Symmetric Functions and Quasisymmetric Functions

Jie Sun

Michigan Technological University

Algebraic Combinatorics and Applications Kliakhandler Conference August 28, 2015

Outline

- Symmetric Functions
- NSym and QSym
- 3 Categorification of the Heisenberg Double
- 4 Application: QSym is free over Sym

Jie Sun (MTU)

Symmetric Functions

Definition

- R: commutative ring with identity
- $\mathbf{x} = (x_1, x_2, \cdots)$: set of indeterminates
- n: nonnegative integer

A homogeneous symmetric function of degree n is a formal power series $f(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha}$ where

- α ranges over all weak compositions $\alpha = (\alpha_1, \alpha_2, \cdots)$ of n,
- $c_{\alpha} \in R$,
- \mathbf{x}^{α} stands for the monomial $x_1^{\alpha_1} x_2^{\alpha_2} \cdots$,
- $f(x_{w(1)}, x_{w(2)}, \cdots) = f(x_1, x_2, \cdots)$ for every permutation w of the positive integers.

Symmetric Functions

Definition

Let Λ_R^n be the set of all homogeneous symmetric functions of degree n.

$$\Lambda_R = \Lambda_R^0 \oplus \Lambda_R^1 \oplus \cdots$$

is a commutative, unital, graded *R*-algebra.

Bases for $\Lambda_{\mathbb{O}}^n$

- Monomial symmetric functions $\{m_{\lambda} : \lambda \vdash n\}$
- Elementary symmetric functions $\{e_{\lambda} : \lambda \vdash n\}$
- Complete homogeneous symmetric functions $\{h_{\lambda} : \lambda \vdash n\}$
- Power sum symmetric functions $\{p_{\lambda} : \lambda \vdash n\}$
- Schur functions $\{s_{\lambda} : \lambda \vdash n\}$

Symmetric Functions

Definition

Let Λ_R^n be the set of all homogeneous symmetric functions of degree n.

$$\Lambda_R = \Lambda_R^0 \oplus \Lambda_R^1 \oplus \cdots$$

is a commutative, unital, graded *R*-algebra.

Bases for $\Lambda^n_{\mathbb{Q}}$

- Monomial symmetric functions $\{m_{\lambda} : \lambda \vdash n\}$
- Elementary symmetric functions $\{e_{\lambda} : \lambda \vdash n\}$
- Complete homogeneous symmetric functions $\{h_{\lambda} : \lambda \vdash n\}$
- Power sum symmetric functions $\{p_{\lambda} : \lambda \vdash n\}$
- Schur functions $\{s_{\lambda} : \lambda \vdash n\}$

Symmetric Functions Over Integers

$$\Lambda_{\mathbb{Z}} = \operatorname{Sym} = \mathbb{Z}[e_1, e_2, \cdots] \subset \mathbb{Z}[x_1, x_2, \cdots]$$

- $e_1 = x_1 + x_2 + \cdots$
- $\bullet \ e_2 = x_1x_2 + x_1x_3 + x_2x_3 + \cdots$
- ullet $e_n = \sum_{i_1 < i_2 < \cdots < i_n} x_{i_1} x_{i_2} \cdots x_{i_n}$

Sym as a Hopf algebra

- $\triangle : \operatorname{Sym} \to \operatorname{Sym} \otimes \operatorname{Sym}, \quad e_n \mapsto \sum_{i+j=n} e_i \otimes e_j$
- $\epsilon : \text{Sym} \to \mathbb{Z}, \quad e_n \mapsto 0, \ n \ge 1$

Connection to Representation Theory

• (Geissinger 1977) Sym $\cong \bigoplus_{n=0}^{\infty} \mathcal{K}_0(\mathbb{C}[S_n]\text{-mod})$

5/20

Symmetric Functions Over Integers

$$\Lambda_{\mathbb{Z}} = \operatorname{Sym} = \mathbb{Z}[e_1, e_2, \cdots] \subset \mathbb{Z}[x_1, x_2, \cdots]$$

- $e_1 = X_1 + X_2 + \cdots$
- \bullet $\theta_2 = X_1X_2 + X_1X_3 + X_2X_3 + \cdots$
- $e_n = \sum_{i_1 < i_2 < \dots < i_n} x_{i_1} x_{i_2} \cdots x_{i_n}$

