Some New Large Sets of Geometric Designs

Spyros S. Magliveras

Department of Mathematical Sciences Florida Atlantic University Boca Raton, Florida, U.S.A.

First annual Kliakhandler Conference Algebraic Combinatorics and Applications Houghton, Michigan August 26 -30, 2015

joint work with Michael R. Hurley and Bal Khadka

Dedicated to Earl Kramer and Dale Mesner

1	Introduction	5 - 12
2	Preliminaries	13 - 15
3	K-M matrices and integral linear problems	16 - 20
4	Example	21 - 23
5	Partitioning $A_{t,k}$	24
6	Large sets $L[3][2, 3, 2^8]$	25 - 33
7	Open problems	34

REV. T. P. KIRKMAN's PROBLEM

Resolutions of *t*-designs were studied as early as 1850 by the Rev. T. P. KIRKMAN who proposed the famous **15** SCHOOLGIRLS problem. Kirkman's problem is equivalent to finding a **resolvable** 2 - (15, 3, 1) design with r = 7, and b = 35.

A Solution to Kirkman's Problem

$$\alpha = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7)(8 \ 9 \ a \ b \ c \ d \ e)(f)$$

18f	29f	3 a f	4 b f	5 c f	6 d f	7 e f
						124
4 a d	5 b e	6 c 8	7 d 9	1 e a	28b	39c
69e	7 a 8	1 b 9	2 c a	3 d b	4 e c	5 8 d
7 b c	1 c d	2 d e	3 e 8	489	59a	6 a b

A simple, ordinary t-(v, k, λ) design, (X, B), is a v-element set X of points and a collection B of k-element subsets of X called blocks, such that every t-element subset of X is contained in precisely λ blocks.

We denote by
$$\binom{X}{k}$$
 the collection of all k-subsets of X.

• By a large set LS[N](t, k, v) we mean a collection $\mathcal{L} = \{(X, \mathcal{B}_i)\}_{i=1}^N$ of $t \cdot (v, k, \lambda)$ designs where $\mathbb{B} = \{\mathcal{B}_i\}_{i=1}^N$ is a partition of $\binom{X}{k}$.

A simple, ordinary t-(v, k, λ) design, (X, B), is a v-element set X of points and a collection B of k-element subsets of X called blocks, such that every t-element subset of X is contained in precisely λ blocks.

We denote by $\binom{X}{k}$ the collection of all k-subsets of X.

• By a large set LS[N](t, k, v) we mean a collection $\mathcal{L} = \{(X, \mathcal{B}_i)\}_{i=1}^N$ of $t \cdot (v, k, \lambda)$ designs where $\mathbb{B} = \{\mathcal{B}_i\}_{i=1}^N$ is a partition of $\binom{X}{k}$.

A simple, ordinary t-(v, k, λ) design, (X, B), is a v-element set X of points and a collection B of k-element subsets of X called blocks, such that every t-element subset of X is contained in precisely λ blocks.

We denote by $\binom{X}{k}$ the collection of all k-subsets of X.

• By a large set LS[N](t, k, v) we mean a collection $\mathcal{L} = \{(X, \mathcal{B}_i)\}_{i=1}^N$ of $t \cdot (v, k, \lambda)$ designs where $\mathbb{B} = \{\mathcal{B}_i\}_{i=1}^N$ is a partition of $\binom{X}{k}$.

Kramer's $7 \times 7 \times 7$ Steiner cube.

	-			_	_	
			147			
	568					
	169				138	
489						
246		125			239	
			367			
		345	579			

	289		139	679		459
237	157					
	346					478
		168			124	
358				256		

					356	
			348			
				145	268	379
259		578				
					167	189
	123					
				247	469	

	378			257	
128	359	467			
			249		
179					
134				458	
			689		
156		236			

				126	468		
		245	149				
					589		567
36	9				238	347	135
			279		178		

						234
				136		269
						127
			456			
	479			357		
					159	
678	148	389				258

			158			
					789	
			235			
	267					
		569				368
457		248		349		146
		137		129		

Let V be an n-dimensional vector space over GF(q). For brevity, by an r-space we mean an r-dimensional subspace of V.

We denote by $\begin{bmatrix} V \\ k \end{bmatrix}$ the collection of all k-subspaces of V.

