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Symmetric Functions

Definition
@ R: commutative ring with identity
@ X = (xy, X2, --): set of indeterminates
@ n: nonnegative integer
A homogeneous symmetric function of degree n is a formal power
series f(x) = > CoX* Where
@ « ranges over all weak compositions o = (a1, g, - -+ ) of n,
@ c, €R,
@ x“ stands for the monomial x{"" x;2 - - -

@ f(Xw(1); Xw(2), -+ ) = f(X1, X2, - - - ) for every permutation w of the
positive integers.
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Symmetric Functions

Definition
Let A% be the set of all homogeneous symmetric functions of degree n.

ANe=NEOARD -

is a commutative, unital, graded R-algebra.
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Symmetric Functions

Definition

Let A% be the set of all homogeneous symmetric functions of degree n.
ANe=NEOARD -

is a commutative, unital, graded R-algebra.

Bases for /\&

@ Monomial symmetric functions {m, : A F n}

@ Elementary symmetric functions {e, : A - n}

@ Complete homogeneous symmetric functions {hy : A - n}
@ Power sum symmetric functions {py : A F n}

@ Schur functions {s) : A - n}
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Symmetric Functions Over Integers

Ny =Sym =7Z[ey, €, -] C Z[Xq, X2, -+ ]
@ e =X +Xo+---

@ & = X{Xo+ XyX3 + XoX3 + - -~
@ ep= Zj1<j2<...<in Xi1 Xig o

S X

n
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Symmetric Functions Over Integers

Ny =Sym =7Z[ey, €, -] C Z[Xq, X2, -+ ]
@ e =X +Xo+---

@ & = X{Xo+ XyX3 + XoX3 + - -~
Q@ ey, = Zj1<j2<...<in Xi1 Xig T

S X

Sym as a Hopf algebra

© A:Sym— Sym®Sym, ep— 3 6 R 6
@ ¢:Sym — Z,

en—0, n>1
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Symmetric Functions Over Integers

Ny, = Sym = Z[e1 , €2,

] C Z[X1,X2, ]
Qe =X +Xo+- -
@ & = X1 Xo + X1 X3 + XoX3 +
@ ép= ZI1<IQ< <l X’1X’2 ’ X/n

Sym as a Hopf algebra

@ A :Sym — Sym ® Sym

@ e:Sym—Z

en—0,n>1

Connection to Representation Theory
@ (Geissinger 1977) Sym =

@n=o Ko(C[Sn]-mod)
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Duality of Sym

Bilinear Form on Sym

@ Define (-, -) : Sym x Sym — Z by (my, h,) = 65, for A, u € P.
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Duality of Sym

Bilinear Form on Sym

@ Define (-, -) : Sym x Sym — Z by (my, h,) =65, for A\, u € P
Bilinear Form on Sym ® Sym

x@y,x@y)=xx)y,y).

@ Define (-, ) : Sym ® Sym x Sym ® Sym — Z by
® (x®y,A(2)) = (V(x®Y),2)
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Duality of Sym
Bilinear Form on Sym
° (S)\, Sﬂ> = 5%#

@ Define (-, -) : Sym x Sym — Z by (my, h,) =65, for A\, u € P

Bilinear Form on Sym ® Sym

(x@y,xX@y)=xx)yy).
° (x®y,A(2)=(V(x®Yy),2)

@ Define (-, ) : Sym ® Sym x Sym ® Sym — Z by
Sym = Sym*

@ Sym* = P,y (A7)": graded dual of Sym
@ & : Sym = Sym” by ®(x)(y) = (x,y)
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Noncommutative Symmetric Functions
Definition

NSym = Z(h4, hy, - --): free algebra
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Noncommutative Symmetric Functions
Definition

NSym = Z(h¢, hy, - - -): free algebra

NSym as a Hopf algebra

® A:NSym — NSym®NSym, h,— 3, hj®h,
@ ¢c:NSym—~ 7%, h,—0, n>1
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Noncommutative Symmetric Functions

Definition
NSym = Z(h¢, hy, - - -): free algebra

NSym as a Hopf algebra
® A :NSym — NSym® NSym, h,— 3" . h@h;
@ ¢c:NSym—~ 7%, h,—0, n>1

Connection to Representation Theory
@ (Duchamp, Krob, Leclerc, Thibon, Ung, 1996)

NSym 2 () KCo(Hn(0)-pmod)
n=0
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Quasisymmetric Functions

Definition (Gessel 1984)
QSym C Z[[xy, X2, - - - ]] consisting of shift invariant formal power series
of bounded degree, i.e., f € QSym if and only if

coeff of x{" x32 - - - x, in f = coeff of X" x2 - - x* in f
1R Ik

forall0< iy <hb<---<igand ny,no,--- ,ng € N.
v
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Quasisymmetric Functions

Definition (Gessel 1984)

QSym C Z[[xy, X2, - - - ]] consisting of shift invariant formal power series
of bounded degree, i.e., f € QSym if and only if

coeff of x{" x32 - - - x, in f = coeff of X" x2 - - x* in f
1R Ik

forall0< iy <hb<---<igand ny,no,--- ,ng € N.

