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Abstract

A quasi-symmetric design(QSD) is a (v , k , λ) design
with two intersection numbers x , y , where
0 ≤ x < y < k . The block graph of QSD is a
strongly regular graph(SRG). It is known that there
are SRGs which are not block graphs of QSDs. We
derive necessary conditions on the parameters of a
SRG to be feasible as the block graph of a QSD.
We apply these condtions to rule out many infinite
families such SRGs.
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Strongly regular graph (SRG)

• A regular graph Γ is an SRG with parameters
(n, a, c , d)

• n =#vertices of Γ, a =valency of Γ

• c = # of vertices adjacent to two adjacent
vertices

• d = # vertices adjacent to two non-adjacent
vertices

Γ is assumed to be non-null, non-complete,
connected
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Quasi-symmetric design (QSD)

• A QSD is a 2-(v , k , λ) design D = (X , β)
with two block intersection numbers x , y ,
where x < y

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Non-existence of strongly regular graphs with feasible block graph parameters of quasi-symmetric designs



Block graph of QSD

• The block graph Γ of a QSD D = (X , β) has
vertices the b blocks of D, where
two distinct blocks B ,B ′ are adjacent iff
|B ∩ B ′| = y

• The block graph Γ is an SRG with parameters
(b, a, c , d)

• result due to S.S. Shrikhande & Bhagwandas
(1965) and Goethals & Seide(1970)
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Is SRG the block graph of a QSD?

• Goethals and Seidel proved that the SRG
lattice graph L2(n) is not the block graph of a
QSD

• Deciding which SRGs are block graphs of
QSDs appears to be a difficult open problem
Coster & Haemers DCC (1995)
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Some previous non-existence results

• S.S. Shrikhande & Jain (1962),

• S.S. Shrikhande, Raghavarao,&
Tharthare(1963)

• considered duals of PBIBDs (= SRGs) & using
Hasse-Minkowski Theory

• Haemers (1992), Coster & Haemers (1995)
used quadratic forms theory
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Preliiminary results need

Lemma (1)

Let D be a QSD, with the standard parameter set
(v , b, r , k , λ; x , y). Then the following relations
hold:

1 vr = bk and λ(v − 1) = r(k − 1).

2 k(r−1)(x +y−1)−xy(b−1) = k(k−1)(λ−1).

3 r(−r + kr + λ) = bkλ.

4 y − x divides k − x and r − λ.
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Preliminary results need

Lemma (2)

1. Let Γ be a connected SRG (b, a, c , d), Then Γ
has three distinct eigenvalues, θ0 = a with
multiplicity 1, θ1 with multiplicity f , and θ2 with
multiplicity g , where θ1, θ2 (θ1 > θ2) are the roots
of the quadratic equation

ρ2 − (c − d)ρ− (a − d) = 0,
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statement of lemma contd.

2. the multiplicities f and g are positive integers
given by

f , g =
1

2

(
b − 1± (b − 1)(c − d) + 2a√

(c − d)2 + 4(a − d)

)
.

and

c = a + θ1 + θ2 + θ1θ2, d = a + θ1θ2.
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Krein Conditions

Let Γ be a connected SRG (b, a, c , d), with three
distinct eigenvalues, θ0 = a, θ1, θ2 (θ1 > θ2). Then

1 (θ1 + 1)(a + θ1 + 2θ1θ2) ≤ (a + θ1)(θ2 + 1)2;

2 (θ2 + 1)(a + θ2 + 2θ1θ2) ≤ (a + θ2)(θ1 + 1)2.
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Lemma (3)

Let D be a (v , b, r , k , λ; x , y) QSD. Form the block
graph Γ of D. Assume Γ is connected. Then, Γ is a
SRG with parameters (b, a, c , d), where the
eigenvalues of Γ are given by

a = θ0 = k(r−1)+(1−b)x
y−x , θ1 = r−λ−k+x

y−x and

θ2 = −(k−x)
y−x .
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Lemma (4)

• The eigenvalues θ0, θ1, θ2 are integers, with
θ0 > 0, θ1 ≥ 0, and θ2 < 0;

• a = k(r−1)+(1−b)x
y−x (1);

• c =
(x−k+r−λ)(x−k)

(y−x)2 + x−k
y−x + x−k+r−λ

y−x + k(r−1)+(1−b)x
y−x

(2);

• d = k(r−1)+(1−b)x
y−x + (x−k)(−k+r+x−λ)

(y−x)2 (3)
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Lemma [4] contd.