- A simple, geometric t-[qⁿ, k, λ] design, [V, B], is a collection B of k-spaces (called blocks) of an n-space V over GF(q), such that every t-space is contained in precisely λ blocks.
- By a large set $LS[N][t, k, q^n]$ we mean a collection $\mathcal{L} = \{[V, \mathcal{B}_i]\}_{i=1}^N$ of t- $[q^n, k, \lambda]$ geometric designs where $\mathbb{B} = \{\mathcal{B}_i\}_{i=1}^N$ is a partition of $\begin{bmatrix} x \\ k \end{bmatrix}$.

Let V be an n-dimensional vector space over GF(q). For brevity, by an r-space we mean an r-dimensional subspace of V.

We denote by $\begin{bmatrix} V \\ k \end{bmatrix}$ the collection of all k-subspaces of V.

- A simple, geometric t-[qⁿ, k, λ] design, [V, B], is a collection B of k-spaces (called blocks) of an n-space V over GF(q), such that every t-space is contained in precisely λ blocks.
- By a large set $LS[N][t, k, q^n]$ we mean a collection $\mathcal{L} = \{[V, \mathcal{B}_i]\}_{i=1}^N$ of t- $[q^n, k, \lambda]$ geometric designs where $\mathbb{B} = \{\mathcal{B}_i\}_{i=1}^N$ is a partition of $\begin{bmatrix} x \\ k \end{bmatrix}$.

Let V be an n-dimensional vector space over GF(q). For brevity, by an r-space we mean an r-dimensional subspace of V.

We denote by $\begin{bmatrix} V \\ k \end{bmatrix}$ the collection of all k-subspaces of V.

- A simple, geometric t-[qⁿ, k, λ] design, [V, B], is a collection B of k-spaces (called blocks) of an n-space V over GF(q), such that every t-space is contained in precisely λ blocks.
- By a large set $LS[N][t, k, q^n]$ we mean a collection $\mathcal{L} = \{[V, \mathcal{B}_i]\}_{i=1}^N$ of t- $[q^n, k, \lambda]$ geometric designs where $\mathbb{B} = \{\mathcal{B}_i\}_{i=1}^N$ is a partition of $\begin{bmatrix} x \\ k \end{bmatrix}$.

A 1-[qⁿ, k, 1] design is known as a (k-1)-spread in PG(n-1, q). A large set of 1-[qⁿ, k, 1] designs is called a (k-1)-parallelism of PG(n-1, q).

By a parallelism we mean a 1-parallelism, (i.e. k = 2).

- Geometric *t*-designs with $t \ge 2$ have been constructed by S. Thomas, and others, but very few for t = 2, only one for t = 3, and none for t > 3. Moreover, until very recently, the only large sets of geometric *t*-designs had been for t = 1.
- Parallelisms in PG(n − 1, q) have been constructed in a number of papers : Beutelspacher (n = 2ⁱ); Baker & Wettl (n even); and Penttila & Williams (n = 4, q ≡ 2 mod 3).

A 1-[qⁿ, k, 1] design is known as a (k-1)-spread in PG(n-1, q). A large set of 1-[qⁿ, k, 1] designs is called a (k-1)-parallelism of PG(n-1, q).

By a parallelism we mean a 1-parallelism, (i.e. k = 2).

- Geometric *t*-designs with $t \ge 2$ have been constructed by S. Thomas, and others, but very few for t = 2, only one for t = 3, and none for t > 3. Moreover, until very recently, the only large sets of geometric *t*-designs had been for t = 1.
- Parallelisms in PG(n − 1, q) have been constructed in a number of papers : Beutelspacher (n = 2ⁱ); Baker & Wettl (n even); and Penttila & Williams (n = 4, q ≡ 2 mod 3).

A 1-[qⁿ, k, 1] design is known as a (k-1)-spread in PG(n-1, q). A large set of 1-[qⁿ, k, 1] designs is called a (k-1)-parallelism of PG(n-1, q).

By a parallelism we mean a 1-parallelism, (i.e. k = 2).

- Geometric *t*-designs with $t \ge 2$ have been constructed by S. Thomas, and others, but very few for t = 2, only one for t = 3, and none for t > 3. Moreover, until very recently, the only large sets of geometric *t*-designs had been for t = 1.
- Parallelisms in PG(n − 1, q) have been constructed in a number of papers : Beutelspacher (n = 2ⁱ); Baker & Wettl (n even); and Penttila & Williams (n = 4, q ≡ 2 mod 3).