Example
@ >,_; X#x; quasisymmetric, not symmetric.

5 . . .
° Z,q- XiX; quasisymmetric, not symmetric.
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Quasisymmetric Functions
Additive Basis for QSym
o MO{ - Zi1<"'<ik

o
X ...
hH

-+ x.*, where a € Comp(n).
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Quasisymmetric Functions

Additive Basis for QSym
oM, = Zi1<--~<ik Xi?q ’

- X, where o € Comp(n)
QSym as a Hopf algebra

@ Multiplication: overlapping shuffles
@ Comultiplication: cut
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Quasisymmetric Functions

Additive Basis for QSym

— (071 Qe
oM, = E,1<..,<,k XX where o € Comp(n).

QSym as a Hopf algebra

@ Multiplication: overlapping shuffles
@ Comultiplication: cut

Duality of NSym and QSym
@ Define (-, -) : NSym x QSym — Z by (h,, Mg) = 04 s.
@ (-, -):NSym ® NSym x QSym ® QSym — Z
o (A(ha), Mz ® M,) = (ha, v(Ms @ M,))
@ QSym = NSym*
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Polynomial Freeness of QSym
Ditters Conjecture 1972

The algebra QSym is a free commutative algebra over the integers.

J
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Polynomial Freeness of QSym

Ditters Conjecture 1972

The algebra QSym is a free commutative algebra over the integers.

Hazewinkel 2001, 2002
@ Ditters Conjecture is proved.

@ An explicit free commutative polynomial basis is constructed.
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Polynomial Freeness of QSym

Ditters Conjecture 1972
The algebra QSym is a free commutative algebra over the integers.

Hazewinkel 2001, 2002
@ Ditters Conjecture is proved.
@ An explicit free commutative polynomial basis is constructed.

QSym is free over Sym

@ E ={en(a) | a € eLYN, n € N}: free polynomial basis for QSym.

@ E contains the elementary symmetric functions.
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The Heisenberg Double

Definition (Dual Pair)
(H*,H™) is a dual pair of Hopf algebras if

@ H* are graded connected Hopf algebras,

@ we have a perfect Hopf pairing (-, -) : H- x H" — R.
Via this pairing, identify H* with the grade dual of HT.
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The Heisenberg Double

Definition (Dual Pair)
(H*,H™) is a dual pair of Hopf algebras if

@ H* are graded connected Hopf algebras,

@ we have a perfect Hopf pairing (-, -) : H- x H" — R.
Via this pairing, identify H* with the grade dual of HT.

Definition (Heisenberg Double)
The Heisenberg double of H* is the algebra h = h(H*, H™) given by

@ h = H" @ H~ as R-modules.
We write atix for a® x, viewed as an element of b.

@ Multiplication is given by:
(@tx)(bty) = 3 @ X (D)X = X (), 0) (X(1) B2y @b(1)EX(2) -
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Fock Space Representation

Definition (Fock Space Representation)
The algebra h has a natural representation on H* given by

(atx)(b) = ax*(b), a,be H",x e H".
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Fock Space Representation

Definition (Fock Space Representation)
The algebra h has a natural representation on H* given by

(atx)(b) = ax*(b), a,be H",x e H".

Stone-von Neumann Type Theorem (Savage, Yacobi 2015)
@ The representation F is faithful.
e If Ris afield, then F is irreducible.

@ Any representation of h generated by a lowest weight vacuum
vector is isomorphic to F.
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Example
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Example

Sym
N
NSym <— QSym
i}
Sym
Heisenberg Algebra h = h(Sym, Sym)

@ p1,Po,---: the power sums in H* = Sym.
@ pj,p5,---: the power sums in H~ = Sym.

® PmPn = PnPm;  PmPn = PaPm, PmPn = PnPm + Mom,n.
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Example

Sym
N
NSym <— QSym
{
Sym
Heisenberg Algebra h = h(Sym, Sym)

@ p1,Po,---: the power sums in H* = Sym.
@ pj,p5,---: the power sums in H~ = Sym.

® PmPn = PnPm;  PmPn = PaPm, PmPn = PnPm + Mom,n.

Quasi-Heisenberg Algebra q = h(QSym, NSym)
@ Fock space representation: natural action on QSym.
@ (qproj- Subalgebra generated by Sym C QSym and NSym.
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Categorification

Goal

To categorify Heisenberg doubles and their Fock space
representations.
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Categorification

Goal

To categorify Heisenberg doubles and their Fock space
representations.

What is categorification?

Suppose M is a module for a ring R.
We would like to find an abelian category M such that

Ko(M)

Il l@

M (as Z-modules),

where Ko(M) is the Grothendieck group of M.
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Categorification

For each r € R (or, for those r in a fixed generating set), we want an
exact endofunctor F, of M such that we have a commutative diagram:

Ko(M) -1 ko(Mm)

|

M — M

Here [F;] denotes the map induced by F, on Ky(M).