Sym as a Hopf algebra

- $\triangle : \operatorname{Sym} \to \operatorname{Sym} \otimes \operatorname{Sym}, \quad \boldsymbol{e}_n \mapsto \sum_{i+i=n} \boldsymbol{e}_i \otimes \boldsymbol{e}_i$
- $\epsilon : \text{Sym} \to \mathbb{Z}, e_n \mapsto 0, n > 1$

• (Geissinger 1977) Sym $\cong \bigoplus_{n=0}^{\infty} \mathcal{K}_0(\mathbb{C}[S_n]\text{-mod})$

Jie Sun (MTU) Sym and QSym

Symmetric Functions Over Integers

$$\Lambda_{\mathbb{Z}} = \operatorname{Sym} = \mathbb{Z}[e_1, e_2, \cdots] \subset \mathbb{Z}[x_1, x_2, \cdots]$$

- $e_1 = x_1 + x_2 + \cdots$
- $\bullet \ e_2 = x_1x_2 + x_1x_3 + x_2x_3 + \cdots$
- $e_n = \sum_{i_1 < i_2 < \cdots < i_n} x_{i_1} x_{i_2} \cdots x_{i_n}$

Sym as a Hopf algebra

- $\triangle : \operatorname{Sym} \to \operatorname{Sym} \otimes \operatorname{Sym}, \quad e_n \mapsto \sum_{i+j=n} e_i \otimes e_j$
- $\epsilon : \text{Sym} \to \mathbb{Z}, \quad e_n \mapsto 0, \ n \ge 1$

Connection to Representation Theory

• (Geissinger 1977) Sym $\cong \bigoplus_{n=0}^{\infty} \mathcal{K}_0(\mathbb{C}[S_n]\text{-mod})$

2015-8-28

5/20

Jie Sun (MTU) Sym and QSym

Duality of Sym

Bilinear Form on Sym

- Define $\langle \cdot , \cdot \rangle : \operatorname{Sym} \times \operatorname{Sym} \to \mathbb{Z}$ by $\langle m_{\lambda}, h_{\mu} \rangle = \delta_{\lambda,\mu}$ for $\lambda, \mu \in \mathcal{P}$.
- $\langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda,\mu}$

Bilinear Form on Sym ⊗ Sym

- Define (\cdot, \cdot) : Sym \otimes Sym \times Sym \otimes Sym $\to \mathbb{Z}$ by $(x \otimes y, x' \otimes y') = \langle x, x' \rangle \langle y, y' \rangle$.
- $\bullet \ (x \otimes y, \triangle(z)) = \langle \bigtriangledown(x \otimes y), z \rangle$

$Sym \cong Sym^{2}$

- Sym* = $\bigoplus_{n \in \mathbb{N}} (\Lambda_{\mathbb{Z}}^n)^*$: graded dual of Sym
- $\Phi : \operatorname{Sym} \cong \operatorname{Sym}^* \operatorname{by} \Phi(x)(y) = \langle x, y \rangle.$

Duality of Sym

Bilinear Form on Sym

- Define $\langle \cdot , \cdot \rangle : \operatorname{Sym} \times \operatorname{Sym} \to \mathbb{Z}$ by $\langle m_{\lambda}, h_{\mu} \rangle = \delta_{\lambda,\mu}$ for $\lambda, \mu \in \mathcal{P}$.
- $\langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda,\mu}$

Bilinear Form on Sym ⊗ Sym

- Define (\cdot, \cdot) : Sym \otimes Sym \times Sym \otimes Sym $\to \mathbb{Z}$ by $(x \otimes y, x' \otimes y') = \langle x, x' \rangle \langle y, y' \rangle$.
- $\bullet \ (x \otimes y, \triangle(z)) = \langle \bigtriangledown(x \otimes y), z \rangle$

$\operatorname{Sym}\cong\operatorname{Sym}$

- Sym* = $\bigoplus_{n \in \mathbb{N}} (\Lambda_{\mathbb{Z}}^n)^*$: graded dual of Sym
- $\Phi : \operatorname{Sym} \cong \operatorname{Sym}^* \operatorname{by} \Phi(x)(y) = \langle x, y \rangle.$