There is vast and rich literature on ordinary t-(v, k, λ) designs that was developed over the past 1.5 centuries. More recently, the theory evolved to include strong recursive constructions, large sets, classification, and a strong connection with other areas of mathematics such as group theory, coding theory, statistics, cryptology, and application areas.

 In 1986 Luc Teirlinck proved a remarkable theorem: Non-trivial t-designs without repeated blocks exist for all t. The high road to Luc's construction was by means of the construction of Large Sets of t-designs.

- In a most significant 2014 paper **Peter Keevash** settled the question of existence of Steiner systems S(t, k, v)whenever the necessary conditions are satisfied, under some additional probabilistic conditions.
- In contrast, the analogous questions are far from being answered for geometric *t*-designs. Thus, work on geometric *t*-designs is still in its infancy.
- However, a number of recent papers, have used geometric t-designs in *network coding and error correction* and are generating new interest in the area. (eg. a paper by R. Kötter and F.R. Kschischang's)

In a recent preprint A. Fazeli, S. Lovett, and A. Vardy claim to have proved the analog of L. Tierlinck's theorem, to geometric *t*-designs. If the paper is valid, it will be another remarkable result in geometric *t*-designs. However, this result would still be purely existential and would not provide an efficient algorithm which could produce t-[qⁿ, k, λ] designs for t > 3. The authors provide the reader with the following challenge:

Problem:

Design an efficient algorithm to produce simple, non-trivial $t - [q^n, k, \lambda]$ designs for large t, say $t \ge 4$.

Preliminaries (i) : Gaussian coefficients

• Let *q* be a prime power, and for natural numbers *j*, *r*, *k*, *n* define

$$[j]_q = 1 + q + q^2 + \dots + q^{j-1} \tag{1}$$

$$[r]_q! = [1]_q! \cdot [2]_q! \cdots [r]_q!$$

$$(2)$$

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q} = \frac{\lfloor n \rfloor_{q}!}{\lfloor k \rfloor_{q}! \cdot \lfloor n - k \rfloor_{q}!}$$
(3)

It is well known that:

• If V is an *n*-dimensional vector space over GF(q), and $0 \le k \le n$, then

$$|\begin{bmatrix} V\\k \end{bmatrix}| = \begin{bmatrix} n\\k \end{bmatrix}_q$$

It is also easy to show that:

If [V, B] is a $t-[q^n, k, \lambda]$ design, then it is also an $s-[q^n, k, \lambda_s]$ design for all $s \in \{0, 1, \ldots, t\}$, with

$$\lambda_{s} = \lambda \begin{bmatrix} n-s \\ t-s \end{bmatrix}_{q} / \begin{bmatrix} k-s \\ t-s \end{bmatrix}_{q}.$$
(4)

Thus a set of necessary conditions for a t- $[q^n, k, \lambda]$ to exist is that all the λ_s above are integers for $s \in \{0, 1, ..., t\}$.

A necessary condition for the existence of an $LS[N][t, k, q^n]$ to exist is that $b = |\mathcal{B}| = \lambda_0$ divides $|{V \brack k}| = {n \brack k}_q$, in which case

$$N = \begin{bmatrix} n \\ k \end{bmatrix}_{q} / b = \begin{bmatrix} n-t \\ k-t \end{bmatrix}_{q} / \lambda.$$
 (5)

• A group $G \leq GL(V)$ is said to be an *automorphism group* of a t- $[q^n, k, \lambda]$ design $[V, \mathcal{B}]$, if for all $g \in G$, $\mathcal{B}^g = \mathcal{B}$, that is, if $B^g \in \mathcal{B}$ for all $B \in \mathcal{B}$ and $g \in G$. In this case we also say that $[V, \mathcal{B}]$ or \mathcal{B} is *G*-invariant.

Thus, if a geometric design $[V, \mathcal{B}]$ is *G*-invariant, \mathcal{B} is the union of *G*-orbits of $\begin{bmatrix} V \\ k \end{bmatrix}$.

