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Introduction

The Problem

The Oberwolfach Problem ask whether we can sit v conference attendees

at t round tables over v−1
2

nights, such that each attendee sits next to

each other attendee exactly once.

Originally v was supposed to be odd, but later the problem was extended

to allow v even, and having it so that attendees would never sit next to

their spouses.

In Graph Theory language this is equivalent to decomposing Kv (or Kv −Q,

where Q is a 1-factor if v is even) into 2-factors, where Kv is the complete

graph on v vertices and each 2-factor is isomorphic to a given 2-factor F .
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Introduction

The Problem

The Hamilton-Waterloo Problem is an extension of the Oberwolfach

problem. In this versions dinners are at two di�erent venues, Hamilton and

Waterloo. The attendees will spend r nights in Hamilton, where the sizes

of the tables are m1,m2, ...,mk , and s nights in Waterloo, where the sizes

of the tables are n1, n2, ..., np.

In our language this means that we have two 2-factors, F1 and F2, and we

are trying to decompose Kv (or Kv −Q) into r copies of F1 and s copies of

F2.
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Introduction

The Problem for Complete Equipartite Graphs

The problem that we work with is when instead of just trying to avoid our

spouses, we try to avoid all the people from our university.

In Graph theoretical language, we want to decompose a complete

equipartite graph, with m parts of size v each, into r copies of F1 and s
copies of F2.
This type of problem has been studied in the Oberwolfach case.

Nevertheless, it has not been studied in the Hamilton-Waterloo case.
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Preliminary De�nitions and Results

De�nition K(x :n)

De�nition

K(x :n) will denote the complete equipartite graph with n parts of size x ,i.e.
two vertices are neighbors if and only if they are in di�erent parts.

G = K(2:3)
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Preliminary De�nitions and Results

De�nition Parts

De�nition

Given a multipartite graph G with n parts, we will denote the parts
G0,G1, . . . ,Gn−1.

G = K(3:3)

G0 G1 G2
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Preliminary De�nitions and Results

Product

De�nition

Let G and H be multipartite graphs with parts Gi and Hi respectively.
Then we de�ne the partite product of G and H, G ⊗ H as follows:

V (G ⊗ H) = {(g , h)|g ∈ Gi and h ∈ Hi , for some i}.
E (G ⊗ H) = {{(g1, h1), (g2, h2)}|{g1, g2} ∈ E (G ) and
{h1, h2} ∈ E (H)}.
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Preliminary De�nitions and Results

Example

G

a b c

d

f

e

H

1 2 3

4 5

G ⊗ H

(a,1)

(a,4)

(b,2)

(b,5)

(c,3)

(d,1) (e,2)

(d,4) (e,5)

(f,1)

(f,4)
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Preliminary De�nitions and Results

De�nition Direct Sum

De�nition

If V (G1) = V (G2) then G = G1 ⊕ G2 is the Graph on the same set of
vertices, having as edges the symmetric di�erence between the edges of G1

and G2. This is:
V (G ) = V (G1) = V (G2)

E (G ) = E (G1) ∪ E (G2)\(E (G1) ∩ E (G2))

.

Remark

Notice that if there is a decomposition of a graph G into subgraphs

F1, . . . ,Fs , then

G =
s⊕

i=1

Fi
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Preliminary De�nitions and Results

Example

G
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Preliminary De�nitions and Results

Example
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Preliminary De�nitions and Results

Some Results on the Product and the Sum

Lemma

K(x :n) ⊗ K(y :n) = K(xy :n)

Lemma

Let Gn be the set of n-partite graphs (where some vertices may be

isolated). Then (Gn,⊕,⊗) is a commutative ring with unity, where the 0 is

the empty graph, and the 1 is K(1:n). More speci�cally:

G ⊕ H = H ⊕ G .

G ⊕ 0 = G , where 0 is the empty graph (a graph without any edges).

G ⊗ H = H ⊗ G .

G ⊗ (H ⊕ F ) = (G ⊗ H)⊕ (G ⊗ F ).

G ⊗ K(1:n) = G .
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Preliminary De�nitions and Results

De�nition of C(x :n)

De�nition

The complete cyclic multipartite graph C(x :n) is the graph with n parts of
size x , where two vertices g ∈ Gi and h ∈ Gj are neighbors if and only if
|i − j | = 1, with this subtraction being done modulo n.

G = C(2:4)

08/28/2015 12 / 26



Preliminary De�nitions and Results

De�nition of C(x :n)

De�nition

The complete cyclic multipartite graph C(x :n) is the graph with n parts of
size x , where two vertices g ∈ Gi and h ∈ Gj are neighbors if and only if
|i − j | = 1, with this subtraction being done modulo n.

G = C(2:4)

08/28/2015 12 / 26



Preliminary De�nitions and Results

De�nition of C(x :n)

De�nition

The complete cyclic multipartite graph C(x :n) is the graph with n parts of
size x , where two vertices g ∈ Gi and h ∈ Gj are neighbors if and only if
|i − j | = 1, with this subtraction being done modulo n.

G = C(2:4)

08/28/2015 12 / 26



Preliminary De�nitions and Results

De�nition of C(x :n)

De�nition

The complete cyclic multipartite graph C(x :n) is the graph with n parts of
size x , where two vertices g ∈ Gi and h ∈ Gj are neighbors if and only if
|i − j | = 1, with this subtraction being done modulo n.

G = C(2:4)

08/28/2015 12 / 26



Preliminary De�nitions and Results

De�nition of C(x :n)

De�nition

The complete cyclic multipartite graph C(x :n) is the graph with n parts of
size x , where two vertices g ∈ Gi and h ∈ Gj are neighbors if and only if
|i − j | = 1, with this subtraction being done modulo n.