• r−λ
y−x ≥

k−x
y−x ,

• y − x divides both r − λ and k − x , so we take
y = z + x , k = mz + x and r = nz + λ, for
positive integers m and n, assuming m ≤ n.

• If λ > 1, then λ ≥ x + 1.

• The block graph of D and block graph of D,
the complement of the design D, are
isomorphic.
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Remarks on SRGs arisng in paper

1 The block graph of a Steiner graph is a SRG.
2 Given m − 2 mutually orthogonal Latin squares

of order n, the vertices of a Latin square graph
LSm(n) are the n2 cells; two vertices are
adjacent if and only if they lie in the same row
or column or they have same entry in one of
the Latin squares. This graph is a SRG,
denoted by Lm(n).

3 A Negative Latin square graph NLm(n), is a
SRG obtained by replacing m and n by their
negatives in the parameters of LSm(n).
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Main tool

Theorem (5)

Let D be a (v , b, r , k , λ; x , y) QSD and Γ the
(b, a, c , d) strongly regular block graph of D. Let
y = z + x , k = mz + x and r = nz + λ, for positive
integers m and n, assuming m ≤ n. Then,

1. n =
m2 − 2m + a − c

m − 1
, c − d = n − 2m and

a − d = m(n −m),

2. m =
1

2

(
d − c +

√
(d − c)2 + 4(a − d)

)
,
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Theorem 5 cont.

3. z = (−a+c−d+m+b m) (b−s) s
b (c−d+2m) (−a−m+b m)

for some positive integer s

4. 0 ≤ b2 − 4q,

where q = b (c−d+2m) (−a−m+b m)
gcd(b (c−d+2m) (−a−m+b m),−a+c−d+m+b m) .
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Proof: From (3) of Lemma 4, get
m2 − (d − c)m − (a − d) = 0 and note that m is a
positive root of this quadratic.
From (1) of Lemma 4, get

λ = b x+a z+m z−n x z−mn z2

x+mz . Observe that

(b x +a z +m z−n x z−m n z2)−(a + m − b m) z =
(x + m z) (b − n z). Hence x + m z divides
(−a −m + b m) z . Taking
(−a −m + b m) z = s (x + m z) for positive

integer s, we get x = −(a+m−b m+m s) z
s . Substitute

these values with n = c − d + 2 m in (3) of Lemma
to get desired expression for z .
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From expression of z , q divides (b − s)s. Hence
(b − s)s = pq for some positive integer p. The
discriminant of this quadratic in s =b2 − 4pq is
non-negative. Observe that
0 ≤ b2 − 4pq ≤ b2 − 4q.
Thus, 0 ≤ b2 − 4q,
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Algorithm

Let Γ be a (b, a, c , d) strongly regular graph. To
find feasible parameters of a QSD whose block
graph is Γ, the following steps are followed.
(1) m is obtained using (2) of the Theorem 1 and
then n by (1).
(2) If b2 − 4q < 0, then there is no QSD, whose
block graph parameters are (b, a, c , d).

(3) If b2 − 4q ≥ 0, then for each integer p,

1 ≤ p ≤ b2/4q, we take integer s =
b+
√

b2−4 p q
2 ,
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x = −(a+m−b m+m s) z
s , z = (−a+c−d+m+b m) (b−s) s

b (c−d+2m) (−a−m+b m) .

(4) Other feasible parameters of design can be
obtained from Lemma , satisfying all known
necessary conditions.

Designs associated with different values of s
satisfying expression (3) of Theorem 1, are
complements of each others.
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Theorem (6)

The following SRGs (b, a, c , d) are not block graphs
of QSDs.

1(a) (t3, (t − 1)(t + 2), t − 2, t + 2), t ≥ 2

1(b) (t3, (t − 1)2(t + 1), t3 − 2t2 − t + 4, (t −
2)(t − 1)(t + 1)), t ≥ 2

2(a) (t2(t + 2), t(t + 1), t, t), t ≥ 2

2(b) ((t2(t + 2), (t − 1)(t + 1)2, t3 − t − 2), (t −
1)t(t + 1)), t ≥ 2
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theorem contd.