Duality of Sym

Bilinear Form on Sym

- Define $\langle \cdot, \cdot \rangle : \operatorname{Sym} \times \operatorname{Sym} \to \mathbb{Z}$ by $\langle m_{\lambda}, h_{\mu} \rangle = \delta_{\lambda,\mu}$ for $\lambda, \mu \in \mathcal{P}$.
- $\langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda,\mu}$

Bilinear Form on $Sym \otimes Sym$

- Define (\cdot,\cdot) : Sym \otimes Sym \times Sym \otimes Sym $\to \mathbb{Z}$ by $(x \otimes v, x' \otimes v') = \langle x, x' \rangle \langle v, v' \rangle.$
- $(x \otimes y, \triangle(z)) = \langle \nabla(x \otimes y), z \rangle$

$Sym \cong Sym^*$

- Sym* = $\bigoplus_{n \in \mathbb{N}} (\Lambda_{\mathbb{Z}}^n)^*$: graded dual of Sym
- \bullet Φ : Sym \cong Sym* by $\Phi(x)(y) = \langle x, y \rangle$.

Sym and QSym

Noncommutative Symmetric Functions

Definition

 $NSym = \mathbb{Z}\langle \mathbf{h}_1, \mathbf{h}_2, \cdots \rangle$: free algebra

NSym as a Hopf algebra

- $\triangle : \text{NSym} \to \text{NSym} \otimes \text{NSym}, \quad \mathbf{h}_n \mapsto \sum_{i+j=n} \mathbf{h}_i \otimes \mathbf{h}_j$
- $\epsilon : \text{NSym} \to \mathbb{Z}, \quad \mathbf{h}_n \mapsto \mathbf{0}, \ n \geq 1$

Connection to Representation Theory

• (Duchamp, Krob, Leclerc, Thibon, Ung, 1996)

$$NSym \cong \bigoplus_{n=0}^{\infty} \mathcal{K}_0(H_n(0)\text{-pmod})$$

7/20

Noncommutative Symmetric Functions

Definition

 $NSym = \mathbb{Z}\langle \mathbf{h}_1, \mathbf{h}_2, \cdots \rangle$: free algebra

NSym as a Hopf algebra

- $\triangle : \text{NSym} \to \text{NSym} \otimes \text{NSym}, \quad \mathbf{h}_n \mapsto \sum_{i+j=n} \mathbf{h}_i \otimes \mathbf{h}_j$
- $\epsilon : \text{NSym} \to \mathbb{Z}, \quad \mathbf{h}_n \mapsto \mathbf{0}, \ n \geq \mathbf{1}$

Connection to Representation Theory

• (Duchamp, Krob, Leclerc, Thibon, Ung, 1996)

$$NSym \cong \bigoplus_{n=0}^{\infty} \mathcal{K}_0(H_n(0)\text{-pmod})$$

7/20

Noncommutative Symmetric Functions

Definition

 $NSym = \mathbb{Z}\langle \mathbf{h}_1, \mathbf{h}_2, \cdots \rangle$: free algebra

NSym as a Hopf algebra

- $\triangle : \text{NSym} \to \text{NSym} \otimes \text{NSym}, \quad \mathbf{h}_n \mapsto \sum_{i+j=n} \mathbf{h}_i \otimes \mathbf{h}_j$
- $\epsilon : \text{NSym} \to \mathbb{Z}, \quad \mathbf{h}_n \mapsto \mathbf{0}, \ n \geq \mathbf{1}$

Connection to Representation Theory

• (Duchamp, Krob, Leclerc, Thibon, Ung, 1996)

$$NSym \cong \bigoplus_{n=0}^{\infty} \mathcal{K}_0(H_n(0)\text{-pmod})$$

7/20

Definition (Gessel 1984)

 $\operatorname{QSym} \subset \mathbb{Z}[[x_1, x_2, \cdots]]$ consisting of shift invariant formal power series of bounded degree, i.e., $f \in \operatorname{QSym}$ if and only if

coeff of
$$x_1^{n_1}x_2^{n_2}\cdots x_k^{n_k}$$
 in $f=$ coeff of $x_{i_1}^{n_1}x_{i_2}^{n_2}\cdots x_{i_k}^{n_k}$ in f

for all $0 < i_1 < i_2 < \cdots < i_k$ and $n_1, n_2, \cdots, n_k \in \mathbb{N}$.