G = C(2:4)

08/28/2015 12 / 26



Preliminary De�nitions and Results

The Product of Cycles

G

a b c

d e f

G ′

1 2 3

4 5 6

G ⊗ G ′
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Preliminary De�nitions and Results

The Product of Cycles
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Preliminary De�nitions and Results

De�nition n-balanced Ck-factor

De�nition

Let G be a subgraph of C(x :n). We will say that G is a n − balanced
Ck -factor if:

G is a union of cycles of size k .

If v ∈ Gj , then v has a neighbor in Gj−1 and a neighbor in Gj+1.
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Preliminary De�nitions and Results

Products of Balanced Factors

Lemma

Let G and H be a n-balanced Ck -factor and a n-balanced Cm-factor,

respectively. Then G ⊗ H is a n-balanced Cl -factor, where l = km
gcd(k,m) .

Lemma

The complete cyclic multipartite graph is the product of the complete

multipartite graph by the cycle. This is: K(x :n) ⊗ C(1:n) = C(x :n).
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Construction Theorem

Construction Theorem

Lemma

Let m, n, x , y and v be positive integers. Suppose the following conditions

are satis�ed:

There exists a decomposition of Km into Cn-factors.

There exists a decomposition of C(v :n) into sp Cxn-factors and rp
Cyn-factors.

Let

s =

(m−1)
2∑

p=1

sp and r =

(m−1)
2∑

p=1

rp

Then there exists a decomposition of K(v :m) into s C(xn)-factors and r
Cyn-factors.
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Construction Theorem

Needed Known Result + Basic Construction

Theorem (Alspach, Haggkvist [1]
Alspach, Schellenberg, Stinson, Wagner[2])

There exists a decomposition of Km into Cn-factors if and only if m ≡ 0
(mod n), (m, n) 6= (6, 3) and (m, n) 6= (12, 3).

Theorem (Not enough room in the slides to prove)

Let x , y and n be odd. Let s 6= 1. We have the following decompositions:

C(4x :n) can be decomposed into s k-balanced C2xn-factors and r
k-balanced Cn-factors.
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Construction Theorem

More Basic Constructions

Theorem (Not enough room in the slides to prove)

Let x , y and n be odd. Let s, r 6= 1. We have the following

decompositions:

C(xy :n) can be decomposed into s k-balanced Cxn-factors and r
k-balanced Cyn-factors.

C(4x :n) can be decomposed into s k-balanced Cxn-factors and r
k-balanced C2n-factors.

C(4xy :n) can be decomposed into s k-balanced C2xn-factors and r
k-balanced Cyn-factors.
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Exploring the Product

Using the Product Algebraically

Theorem

Let v be odd and x be an odd divisor of v . Then there is a decomposition

of C(v :n) into s Cxn-factors and v Cn-factors, for any sp 6= 1.

Proof.

C(v :n) = C(x :n) ⊗ C( v
x
:n)
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of C(v :n) into s Cxn-factors and v Cn-factors, for any sp 6= 1.

Proof.

C(v :n) = C(x :n) ⊗ C( v
x
:n)

s 6≡ 1 (mod x)

C(x :n) ⊗ C( v
x
:n) = C(x :n) ⊗

(
⊕

v
x
i=1

H v
x
(i , i)

)
= ⊕

v
x
i=1

(
H v

x
(i , i)⊗ C(x :n)

)

⊕
v
x
i=1

(
H v

x
(i , i)⊗ C(x :n)

)
=
(
⊕t

i=1

(
H v

x
(i , i)⊗ C(x :n)

))
⊕
(
H v

x
(t + 1, t + 1)⊗ C(x :n)

)
⊕
(
⊕

v
x
i=t+2

(
H v

x
(i , i)⊗ C(x :n)

))
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of C(v :n) into s Cxn-factors and v Cn-factors, for any sp 6= 1.

Proof.

C(v :n) = C(x :n) ⊗ C( v
x
:n)

s ≡ 1 (mod x)

⊕
v
x
i=1

(
T v

x
(i)⊗ C(x :n)

)
=
(
⊕t−1

i=1

(
T v

x
(i)⊗ C(x :n)

))
⊕
(
T v

x
(t)⊗ C(x :n)

)
⊕
(
T v

x
(t + 1)⊗ C(x :n)

)
⊕
(
⊕

v
x
i=t+2

(
T v

x
(i)⊗ C(x :n)

))
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Main Result

The Path to Decomposing

Let x , y , z , n, v and m be integers, with n|m, xyz |v and x , y , z 6≡ 0
(mod 4), gcd(x , z) = gcd(y , z) = 1.

Decompose K (v : m) into copies of C(v :n).

Write C(v :n) = C(xy :n) ⊗ C(zw :n).

Decompose C(xy :n) into Cxn-factors and Cyn-factors.

Decompose C(zw :n) into Czn-factors.

Multiply and add up.
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Main Result

Main Theorem

Theorem

Let v , m and n be odd, such that m ≡ 0 (mod n). Let s and r be such

that s, r 6= 1 and s + r = v m−1
2

. Let x , y , z and w be such that:

gcd(x , z) = gcd(y , z) = 1,

w 6∈ {2, 6},
2 divides at most one of x , y and z ,

v = xyzw if 2 divides none of x , y , z ,

v = 2xyzw if 2 divides one of x , y , z .

Then there is a decomposition of K(v :m) into s Cxzn-factors and r
Cyzn-factors.
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