A group $G \leq GL(V)$ is said to be an *automorphism group* of a large set $\mathcal{L} = [V, \mathbb{B}]$ if $\mathbb{B}^g = \mathbb{B}$ for all $g \in G$, that is, if $\mathcal{B}_i^g \in \mathbb{B}$ for all $\mathcal{B}_i \in \mathbb{B}$ and $g \in G$. Equivalently, we say that \mathcal{L} is *G*-invariant.

If the stronger condition $\mathcal{B}_i^g = \mathcal{B}_i$ for all $\mathcal{B}_i \in \mathbb{B}$ and $g \in G$ holds, we say that \mathcal{L} is [G]-invariant.

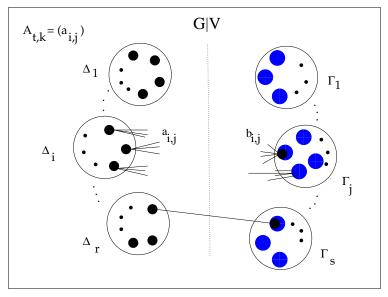
- The **KM** matrices present precise conditions under which *G*-orbits of $\begin{bmatrix} V \\ k \end{bmatrix}$ can be selected to form a t- $[q^n, k, \lambda]$ design, as well as conditions for the existence of $LS[t, k, q^n]$.
- Let $G \leq GL(V)$, and $0 < t < k \leq v/2$. Let $\mathcal{T}_1, \mathcal{T}_2, \ldots, \mathcal{T}_r$ and $\mathcal{K}_1, \mathcal{K}_2, \ldots, \mathcal{K}_s$ be the orbits of G on $\begin{bmatrix} V \\ t \end{bmatrix}$ and $\begin{bmatrix} V \\ k \end{bmatrix}$ respectively. The *Kramer-Mesner matrix* is defined to be the $r \times s$ matrix $\mathbf{A}_{t,k} = (a_{i,j})$ with:

$$a_{i,j} = |\{K \in \mathcal{K}_j \mid T \subset K\}|, \tag{6}$$

for any fixed $T \in \mathcal{T}_i$

K-M matrices (ii)

Kramer-Mesner matrices



Now, it can be easily shown that the Kramer-Mesner theorem (1974) is readily addopted to geometric *t*-designs as follows:

Theorem There exists a G-invariant t-[qⁿ, k, λ] design [V, B] if and only if there exists a vector **u** ∈ {0,1}^s satisfying the equation:

$$\mathbf{A}_{\mathbf{t},\mathbf{k}} \cdot \mathbf{u}^{\mathsf{T}} = \lambda \, \mathbf{J} \tag{7}$$

where **J** is the $r \times 1$ column vector of all ones.

The following theorem is an easy generalization of the 1974 K-M theorem, and can easily be adopted to geometric designs.

Theorem [Cusack & S.M., 1999]
 A [G]-invariant LS[N]-(t, k, v) exists if and only if there exists a matrix w ∈ {0,1}^{s×N} with constant row sum 1 satisfying the matrix equation :

$$\mathbf{A}_{\mathbf{t},\mathbf{k}} \cdot \mathbf{w} = \lambda \begin{pmatrix} 1 & 1 & \dots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \dots & 1 \end{pmatrix}_{r \times N}$$
(8)

• Corollary

Let **U** denote the $m \times s$ matrix whose rows are all vectors **u** satisfying $\mathbf{A}_{\mathbf{t},\mathbf{k}} \cdot \mathbf{u}^{\mathsf{T}} = \lambda \mathbf{J}_{\mathbf{r} \times \mathbf{1}}$. Then, there is a [G]-invariant large set of t- (v, k, λ) designs if and only if there exists a vector $\mathbf{L} \in \{0, 1\}^m$ such that

$$\mathbf{L} \cdot \mathbf{U} = \mathbf{J}. \tag{9}$$

- We illustrate the above by a tiny example in the context of ordinary 2-(9,3,1) designs.
- Let $G = \langle (1, 2, 3)(4, 5, 6)(7, 8, 9) \rangle$, $t-(v, k, \lambda) = 2-(9, 3, 1)$ Then, the matrix $A_{2,3}$ is :

• A_{2,3} =

• There are exactly 21 solutions $\,u_i\,$ such that $\,A_{t,k}\cdot u_i=J$:

 L_1

U - designs

1	$1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0$	$\leftarrow u_1$
0	10000000010010000100010000001	
0	1000000000100101000001000001	
1	010000000000100000100100100000	← u₄
0	010000000000010000100001000010000	
0	010000000000000100010001000000	
0	001000000000000000000000000000000000000	
õ	001000000000000000000000000000000000000	
1	001000000000000000000000000000000000000	← ug
0	000100000100000000000000000000000000000	_ uy
-		•
1	00010000010000000000001001000000	$\leftarrow u_{11}$
0	0001000000100000000010000100000	•
0	0000100100000000010000001000	•
1	000010001000010000000000000010	$\leftarrow u_{14}$
0	000010000101000000000000000000000000000	
0	0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0	
0	0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0	
1		\leftarrow u ₁₈
î.		
-		$\leftarrow u_{19}$
0	0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0	•
0	0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0	•

 \downarrow

The Six Large sets LS[7](2,3,9) invariant under \mathbb{Z}_3

L_1	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	1	0	0
L_2	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0
L ₃	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1
L_4	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	1	0	0
L_5	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1
L ₆	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	1	0	0	0	1	0

and ... Two Large sets of Large sets ...

• Theorem

Let $\mathbf{A} = \mathbf{A}_{t,k}$ be the KM matrix for a group action G|X, with $1 \le t \le k$. Then, there exists a [G]-invariant large set of $t - (v, k, \lambda)$ (or $t - [q^n, k, \lambda]$) designs if and only if there exists a **partition** $\{P_1, \ldots, P_\ell\}$ of the columns of \mathbf{A} such that the sum of column vectors within each part P_i is equal to $\lambda \mathbf{J}$.

	P_1	P_2	 P_ℓ
$\mathbf{A}_{\mathbf{t},\mathbf{k}} =$			

About a year ago, M. Braun, A. Kohnert, Patric Ostergård and Alfred Wasserman proved the following:

Theorem

Nontrivial large sets of *t*-designs over finite fields exist for $t \ge 2$.

They accomplished this by showing the existence of a large set of three disjoint $2-[2^8, 3, 21]$ designs, invariant under a cyclic group of order 255.

Subsequently, Michael Hurley and S.M. confirmed the validity of the above result, and with Bal Khadka constructed 9 new and distinct large sets, different from the original, with the same parameters. We still don't know if our designs are non-isomorphic, and we don't know much about their automorphism groups.

Nine distinct LS[3][2,3,2⁸]

• In what follows we construct 9 distinct large sets $LS[3][2,3,2^8]$ of geometric 2-[2⁸, 3, 21] designs. Each of the $\mathcal{L}_1, \ldots, \mathcal{L}_9$ will be [G]-invariant under a fixed Singer subgp $G = \langle x \rangle \leq GL_8(2)$, |G| = 255.

A **Singer** subgroup *G* in $\Gamma = GL(8, 2)$ is the **centralizer** of a Sylow-17 subgroup, thus, all Singer subgroups are conjugate in Γ , and the **normalizer** of *G* in Γ is the extension of *G* by the **Frobenius** automorphism of order 8.

We represent the vectors in $V = \mathbb{F}_2^8$ as the integers in \mathbb{Z}_{256} in their standard base 2 representation. Two-dimensional subspaces of V are elementary abelian 4-groups, and three-dimensional subspaces are elementary abelian groups of order 8. Projectively, 2-spaces are collinear triples, and 3-spaces are Fano planes. More economically, we represent 2-spaces and 3-spaces by their alphabetically minimal bases.

• We begin with the following Singer cycle S in $GL_8(2)$:

Г	0	0	0	0	0	0	0	1 ٦
	1	0	0	0	0	0	0	0
	0	1	0	0	0	0	0	1
	0	0	1	0	0	0	0	1
	0	0	0	1	0	0	0	1
	0	0	0	0	1	0	0	0
	0	0	0	0	0	1	0	0
L	0	0	0	0	0	0	1	0]
		0 1 0 0 0 0 0 0 0	$\left[\begin{array}{ccc} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right]$	$\left[\begin{array}{cccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	$\left[\begin{array}{cccccc} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\left[\begin{array}{cccccccc} 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$

and compute the orbits of $G = \langle S \rangle$ on $\begin{bmatrix} V \\ 2 \end{bmatrix}$ and $\begin{bmatrix} V \\ 3 \end{bmatrix}$.

