L}(B) = \{\sum x_i b_i | x_i \in \mathbb{Z}\}$. That is $\mathcal{L}(B) = \{x^T B | x \in \mathbb{Z}^m\}$.

Let $B = (b_1, b_2, ..., b_m)^T$ be a basis of $\mathcal{L} \subset \mathbb{R}^n$ and U be an integral unimodular matrix (an $m \times m$ integer matrix having determinant ± 1), then UB is another basis of \mathcal{L} .

Introduction

Lattice Basis:

Given *m* linearly independent vectors $B = (b_1, b_2, ..., b_m)^T$ in Euclidean *n*-space \mathbb{R}^n where $m \le n$, the lattice \mathcal{L} generated by them is defined as $\mathcal{L}(B) = \{\sum x_i b_i | x_i \in \mathbb{Z}\}$. That is $\mathcal{L}(B) = \{x^T B | x \in \mathbb{Z}^m\}$.

Let $B = (b_1, b_2, ..., b_m)^T$ be a basis of $\mathcal{L} \subset \mathbb{R}^n$ and U be an integral unimodular matrix (an $m \times m$ integer matrix having determinant ± 1), then UB is another basis of \mathcal{L} .

• □ ▶ • 4 🖓 ▶ • 3 ≥ ▶ • 3 ≥

Introduction

Minkowski Convex Body Theorem:

A convex set $S \subset \mathbb{R}^n$ which is symmetric about origin and with volume greater than $m2^n det(\mathcal{L})$ contains at least *m* non-zero distinct lattice pairs $\pm x_1, \pm x_2, \ldots \pm x_m$.

Corollary:

If $\mathcal{L} \subset \mathbb{R}^n$ is an n dimensional lattice wih determinant $det(\mathcal{L})$ then there is a nonzero $b \in \mathcal{L}$ such that $\mid b \mid \leq rac{2}{\sqrt{\pi}} [\Gamma(rac{n}{2}+1)]^rac{1}{n} (det(\mathcal{L}))^rac{1}{n}$.

Introduction

Minkowski Convex Body Theorem:

A convex set $S \subset \mathbb{R}^n$ which is symmetric about origin and with volume greater than $m2^n det(\mathcal{L})$ contains at least *m* non-zero distinct lattice pairs $\pm x_1, \pm x_2, \ldots \pm x_m$.

Corollary:

If $\mathcal{L} \subset \mathbb{R}^n$ is an *n* dimensional lattice with determinant $det(\mathcal{L})$ then there is a nonzero $b \in \mathcal{L}$ such that $|b| \leq \frac{2}{\sqrt{\pi}} [\Gamma(\frac{n}{2}+1)]^{\frac{1}{n}} (det(\mathcal{L}))^{\frac{1}{n}}$.

Goal

Given an integral lattice basis of a lattice $\mathcal{L} \subset \mathbb{R}^n$ as input, to find a vector in the lattice \mathcal{L} with a minimal Euclidean norm.

Bal K. Khadka (August 26 - August 30, 2015) Algebraic Combinatorics and Applications

(日) (同) (三) (三)

Gram-Schimdt Orthogonalization (GSO)

• Given a basis $B = (b_1, b_2, ..., b_m)^T$ for a vector space \mathbb{R}^n , we can use GSO process to construct an orthogonal basis $B^* = (b_1^*, b_2^*, ..., b_m^*)^T$ such that $b_1^* = b_1$ and $b_i^* = b_i - \sum_{j=1}^{i-1} \mu_{ij} b_j^*$ ($2 \le i \le m$), $\mu_{ij} = \frac{\langle b_i, b_j^* \rangle}{\langle b_j^*, b_j^* \rangle}$ ($1 \le j < i \le n$).

• $B = MB^*$, where $M = (\mu_{ij})$ is a lower triangular matrix.