Example

- $\sum_{i < j} x_i^2 x_j$ quasisymmetric, not symmetric.
- $\sum_{i < j} x_i x_i^5$ quasisymmetric, not symmetric.

8/20

Definition (Gessel 1984)

 $\operatorname{QSym} \subset \mathbb{Z}[[x_1, x_2, \cdots]]$ consisting of shift invariant formal power series of bounded degree, i.e., $f \in \operatorname{QSym}$ if and only if

coeff of
$$x_1^{n_1}x_2^{n_2}\cdots x_k^{n_k}$$
 in $f=$ coeff of $x_{i_1}^{n_1}x_{i_2}^{n_2}\cdots x_{i_k}^{n_k}$ in f

for all $0 < i_1 < i_2 < \cdots < i_k$ and $n_1, n_2, \cdots, n_k \in \mathbb{N}$.

Example

- $\sum_{i < j} x_i^2 x_j$ quasisymmetric, not symmetric.
- $\sum_{i < j} x_i x_i^5$ quasisymmetric, not symmetric.

8/20

Additive Basis for OSvm

• $M_{\alpha} = \sum_{i_1 < \dots < i_k} x_{i_1}^{\alpha_1} \cdots x_{i_k}^{\alpha_k}$, where $\alpha \in \text{Comp}(n)$.

- Multiplication: overlapping shuffles
- Comultiplication: cut

- Define $\langle \cdot, \cdot \rangle : \operatorname{NSym} \times \operatorname{QSym} \to \mathbb{Z}$ by $\langle \mathbf{h}_{\alpha}, M_{\beta} \rangle = \delta_{\alpha,\beta}$.
- \bullet (\cdot,\cdot) : NSym \otimes NSym \times QSym \otimes QSym $\to \mathbb{Z}$
- \bullet $(\triangle(\mathbf{h}_{\alpha}), M_{\beta} \otimes M_{\gamma}) = \langle \mathbf{h}_{\alpha}, \nabla(M_{\beta} \otimes M_{\gamma}) \rangle$
- \circ QSym \cong NSym*

Additive Basis for QSym

• $M_{\alpha} = \sum_{i_1 < \dots < i_k} x_{i_1}^{\alpha_1} \cdots x_{i_k}^{\alpha_k}$, where $\alpha \in \text{Comp}(n)$.

QSym as a Hopf algebra

- Multiplication: overlapping shuffles
- Comultiplication: cut

Duality of NSym and QSym

- Define $\langle \cdot , \cdot \rangle$: NSym × QSym $\to \mathbb{Z}$ by $\langle \mathbf{h}_{\alpha}, M_{\beta} \rangle = \delta_{\alpha,\beta}$.
- $\bullet \ (\cdot \ , \ \cdot) : \operatorname{NSym} \otimes \operatorname{NSym} \ \times \ \operatorname{QSym} \otimes \operatorname{QSym} \to \mathbb{Z}$
- $\bullet \ (\triangle(\mathbf{h}_{\alpha}), M_{\beta} \otimes M_{\gamma}) = \langle \mathbf{h}_{\alpha}, \nabla(M_{\beta} \otimes M_{\gamma}) \rangle$
- QSym \cong NSym*

2015-8-28

Additive Basis for QSym

• $M_{\alpha} = \sum_{i_1 < \dots < i_k} x_{i_1}^{\alpha_1} \cdots x_{i_k}^{\alpha_k}$, where $\alpha \in \text{Comp}(n)$.

QSym as a Hopf algebra

- Multiplication: overlapping shuffles
- Comultiplication: cut

Duality of NSym and QSym

- Define $\langle \cdot , \cdot \rangle : \operatorname{NSym} \times \operatorname{QSym} \to \mathbb{Z}$ by $\langle \mathbf{h}_{\alpha}, \mathbf{\textit{M}}_{\beta} \rangle = \delta_{\alpha,\beta}$.
- $\bullet \ (\cdot \ , \ \cdot) : NSym \otimes NSym \ \times \ QSym \otimes QSym \rightarrow \mathbb{Z}$
- $\bullet \ (\triangle(\mathbf{h}_{\alpha}), M_{\beta} \otimes M_{\gamma}) = \langle \mathbf{h}_{\alpha}, \nabla (M_{\beta} \otimes M_{\gamma}) \rangle$
- $QSym \cong NSym^*$

Polynomial Freeness of QSym

Ditters Conjecture 1972

The algebra QSym is a free commutative algebra over the integers.