- There are in all 43 G-orbits on [^V₂], with a single short orbit of length 85, all remaining 42 orbits of length 255. There are in all 381 G-orbits on [^V₃] all of length 255.
- Thus, the KM matrix $A_{2,3}$ has shape 43×381 . The entries in $A_{2,3}$ come from the set $\{0, 1, 3\}$. Each of the rows corresponding to the 42 long orbits has a single 3 in it. The short orbit has 21 3's in it. The row sums of $A_{2,3}$ are ${v-t \brack k-t} = 63$. Moreover, 360 of the column sums are 7 and 21 of the column sums are 9.

SSM (FAU)

- Each of the large sets we seek is comprised of 3 block-disjoint $2 [2^8, 3, \lambda]$ designs with $\lambda = 21$. For each case we proceed as follows:
 - (i) We find a single geometric design 2 [2⁸, 3, 21] design D₁ from A_{2,3},
 - (ii) We delete the 127 orbits used in D_1 from $A_{2,3}$ to arrive at a 43×254 matrix $A_{2,3} \downarrow$.
 - (iii) We attempt to find a second design D_2 among the remaing 254 orbits, using the residual matrix $A_{2,3}\downarrow$.
 - (iv) If we find D_1 and D_2 , then the remaining 127 orbits will constitute a third 2-[2⁸, 3, 21] design D_3 , and $\{D_1, D_2, D_3\}$ will be a large set of [G]-invariant 2-[2⁸, 3, 21] designs.

- We find D_1 and D_2 by using Lattice basis reduction, as for example, discussed in D.L. Kreher and D.R. Stinson's book "*Combinatorial Algorithms*", pages 294-300.
- In each case, the matrix to be reduced is of the form:

Where:

- (i) I is the $k \times k$ identity matrix, $k \in \{381, 254\}$,
- (ii) **0** is the $k \times 1$ zero vector,
- (iii) A is the matrix A_{2,3} (k=381) when we are looking for design D₁; and A_{2,3}↓ (k=254) when we are looking for D₂.
 (iv) In both cases, B is the 43 × 1 vector with all entries -21.

1	24	3k0000000040004	65	4 26	k00l0040001000	129	6 80	400g000001hg0g
2	28	1lg000100000100	66	4 32	h000h040g00003	130	6 82	404400401004g0
3	2 12	1k5000000011000	67	4 34	gg004g10000140	131	6 88	400000400s004
4	2 16	111k0000g000040	68	4 40	hg0004g00gg000	132	6 96	40g40100001500
5	2 20	10kh0h000000000	69	4 42	h040g500400000	133	6 98	40g00g0000kk00
6	2 24	1140M040000000	70	4 48	gc00000h010000	134	6 106	405000g0000k10
7	2 28	10h05000000013	71	4 50	g10ggg50000000	135	6 112	40g014g00g0g00
8	2 32	100g1k00000040g	72	4 56	g540000h000010	136	6 114	41g040g0001100
9	2 36	100541g000000g0	73	4 58	g1001004g01010	137	6 120	40544010040000
10	2 40	1101g05000000g0	74	4 64	ggh00001gg0000	138	6 122	5000g000150g00
11	2 44	110gg04g4000000	75	4 66	g100001g410400	139	6 130	40010014g0g040
12	2 48	104gg004000g400	76	4 72	g04100g00k4000	140	6 136	4001004140004g
13	2 52	1045g0010004000	77	4 74	ggg000001400k0	141	6 138	4k00k004000100
14	2 56	100g400gk00000g	78	4 80	g0h10040410000	142	6 144	44000g0g0h0010
15	2 60	100110001g10040	79	4 82	h04000000gM000	143	6 146	4000g0140g00h0
16	2 64	10144g001g00000	80	4 90	g040441000g010	144	6 154	40400004h400g0
17	2 68	100004001100100	81	4 96	g00g0000g11g0g	145	6 160	44000104004440
18	2 72	10001h00gh00000	82	4 98	g0g101000044g0	146	6 162	4000000140k04g
19	2 76	1g0000g040k1000	83	4 104	k00100g0400000	147	6 168	4g00044g001400
20	2 80	104400k01010000	84	4 106	g0500000504400	148	6 170	50100050g000g0
21	2 84	1000001c000g010	85	4 112	g1040045000g00	149	6 176	400000g140005g
249	12 132	4011104000140	312	18 100	4g1000011g0g	375	38 68	k00M04g00
250	12 144	4040k00k01000	313	18 132	40g0044k1000	376	40 68	4g0g54g00
251	12 148	4144g10040000	314	18 160	41k0000g4400	377	42 76	3000M0003
252	12 162	40g0500g04g00	315	18 164	41400000g5g	378	42 78	111140g04
253	12 166	40000100014k3	316	18 196	401g400101g0	379	44 64	M10010g4
254	12 176	400g504400040	317	18 200	400000415g3	380	44 78	kg0c4000
255	12 182	4050000440110	318	18 206	403g000000gg	381	58 128	c0k10g0