3 ((t + 1)(t2 + 1), t3, (t − 1)t2, (t − 1)t2), t ≥ 3

4(a) ((t + 1)(t3 + 1), t(t2 + 1), (t−1), t2 + 1), t ≥ 2

4(b) ((t + 1)(t3 + 1), t4, (t − 1)t(t2 + 1), (t − 1)t3),
t ≥ 2
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theorem contd.

5 ((t2 + 1)(t3 + 1), t5, t(t − 1)(t3 + t2 −
1), t3(t − 1)(t + 1)), t ≥ 2
•
•
•

17 ((t2 + 1)(t3 + 1), t5, (t − 1)t(t3 + t2 − 1), (t −
1)t3(t + 1)), t ≥ 2
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sketch of proof of Theorem 6

We use (4) of Main Tool (Theorem 3) to rule out
the possibility of QSD whose block graph
parameters are (b, a, c , d) given in theorem by
observing that ∆ = b2 − 4p q < 0
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Observe that z = − s(t2+2t−1)(s−t3)
2(t−1)t3(t+1)(t+2) . Consider two

cases, t even and t odd.

If t = 2e then z =
(4e2+4e−1)(8e3−s)s
32e3(e+1)(2e−1)(2e+1) . As

32e3(e + 1)(2e − 1)(2e + 1) and
(
4e2 + 4e − 1

)
are

relatively prime,(
8e3 − s

)
s = 32e3(e + 1)(2e − 1)(2e + 1)p for

some positive integer p. Observe that
∆ = −64e3

(
(8p − 1)e3 + 8pe2 − 2pe − 2p

)
, the

discriminant of this quadratic in s is negative.
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If t = 2e + 1 then z =
(2e2+4e+1)(8e3+12e2+6e−s+1)s

4e(e+1)(2e+1)3(2e+3) .(
8e3 + 12e2 + 6e − s + 1

)
s =

4e(e + 1)(2e + 1)3(2e + 3)p for some positive
integer p.
∆ = −(2e +
1)3
(
(32p − 8)e3 + (80p − 12)e2 + (48p − 6)e − 1

)
,

the discriminant of this quadratic in s is negative.
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Non-existence of some families of feasible
block graph parameters in Hubaut’s paper

Theorem (7)

There is no QSD whose block graph parameters are
complement of the family C6 given in Hubaut [ ].
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Theorem (8)

There is no QSD whose block graph parameters are
complement of the family C7 given in Hubaut [ ].
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Theorem (9)

There is no QSD whose block graph parameters are
complement of the family C8 given in Hubaut [ ].
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Pawale et al [EJC ] proved non-existence of QSD
whose block graph is pseudo Latin square graph
L3(n) or L4(n), or their complements.. In present
paper, we show

Theorem (10)

There is no QSD whose block graph is the pseudo
Latin square graph L5(n); n ≥ 5, with parameters(
n2, 5(n − 1), n + 10, 20

)
.

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Non-existence of strongly regular graphs with feasible block graph parameters of quasi-symmetric designs



Theorem (11)

There is no QSD whose block graph is the
complement of pseudo Latin square graph
L5(n), n ≥ 5 with parameters(
n2, (n − 4)(n − 1), 28− 10 n + n2, (n − 5)(n − 4)

)
.
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In Cameron, Goethals and Seidel [1], characterized
SRG’s attaining Krein bounds in terms of Negative
Latin square graph NLt(t2 + 3t). In below, we rule
out the possibility of QSD’s whose block graph is
NLt(t2 + 3t), with 2 ≤ t or its complement.
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Non-existence of QSDs with Negative
Latin square block graph parameters

Theorem (12)

There is no QSD whose block graph is the Negative
Latin square graph NLe(e2 + 3e); e ≥ 2, with
parameters
(e2 (3 + e)2, e

(
1 + 3 e + e2

)
, 0, e (1 + e)) or its

complement.
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Theorem (13)

There is no QSD whose block graph is the Negative
Latin square graph NLe(e + 2); e ≥ 2, with
parameters ((2 + e)2, e(3 + e), e2 + 2e− 2, e(e + 1))
or its complement.
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