Hazewinkel 2001, 2002

- Ditters Conjecture is proved.
- An explicit free commutative polynomial basis is constructed.

QSym is free over Sym

- $E = \{e_n(\alpha) \mid \alpha \in eLYN, n \in \mathbb{N}\}$: free polynomial basis for QSym.
- *E* contains the elementary symmetric functions.

Polynomial Freeness of QSym

Ditters Conjecture 1972

The algebra QSym is a free commutative algebra over the integers.

Hazewinkel 2001, 2002

- Ditters Conjecture is proved.
- An explicit free commutative polynomial basis is constructed.

QSym is free over Sym

- $E = \{e_n(\alpha) \mid \alpha \in eLYN, n \in \mathbb{N}\}$: free polynomial basis for QSym.
- E contains the elementary symmetric functions.

Polynomial Freeness of OSym

Ditters Conjecture 1972

The algebra QSym is a free commutative algebra over the integers.

Hazewinkel 2001, 2002

- Ditters Conjecture is proved.
- An explicit free commutative polynomial basis is constructed.

OSym is free over Sym

- $E = \{e_n(\alpha) \mid \alpha \in eLYN, n \in \mathbb{N}\}$: free polynomial basis for QSym.
- E contains the elementary symmetric functions.

The Heisenberg Double

Definition (Dual Pair)

 (H^+, H^-) is a dual pair of Hopf algebras if

- H[±] are graded connected Hopf algebras,
- we have a perfect Hopf pairing $\langle \cdot , \cdot \rangle : H^- \times H^+ \to R$.

Via this pairing, identify H^{\pm} with the grade dual of H^{\mp} .

Definition (Heisenberg Double)

The Heisenberg double of H^+ is the algebra $\mathfrak{h} = \mathfrak{h}(H^+, H^-)$ given by

- $\mathfrak{h} = H^+ \otimes H^-$ as R-modules. We write $a\sharp x$ for $a\otimes x$, viewed as an element of \mathfrak{h} .
- Multiplication is given by: $(a\sharp x)(b\sharp y) = \sum_{(x)} a^R x_{(1)}^*(b)\sharp x_{(2)} y = \sum_{(x),(b)} \langle x_{(1)},b_{(2)}\rangle ab_{(1)}\sharp x_{(2)}y.$

11/20

The Heisenberg Double

Definition (Dual Pair)

 (H^+, H^-) is a dual pair of Hopf algebras if

- H[±] are graded connected Hopf algebras,
- we have a perfect Hopf pairing $\langle \cdot, \cdot \rangle : H^- \times H^+ \to R$.

Via this pairing, identify H^{\pm} with the grade dual of H^{\mp} .

Definition (Heisenberg Double)

The Heisenberg double of H^+ is the algebra $\mathfrak{h} = \mathfrak{h}(H^+, H^-)$ given by

- Multiplication is given by: $(a\sharp x)(b\sharp y)=\sum_{(x)}a^Rx_{(1)}^*(b)\sharp x_{(2)}y=\sum_{(x),(b)}\langle x_{(1)},b_{(2)}\rangle ab_{(1)}\sharp x_{(2)}y.$

11/20

Fock Space Representation

Definition (Fock Space Representation)

The algebra \mathfrak{h} has a natural representation on H^+ given by

$$(a\sharp x)(b) = a^{R}x^{*}(b), \ a,b \in H^{+}, x \in H^{-}.$$

Stone-von Neumann Type Theorem (Savage, Yacobi 2015)

- ullet The representation ${\mathcal F}$ is faithful.
- If R is a field, then \mathcal{F} is irreducible.
- Any representation of $\mathfrak h$ generated by a lowest weight vacuum vector is isomorphic to $\mathcal F.$

4□ > 4□ > 4 = > 4 = > = 90

12 / 20

Fock Space Representation

Definition (Fock Space Representation)

The algebra \mathfrak{h} has a natural representation on H^+ given by

$$(a\sharp x)(b) = a^R x^*(b), \ \ a,b \in H^+, x \in H^-.$$

Stone-von Neumann Type Theorem (Savage, Yacobi 2015)