• For any non zero lattice vector $b \in \mathcal{L} \subset \mathbb{R}^n$ we have $|b| \ge \min \{ |b_1^*|, \cdots, |b_n^*| \}.$

Gram-Schimdt Orthogonalization (GSO)

- Given a basis $B = (b_1, b_2, ..., b_m)^T$ for a vector space \mathbb{R}^n , we can use GSO process to construct an orthogonal basis $B^* = (b_1^*, b_2^*, ..., b_m^*)^T$ such that $b_1^* = b_1$ and $b_i^* = b_i - \sum_{j=1}^{i-1} \mu_{ij} b_j^*$ ($2 \le i \le m$), $\mu_{ij} = \frac{\langle b_i, b_j^* \rangle}{\langle b_j^*, b_j^* \rangle}$ ($1 \le j < i \le n$).
- $B = MB^*$, where $M = (\mu_{ij})$ is a lower triangular matrix.
- For any non zero lattice vector $b \in \mathcal{L} \subset \mathbb{R}^n$ we have $|b| \ge \min\{|b_1^*|, \cdots, |b_n^*|\}.$

Gram-Schimdt Orthogonalization (GSO)

• Given a basis $B = (b_1, b_2, ..., b_m)^T$ for a vector space \mathbb{R}^n , we can use GSO process to construct an orthogonal basis $B^* = (b_1^*, b_2^*, ..., b_m^*)^T$ such that $b_1^* = b_1$ and $b_i^* = b_i - \sum_{j=1}^{i-1} \mu_{ij} b_j^*$ ($2 \le i \le m$), $\mu_{ij} = \frac{\langle b_i, b_j^* \rangle}{\langle b_j^*, b_j^* \rangle}$ ($1 \le j < i \le n$).

• $B = MB^*$, where $M = (\mu_{ij})$ is a lower triangular matrix.

• For any non zero lattice vector $b \in \mathcal{L} \subset \mathbb{R}^n$ we have $|b| \ge \min\{|b_1^*|, \cdots, |b_n^*|\}.$

LLL Reduced Bases

- Let $\mathcal{L}(B)$ with $B = (b_1, b_2, ..., b_m)$ be a lattice in \mathbb{R}^n with GSO vector $b_1^*, b_2^*, ..., b_m^*$. The basis *B* is called α reduced (or LLL-reduced with the reduction parameter $\alpha \in (\frac{1}{4}, 1)$) if the following conditions hold:
- a) $|\mu_{i,j}| \leq \frac{1}{2}$ for $1 \leq j < i \leq m$,
- b) $|b_i^* + \mu_{i,i-1}b_{i-1}^*|^2 \ge \alpha |b_{i-1}^*|^2$ for $2 \le i \le m$.

LLL Reduced Bases

- Let $\mathcal{L}(B)$ with $B = (b_1, b_2, ..., b_m)$ be a lattice in \mathbb{R}^n with GSO vector $b_1^*, b_2^*, ..., b_m^*$. The basis *B* is called α reduced (or LLL-reduced with the reduction parameter $\alpha \in (\frac{1}{4}, 1)$) if the following conditions hold:
- a) $|\mu_{i,j}| \leq \frac{1}{2}$ for $1 \leq j < i \leq m$,
- b) $|b_i^* + \mu_{i,i-1}b_{i-1}^*|^2 \ge \alpha |b_{i-1}^*|^2$ for $2 \le i \le m$.

LLL Reduced Bases

- Let $\mathcal{L}(B)$ with $B = (b_1, b_2, ..., b_m)$ be a lattice in \mathbb{R}^n with GSO vector $b_1^*, b_2^*, ..., b_m^*$. The basis *B* is called α reduced (or LLL-reduced with the reduction parameter $\alpha \in (\frac{1}{4}, 1)$) if the following conditions hold:
- a) $|\mu_{i,j}| \leq \frac{1}{2}$ for $1 \leq j < i \leq m$,
- b) $|b_i^* + \mu_{i,i-1}b_{i-1}^*|^2 \ge \alpha |b_{i-1}^*|^2$ for $2 \le i \le m$.

Lattice Diffusion and Sublattice Fusion Algorithm

- Input: Basis B = (b)_{m×n} of L ⊂ ℝⁿ, β < m → Block Size and N, M → parameters
- Take N permutation matrices P_j, (1 ≤ j ≤ N) with radius close to m.
- M ← ⋃_{i=1}^M β_i ↑ Sort{LLL(P_jB)|length of (LLL(P_jB)) is minimum for 1 ≤ j ≤ N}.
- $B' \leftarrow LLL(M)$
- Output: a vector of minimal length

(日) (同) (三) (

Lattice Diffusion and Sublattice Fusion Algorithm

- Input: Basis B = (b)_{m×n} of L ⊂ ℝⁿ, β < m → Block Size and N, M → parameters
- Take N permutation matrices P_j , $(1 \le j \le N)$ with radius close to m.
- M ← ∪_{i=1}^M β_i ↑ Sort{LLL(P_jB)|length of (LLL(P_jB)) is minimum for 1 ≤ j ≤ N}.