Jie Sun (MTU) Sym and QSym 2015-8-28 15/20



Categorification

For each r € R (or, for those r in a fixed generating set), we want an
exact endofunctor F, of M such that we have a commutative diagram:

Ko(M) -1 Ko(Mm)

|

M — M

Here [F;] denotes the map induced by F, on Ky(M).

We would also like isomorphisms of functions lifting the relations of R.
For example, suppose we have a relation in R: rs = 2sr + 3. Then we
would like isomorphisms of functors F; o Fs = (Fs o F;)%2 @ Id®3.
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Categorification

Fruits of Categorification

@ Classes of objects (simple, indecomposable projective) give
distinguished bases with positivity and integrality properties.

@ Uncovers hidden structure in the algebra and its representation
@ Provides tools for studying the category M.
@ Applications to topology and physics.
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Categorification

Fruits of Categorification

@ Classes of objects (simple, indecomposable projective) give
distinguished bases with positivity and integrality properties.

@ Uncovers hidden structure in the algebra and its representation.
@ Provides tools for studying the category M.
@ Applications to topology and physics.

Example

@ (Lusztig) Categorification of quantum groups yields canonical
bases with positivity and integrality properties.
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Categorification of the Heisenberg Double

Goal

@ Find categories whose Grothendieck groups are isomorphic to h
as Z-modules,

@ Find functors lifting the action of h on Fock space,
@ Find isomorphisms of functors lifting the defining relations of b.
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Categorification of the Heisenberg Double

Goal

@ Find categories whose Grothendieck groups are isomorphic to h
as Z-modules,

@ Find functors lifting the action of h on Fock space,
@ Find isomorphisms of functors lifting the defining relations of b.

Module Categories
@ A= dpenAn: atower of algebras.
@ A,-mod: category of f.g. left A,-modules.
@ A,-pmod: category of f.g. projective left A,-modules.
@ Gy(An): Grothendieck group of A,-mod.
@ Kp(An): Grothendieck group of A,-pmod.
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Categorification of the Heisenberg Double

Theorem (Bergeron, Li 2009)

Let G(A) = ©nenGo(An) and K(A) = ®nenKo(An). Then (G(A), K£(A))
is a dual pair of Hopf algebras.
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Categorification of the Heisenberg Double

Theorem (Bergeron, Li 2009)

Let G(A) = ©nenGo(An) and K(A) = ®nenKo(An). Then (G(A), K£(A))
is a dual pair of Hopf algebras.

Definition (Heisenberg double associated to a tower)

To a tower of algebras A, we associate the Heisenberg double
h(A) := h(G(A), K(A)) and its Fock space F(A) = G(A).
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Categorification of the Heisenberg Double

Theorem (Bergeron, Li 2009)

Let G(A) = ©nenGo(An) and K(A) = ®nenKo(An). Then (G(A), K£(A))
is a dual pair of Hopf algebras.

Definition (Heisenberg double associated to a tower)

To a tower of algebras A, we associate the Heisenberg double
h(A) := h(G(A), K(A)) and its Fock space F(A) = G(A).

Theorem (Savage, Yacobi 2015)

The functors Indy, and Resp for M € A-mod and P € A-pmod
categorify the Fock space representation F(A) of h(A).
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Application: QSym is free over Sym

Tower of 0-Hecke algebras
® A= BnenHn(0)
@ G(A) = QSym, £(A) = NSym
@ g = h(QSym, NSym): quasi-Heisenberg algebra
@ (qproj- Subalgebra generated by Sym C QSym and NSym.
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Application: QSym is free over Sym

Tower of 0-Hecke algebras
® A= BnenHn(0)
@ G(A) = QSym, K£(A) = NSym
@ q = h(QSym, NSym): quasi-Heisenberg algebra
@ (qproj- Subalgebra generated by Sym C QSym and NSym.

Theorem (Savage, Yacobi 2015)

Any representation of qro; generated by a lowest weight vacuum
vector is isomorphic to Sym.
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Application: QSym is free over Sym

Tower of 0-Hecke algebras
® A= BnenHn(0)
@ G(A) = QSym, K£(A) = NSym
@ g = h(QSym, NSym): quasi-Heisenberg algebra
@ (qproj- Subalgebra generated by Sym C QSym and NSym.

Theorem (Savage, Yacobi 2015)

Any representation of qro; generated by a lowest weight vacuum
vector is isomorphic to Sym.

Theorem (Hazewinkel 2001, Savage, Yacobi 2015)
QSym is free as a Sym-module.
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Further Applications

Towers of Superalgebras

@ 0-Hecke-Clifford algebras (Li 2015)

@ The ring of peak quasisymmetric functions is free over the subring

of symmetric functions spanned by Schur’s Q-functions.

@ Other towers of (super)algebras (ongoing work)
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Further Applications

Towers of Superalgebras
@ 0-Hecke-Clifford algebras (Li 2015)

@ The ring of peak quasisymmetric functions is free over the subring
of symmetric functions spanned by Schur’s Q-functions.

@ Other towers of (super)algebras (ongoing work)

Thank you for your attention! J
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