- The representation \mathcal{F} is faithful.
- If R is a field, then \mathcal{F} is irreducible.
- Any representation of $\mathfrak h$ generated by a lowest weight vacuum vector is isomorphic to $\mathcal F.$

Jie Sun (MTU) Sym and QSym

Example

Heisenberg Algebra $\mathfrak{h} = \mathfrak{h}(Sym, Sym)$

- p_1, p_2, \cdots : the power sums in $H^+ = \text{Sym}$.
- p_1^*, p_2^*, \cdots : the power sums in $H^- = \operatorname{Sym}$.
- $p_m p_n = p_n p_m$, $p_m^* p_n^* = p_n^* p_m^*$, $p_m^* p_n = p_n p_m^* + m \delta_{m,n}$.

Quasi-Heisenberg Algebra q = h(QSym, NSym)

- Fock space representation: natural action on QSym.
- q_{proj} : subalgebra generated by $Sym \subset QSym$ and NSym.

13 / 20

Example

$$\begin{matrix} Sym \\ & \bigcap \\ NSym \longleftrightarrow QSym \\ \downarrow \\ Sym \end{matrix}$$

Heisenberg Algebra $\mathfrak{h} = \mathfrak{h}(Sym, Sym)$

- p_1, p_2, \cdots : the power sums in $H^+ = \text{Sym}$.
- p_1^*, p_2^*, \cdots : the power sums in $H^- = \operatorname{Sym}$.
- $p_m p_n = p_n p_m$, $p_m^* p_n^* = p_n^* p_m^*$, $p_m^* p_n = p_n p_m^* + m \delta_{m,n}$.

Quasi-Heisenberg Algebra q = h(QSym, NSym)

- Fock space representation: natural action on QSym.
- \mathfrak{q}_{proj} : subalgebra generated by $Sym \subset QSym$ and NSym.

13 / 20

Example

$$\begin{matrix} Sym \\ & \bigcap \\ NSym \longleftrightarrow QSym \\ \downarrow \\ Sym \end{matrix}$$

Heisenberg Algebra $\mathfrak{h} = \mathfrak{h}(Sym, Sym)$

- p_1, p_2, \cdots : the power sums in $H^+ = \operatorname{Sym}$.
- p_1^*, p_2^*, \cdots : the power sums in $H^- = \operatorname{Sym}$.
- $p_m p_n = p_n p_m$, $p_m^* p_n^* = p_n^* p_m^*$, $p_m^* p_n = p_n p_m^* + m \delta_{m,n}$.

Quasi-Heisenberg Algebra $q = \mathfrak{h}(QSym, NSym)$

- Fock space representation: natural action on QSym.
- $\mathfrak{q}_{\text{proj}}$: subalgebra generated by $\text{Sym} \subset \text{QSym}$ and NSym.

Goal

To categorify Heisenberg doubles and their Fock space representations.

What is categorification?

Suppose *M* is a module for a ring *R*.

We would like to find an abelian category $\ensuremath{\mathcal{M}}$ such that

$$\mathcal{K}_0(\mathcal{M}) \xrightarrow{\phi} M$$
 (as \mathbb{Z} -modules),

where $\mathcal{K}_0(\mathcal{M})$ is the Grothendieck group of \mathcal{M} .

Jie Sun (MTU)

Goal

To categorify Heisenberg doubles and their Fock space representations.

What is categorification?

Suppose M is a module for a ring R.

We would like to find an abelian category \mathcal{M} such that

$$\mathcal{K}_0(\mathcal{M}) \xrightarrow{\phi} \mathbf{M}$$
 (as \mathbb{Z} -modules),

where $\mathcal{K}_0(\mathcal{M})$ is the Grothendieck group of \mathcal{M} .

Jie Sun (MTU)

For each $r \in R$ (or, for those r in a fixed generating set), we want an exact endofunctor F_r of \mathcal{M} such that we have a commutative diagram:

$$\begin{array}{ccc}
\mathcal{K}_0(\mathcal{M}) & \xrightarrow{[F_r]} & \mathcal{K}_0(\mathcal{M}) \\
\downarrow^{\phi} & & \downarrow^{\phi} \\
M & \xrightarrow{r} & M
\end{array}$$

Here $[F_r]$ denotes the map induced by F_r on $\mathcal{K}_0(\mathcal{M})$.