• $B' \leftarrow LLL(M)$

• Output: a vector of minimal length

• □ ▶ • • □ ▶ • • □ ▶ •

Lattice Diffusion and Sublattice Fusion Algorithm

- Input: Basis B = (b)_{m×n} of L ⊂ ℝⁿ, β < m → Block Size and N, M → parameters
- Take N permutation matrices P_j , $(1 \le j \le N)$ with radius close to m.
- $M \leftarrow \bigcup_{i=1}^{M} \beta_i \uparrow Sort\{LLL(P_jB) | length of (LLL(P_jB)) is$ minimum for $1 \le j \le N\}$.

• $B' \leftarrow LLL(M)$

• **Output**: a vector of minimal length

• □ ▶ • • □ ▶ • • □ ▶ •

Lattice Diffusion and Sublattice Fusion Algorithm

- Input: Basis B = (b)_{m×n} of L ⊂ ℝⁿ, β < m → Block Size and N, M → parameters
- Take N permutation matrices P_j , $(1 \le j \le N)$ with radius close to m.
- $M \leftarrow \bigcup_{i=1}^{M} \beta_i \uparrow Sort\{LLL(P_jB) | length of (LLL(P_jB)) is$ minimum for $1 \le j \le N\}$.
- $B' \leftarrow LLL(M)$

• Output: a vector of minimal length

• □ ▶ • • □ ▶ • • □ ▶ •

Lattice Diffusion and Sublattice Fusion Algorithm

- Input: Basis B = (b)_{m×n} of L ⊂ ℝⁿ, β < m → Block Size and N, M → parameters
- Take N permutation matrices P_j , $(1 \le j \le N)$ with radius close to m.
- $M \leftarrow \bigcup_{i=1}^{M} \beta_i \uparrow Sort\{LLL(P_jB) | \text{length of } (LLL(P_jB)) \text{ is minimum for } 1 \le j \le N\}.$
- $B' \leftarrow LLL(M)$
- **Output:** a vector of minimal length

• □ ▶ • 4 🖓 ▶ • 3 ≥ ▶ • 3 ≥

Hill Climbing Algorithm

- **Begin**: Basis $B = (b)_{m \times n}$ of $\mathcal{L} \subset \mathbb{R}^n$.
- Take k permutation matrices P_j, (2 ≤ j ≤ k) such that d(P_j, I_m) = r (r ≤ m). where d is a hamming distance.
- $B \leftarrow \{LLL(P_jB) | length of (LLL(P_jB)) is minimum for <math>1 \le j \le k\}.$
- End if the desired bound is achieved, or no further improvement is observed.
- else,
- go to the step 2.

< ロ > (同 > (回 > (回 >))

Hill Climbing Algorithm

- **Begin**: Basis $B = (b)_{m \times n}$ of $\mathcal{L} \subset \mathbb{R}^n$.
- Take k permutation matrices P_j , $(2 \le j \le k)$ such that $d(P_j, I_m) = r \ (r \le m)$. where d is a hamming distance.
- B ← {LLL(P_jB)|length of (LLL(P_jB)) is minimum for 1 ≤ j ≤ k}.
- End if the desired bound is achieved, or no further improvement is observed.
- else,
- go to the step 2.

Hill Climbing Algorithm

- Begin: Basis $B = (b)_{m \times n}$ of $\mathcal{L} \subset \mathbb{R}^n$.
- Take k permutation matrices P_j , $(2 \le j \le k)$ such that $d(P_j, I_m) = r \ (r \le m)$. where d is a hamming distance.
- $B \leftarrow \{LLL(P_jB) | \text{length of } (LLL(P_jB)) \text{ is minimum for } 1 \le j \le k\}.$
- End if the desired bound is achieved, or no further improvement is observed.
- else,
- go to the step 2.