Part 1 : encoded $\{\mathcal{L}_1, \ldots, \mathcal{L}_9\}$

				_			
1	222332233	65	311113121	129 122221313	193 233223323	257 111111111	321 123111112
2	111111111	66	211232221	130 333112123	194 233333323	258 132321213	322 311333321
3	211232221	67	233333333	131 223333232	195 122111113	259 111221311	323 211222321
4	133111112	68	111111111	132 211323231	196 223332232	260 132111112	324 223112133
5	132111112	69	232112123	133 132111112	197 133321213	261 233112122	325 123221213
6	311323331	70	322332323	134 323113123	198 311222331	262 232112133	326 233112133
7	333233333	71	323113133	135 323223233	199 311112131	263 111321311	327 233232223
8	332112122	72	322323333	136 123111113	200 322112133	264 211232231	328 211333321
9	133111112	73	111221311	137 311222231	201 322322323	265 311112131	329 232332322
10	211222331	74	122111113	138 133111112	202 211223321	266 211323221	330 223333232
11	311333221	75	311223321	139 211322221	203 332233323	267 223113132	331 111331311
12	133321313	76	233113132	140 111111111	204 123111112	268 223112123	332 211333221
13	311223331	77	322233223	141 332322232	205 322323333	269 211113131	333 233223232
14	122331213	78	223333332	142 232113132	206 133111112	270 322323232	334 122221212
15	211223221	79	232322322	143 332113123	207 333113123	271 322233233	335 111111111
16	333333223	80	111331211	144 111331211	208 211322331	272 111331211	336 323333323
17	22222332	81	111331311	145 323232223	209 223322332	273 123221213	337 111111111
18	232322323	82	211112131	146 323112123	210 332322233	274 323332222	338 232233233
19	111111111	83	222112122	147 111231311	211 211113131	275 122331312	339 211113121
20	223332232	84	222333232	148 123231313	212 123221213	276 22222232	340 223333322
21	233223332	85	211232321	149 133321212	213 111111111	277 232232323	341 133111113
22	222332323	86	332113133	150 132231212	214 233332233	278 223333332	342 133221212
23	322232223	87	111111111	151 323233223	215 311112121	279 332113132	343 233113132
24	223233322	88	133321313	152 322322323	216 332232222	280 233323322	344 311232221
25	322333322	89	111111111	153 211223331	217 132231313	281 332333223	345 233333232
26	211333331	90	332323232	154 223113132	218 332333223	282 111231311	346 223333332
27	132231212	91	332333332	155 223222222	219 132111112	283 332113122	347 332233222
28	323113132	92	233332222	156 333113123	220 223323232	284 223112123	348 111221311
29	111111111	93	123111113	157 111221311	221 211232331	285 211222221	349 222232333
30	311323321	94	122331312	158 322333233	222 323332322	286 333112123	350 323323323
31	222112133	95	22222232	159 223332322	223 222222222	287 111321211	351 323232232
32	132111113	96	132221213	160 133231212	224 332113123	288 223332233	352 111111111