We would also like isomorphisms of functions lifting the relations of R. For example, suppose we have a relation in R: rs = 2sr + 3. Then we would like isomorphisms of functors $F_r \circ F_s \cong (F_s \circ F_r)^{\oplus 2} \oplus \operatorname{Id}^{\oplus 3}$.

For each $r \in R$ (or, for those r in a fixed generating set), we want an exact endofunctor F_r of \mathcal{M} such that we have a commutative diagram:

$$\begin{array}{ccc}
\mathcal{K}_0(\mathcal{M}) & \xrightarrow{[F_r]} & \mathcal{K}_0(\mathcal{M}) \\
\downarrow^{\phi} & & \downarrow^{\phi} \\
M & \xrightarrow{r} & M
\end{array}$$

Here $[F_r]$ denotes the map induced by F_r on $\mathcal{K}_0(\mathcal{M})$.

We would also like isomorphisms of functions lifting the relations of R. For example, suppose we have a relation in R: rs = 2sr + 3. Then we would like isomorphisms of functors $F_r \circ F_s \cong (F_s \circ F_r)^{\oplus 2} \oplus \operatorname{Id}^{\oplus 3}$.

(ロト (個) (注) (注) 注 り()

15/20

Fruits of Categorification

- Classes of objects (simple, indecomposable projective) give distinguished bases with positivity and integrality properties.
- Uncovers hidden structure in the algebra and its representation.
- Provides tools for studying the category M.
- Applications to topology and physics.

Fruits of Categorification

- Classes of objects (simple, indecomposable projective) give distinguished bases with positivity and integrality properties.
- Uncovers hidden structure in the algebra and its representation.
- Provides tools for studying the category M.
- Applications to topology and physics.

Example

 (Lusztig) Categorification of quantum groups yields canonical bases with positivity and integrality properties.

Goal

- Find categories whose Grothendieck groups are isomorphic to ħ as Z-modules,
- Find functors lifting the action of h on Fock space,
- Find isomorphisms of functors lifting the defining relations of h.

Module Categories

- $A = \bigoplus_{n \in \mathbb{N}} A_n$: a tower of algebras.
- A_n -mod: category of f.g. left A_n -modules.
- A_n -pmod: category of f.g. projective left A_n -modules.
- $G_0(A_n)$: Grothendieck group of A_n -mod.
- $K_0(A_n)$: Grothendieck group of A_n -pmod.

◆ロ → ◆個 → ◆差 → ◆差 → ・差 ・ 釣 へ ○

2015-8-28

Goal

- Find categories whose Grothendieck groups are isomorphic to $\mathfrak h$ as $\mathbb Z\text{-modules},$
- Find isomorphisms of functors lifting the defining relations of h.

Module Categories

- $A = \bigoplus_{n \in \mathbb{N}} A_n$: a tower of algebras.
- A_n -mod: category of f.g. left A_n -modules.
- A_n -pmod: category of f.g. projective left A_n -modules.
- $G_0(A_n)$: Grothendieck group of A_n -mod.
- $K_0(A_n)$: Grothendieck group of A_n -pmod.

Theorem (Bergeron, Li 2009)

Let $\mathcal{G}(A) = \bigoplus_{n \in \mathbb{N}} G_0(A_n)$ and $\mathcal{K}(A) = \bigoplus_{n \in \mathbb{N}} K_0(A_n)$. Then $(\mathcal{G}(A), \mathcal{K}(A))$ is a dual pair of Hopf algebras.

Definition (Heisenberg double associated to a tower)

To a tower of algebras A, we associate the Heisenberg double $\mathfrak{h}(A) := \mathfrak{h}(\mathcal{G}(A), \mathcal{K}(A))$ and its Fock space $\mathcal{F}(A) = \mathcal{G}(A)$.

Theorem (Savage, Yacobi 2015)

The functors Ind_M and Res_P for $M \in A$ -mod and $P \in A$ -pmod categorify the Fock space representation $\mathcal{F}(A)$ of $\mathfrak{h}(A)$.

4□ > 4□ > 4 = > 4 = > = 90

Theorem (Bergeron, Li 2009)

Let $\mathcal{G}(A) = \bigoplus_{n \in \mathbb{N}} G_0(A_n)$ and $\mathcal{K}(A) = \bigoplus_{n \in \mathbb{N}} K_0(A_n)$. Then $(\mathcal{G}(A), \mathcal{K}(A))$ is a dual pair of Hopf algebras.