Hill Climbing Algorithm

- Begin: Basis $B = (b)_{m \times n}$ of $\mathcal{L} \subset \mathbb{R}^n$.
- Take k permutation matrices P_j , $(2 \le j \le k)$ such that $d(P_j, I_m) = r \ (r \le m)$. where d is a hamming distance.
- $B \leftarrow \{LLL(P_jB) | \text{length of } (LLL(P_jB)) \text{ is minimum for } 1 \le j \le k\}.$
- End if the desired bound is achieved, or no further improvement is observed.
- else,
- go to the step 2.

Hill Climbing Algorithm

- Begin: Basis $B = (b)_{m \times n}$ of $\mathcal{L} \subset \mathbb{R}^n$.
- Take k permutation matrices P_j , $(2 \le j \le k)$ such that $d(P_j, I_m) = r \ (r \le m)$. where d is a hamming distance.
- $B \leftarrow \{LLL(P_jB) | \text{length of } (LLL(P_jB)) \text{ is minimum for } 1 \le j \le k\}.$
- End if the desired bound is achieved, or no further improvement is observed.
- else,

go to the step 2.

Hill Climbing Algorithm

- Begin: Basis $B = (b)_{m \times n}$ of $\mathcal{L} \subset \mathbb{R}^n$.
- Take k permutation matrices P_j , $(2 \le j \le k)$ such that $d(P_j, I_m) = r \ (r \le m)$. where d is a hamming distance.
- $B \leftarrow \{LLL(P_jB) | \text{length of } (LLL(P_jB)) \text{ is minimum for } 1 \le j \le k\}.$
- End if the desired bound is achieved, or no further improvement is observed.
- else,
- go to the step 2.

・ 同 ト ・ ヨ ト ・ ヨ ト

Our experiment

- Case 1: we constructed hadamard matrices and inflated using integral unimodular matrices.
- Case 2: we picked Ideal lattices from online resources.
- We used Hill climbing/lattice diffusion and sublattice fusion algorithm to get the desired approximated shortest vector.
- We successfully reduced B to find the competitive shortest vectors.

(日) (同) (三) (三)

Our experiment

- Case 1: we constructed hadamard matrices and inflated using integral unimodular matrices.
- Case 2: we picked Ideal lattices from online resources.
- We used Hill climbing/lattice diffusion and sublattice fusion algorithm to get the desired approximated shortest vector.
- We successfully reduced B to find the competitive shortest vectors.

Our experiment

- Case 1: we constructed hadamard matrices and inflated using integral unimodular matrices.
- Case 2: we picked Ideal lattices from online resources.
- We used Hill climbing/lattice diffusion and sublattice fusion algorithm to get the desired approximated shortest vector.
- We successfully reduced B to find the competitive shortest vectors.

Our experiment

- Case 1: we constructed hadamard matrices and inflated using integral unimodular matrices.
- Case 2: we picked Ideal lattices from online resources.
- We used Hill climbing/lattice diffusion and sublattice fusion algorithm to get the desired approximated shortest vector.
- We successfully reduced *B* to find the competitive shortest vectors.

- 同下 - 三下 - 三

Results

• Inflated Hadamard Matrix

- Ideal Lattice
- ASVP Hall of Fame

イロト イポト イヨト イヨト

э

Results

- Inflated Hadamard Matrix
- Ideal Lattice
- ASVP Hall of Fame

< ロ > (同 > (回 > (回 >))

э

Results

- Inflated Hadamard Matrix
- Ideal Lattice
- ASVP Hall of Fame

(日) (同) (三) (三)

э

- Lattice Basis Reduction by Murray R. Bermner
- LLL reduction using NTL library by Victor Shoup
- http://www.latticechallenge.org/ideallattice-challenge/index.php

A (1) < A (1) < A (1) < A (1) </p>

Any Question?

Thank You!

< ロ > (同 > (回 > (回 >))

Bal K. Khadka (August 26 - August 30, 2015) Algebraic Combinatorics and Applications

Any Question?

Thank You!

◆□ > ◆□ > ◆豆 > ◆豆 >

Bal K. Khadka (August 26 - August 30, 2015) Algebraic Combinatorics and Applications