part 2 : encoded $\{\mathcal{L}_1, \ldots, \mathcal{L}_9\}$

33	311113121	97 332222323	161 222332223 225	311112121	289 132111112	353 132331212
34	233113133	98 322232233	162 311333331 226	111111111	290 111221211	354 311112131
35	322223223	99 133111112	163 211232331 227	211332321	291 132221213	355 222233223
36	133221313	100 322112133	164 332232233 228	111111111	292 223113133	356 322223333
37	133111112	101 233112122	165 133111112 229	322112132	293 311112121	357 122111113
38	232113132	102 211113131	166 122111112 230	332333333	294 211113121	358 222112132
39	222233222	103 133221312	167 333333332 231	122221212	295 132111112	359 311332231
40	333112132	104 211322221	168 332112132 232	111321211	296 111111111	360 311323321
41	111221211	105 323223233	169 223113122 233	133231212	297 322322222	361 32222223
42	111231211	106 111321211	170 232323223 234	311112121	298 322323333	362 223112122
43	322233232	107 223112132	171 123111112 235	123331212	299 333232233	363 332223333
44	111111111	108 111221211	172 323223233 236	132231312	300 332332333	364 111111111
45	233322233	109 311323331	173 232233333 237	111321211	301 122221313	365 311112131
46	133321312	110 133331312	174 111231211 238	333113122	302 211332221	366 311113131
47	111111111	111 133231212	175 123111113 239	323112122	303 22222232	367 122321213
48	111221311	112 333233233	176 111221311 240	222223332	304 311332321	368 122111112
49	211333231	113 223113133	177 233332322 241	333233333	305 211232321	369 311233321
50	311112121	114 323322223	178 22222333 242	132231313	306 333323322	370 311222221
51	123111113	115 111111111	179 211322221 243	123221213	307 311223321	371 111321311
52	323322222	116 232233332	180 133111112 244	322113123	308 133111113	372 333323232
53	323332322	117 332323332	181 211233331 245	323113122	309 111111111	373 222223322
54	333112133	118 211232221	182 211322221 246	233112122	310 223223332	374 311332331
55	222222322	119 311112121	183 322223222 247	232332232	311 322323232	375 332333332
56	232322233	120 211233321	184 211323231 248	123111113	312 223112123	376 233222232
57	323223223	121 132231313	185 311112121 249	122221312	313 232332332	377 322333333
58	311113121	122 222112122	186 32232223 250	211222231	314 111111111	378 211223331
59	122321312	123 232322332	187 132231213 251		315 311112121	379 232233332
60	333222323	124 133321213	188 111231211 252	332322323	316 222332223	380 322333323
61	111231311	125 111221311	189 32232223 253	211233331	317 232232323	381 333322322
62	333223322	126 222112132	190 111321211 254		318 332333333	
63	311332231	127 133321312	191 133231312 255	133231213	319 111111111	
64	133321313	128 123231213	192 232323333 256	311233231	320 111111111	

(i) They are all distinct. i.e. if $i \neq j$, then $\mathcal{L}_i \neq \mathcal{L}_j$,

(ii) Each \mathcal{L}_i is [G]-invariant, thus, $G \leq Aut(\mathcal{L}_i)$ for each *i*.

(iii) There are 8 conjugacy classes M_1, M_2, \ldots, M_8 , of maximal subgroups in $GL_8(2)$,

(iv) If
$$N = N_{\Gamma}(G)$$
, then $|N| = 8 \cdot 255 = 2040$,

- (v) N is not maximal in Γ , (unlike the case when q is odd.)
- (vi) If $x \in N G$, then $\mathcal{L}_i^x \neq \mathcal{L}_j$, for any $i, j \in \{1, \dots, 9\}$,
- (vii) If $G \le T \le M \in M_i$, then i = 2, $|M| = 2^{13} \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 17$ = 5922201600.
- (viii) At the moment we cannot assert that $G = Aut(\mathcal{L}_i)$, but if this were true, it easily follows that the 9 \mathcal{L}_i are pairwise non-isomorphic.

- (i) Find some more $3 [q^n, k, \lambda]$ designs.
- (ii) Find an example of a $4 [q^n, k, \lambda]$ design.
- (iii) Find large sets $LS[N][t, k, q^n]$ of geometric designs for $t \ge 3$.
- (iv) Discover recursive constructions for geometric $t [q^n, k, \lambda]$ designs.
- (v) Settle the questions about the 9 \mathcal{L}_i in this presentation.
- (vi) Discover more $t [q^n, k, 1]$ designs, i.e. geometric Steiner systems.
- (vii) Establish, or otherwise the validity of the Fazeli, Lovett, Vardy result.

THANK YOU