Definition (Heisenberg double associated to a tower)

To a tower of algebras A, we associate the Heisenberg double $\mathfrak{h}(A) := \mathfrak{h}(\mathcal{G}(A), \mathcal{K}(A))$ and its Fock space $\mathcal{F}(A) = \mathcal{G}(A)$.

Theorem (Savage, Yacobi 2015)

The functors Ind_M and Res_P for $M \in A$ -mod and $P \in A$ -pmod categorify the Fock space representation $\mathcal{F}(A)$ of $\mathfrak{h}(A)$.

<□ > <□ > <□ > <□ > < = > < = > < ○</td>

Theorem (Bergeron, Li 2009)

Let $\mathcal{G}(A) = \bigoplus_{n \in \mathbb{N}} G_0(A_n)$ and $\mathcal{K}(A) = \bigoplus_{n \in \mathbb{N}} K_0(A_n)$. Then $(\mathcal{G}(A), \mathcal{K}(A))$ is a dual pair of Hopf algebras.

Definition (Heisenberg double associated to a tower)

To a tower of algebras A, we associate the Heisenberg double $\mathfrak{h}(A) := \mathfrak{h}(\mathcal{G}(A), \mathcal{K}(A))$ and its Fock space $\mathcal{F}(A) = \mathcal{G}(A)$.

Theorem (Savage, Yacobi 2015)

The functors Ind_M and Res_P for $M \in A$ -mod and $P \in A$ -pmod categorify the Fock space representation $\mathcal{F}(A)$ of $\mathfrak{h}(A)$.

Application: QSym is free over Sym

Tower of 0-Hecke algebras

- $A = \bigoplus_{n \in \mathbb{N}} H_n(0)$
- $\mathcal{G}(A) = \text{QSym}, \mathcal{K}(A) = \text{NSym}$
- $\mathfrak{q} = \mathfrak{h}(QSym, NSym)$: quasi-Heisenberg algebra
- q_{proj}: subalgebra generated by Sym ⊂ QSym and NSym.

Application: QSym is free over Sym

Tower of 0-Hecke algebras

- $A = \bigoplus_{n \in \mathbb{N}} H_n(0)$
- $\mathcal{G}(A) = \text{QSym}, \mathcal{K}(A) = \text{NSym}$
- $\mathfrak{q} = \mathfrak{h}(QSym, NSym)$: quasi-Heisenberg algebra
- $\mathfrak{q}_{\text{proj}}$: subalgebra generated by $\text{Sym} \subset \text{QSym}$ and NSym.

Theorem (Savage, Yacobi 2015)

Any representation of $\mathfrak{q}_{\text{proj}}$ generated by a lowest weight vacuum vector is isomorphic to $\mathrm{Sym}.$

Theorem (Hazewinkel 2001, Savage, Yacobi 2015) QSym is free as a Sym-module.

Application: QSym is free over Sym

Tower of 0-Hecke algebras

- \bullet $A = \bigoplus_{n \in \mathbb{N}} H_n(0)$
- $\mathcal{G}(A) = \text{QSym}, \mathcal{K}(A) = \text{NSym}$
- $\mathfrak{q} = \mathfrak{h}(QSym, NSym)$: quasi-Heisenberg algebra
- q_{proi}: subalgebra generated by Sym ⊂ QSym and NSym.

Theorem (Savage, Yacobi 2015)

Any representation of $\mathfrak{q}_{\text{proj}}$ generated by a lowest weight vacuum vector is isomorphic to Sym.

Theorem (Hazewinkel 2001, Savage, Yacobi 2015)

OSym is free as a Sym-module.

Jie Sun (MTU) Sym and QSym

Further Applications

Towers of Superalgebras

- 0-Hecke-Clifford algebras (Li 2015)
- The ring of peak quasisymmetric functions is free over the subring of symmetric functions spanned by Schur's Q-functions.
- Other towers of (super)algebras (ongoing work)

Thank you for your attention!

2015-8-28

Further Applications

Towers of Superalgebras

- 0-Hecke-Clifford algebras (Li 2015)
- The ring of peak quasisymmetric functions is free over the subring of symmetric functions spanned by Schur's Q-functions.
- Other towers of (super)algebras (ongoing work)

Thank you for your attention!