The Combinatorics of Topology-Transparent Scheduling

joint work with Charles J. Colbourn, Wensong Chu, Peter J. Dukes, Alan C.H. Ling, and Jonathan Lutz

Algebraic Combinatorics and Applications The 1st Annual Kliakhandler Conference

Syrotiuk et al. (ASU)

The Combinatorics of TT Scheduling

Medium Access Control (MAC) Protocols

- Many networks use a broadcast channel (medium).
 - e.g., WiFi, satellite, radio, optical, sensor.
- The MAC protocol coordinates all packet transmissions.
- The MAC protocol has a fundamental impact on overall network

performance.

Mobile Ad Hoc Wireless Networks (MANETs)

- A mobile ad hoc network is a self-organizing collection of mobile wireless nodes.
 - It has no centralized control or wired infrastructure.
- The network is multi-hop, and allows spatial re-use.
 - The simplest way to model a MANET is to use a unit disk graph.

Approaches to Medium Access Control

- There is a spectrum of approaches to medium access control.
 - Contention-based protocols:
 - Pros: agile and adapt quickly to changes in perceived contention.
 - Cons: short-term unfair, large variations in delay, and poor performance at high load.
 - Schedule-based protocols:
 - Pros: stable persistences, low variation in delay and throughput, can sometimes bound maximum delay.
 - Cons: adapt slowly, if at all, to changes in the network.

How to Cope with Topology Changes?

- The topology of a MANET is dynamic, due to node mobility and physical characteristics of radio transmission.
- Topology-dependent approaches to cope topology change:
 - Recompute the schedule when the topology changes.

- Topology-transparent approaches to cope with topology change:
 - Schedules are independent of topology change, *i.e.*, each node's schedule is fixed at initialization and does not change.
 - Constructions use two design parameters: *N* the number of nodes, and *D*_{max} the maximum neighbourhood size.

Combinatorial Characterization of TT Scheduling

- The combinatorial problem asks for each node *i* ∈ {0,..., *N* − 1} to be given a subset *S_i* of {0, 1, ..., *n* − 1} slots with the property that the union of *D*_{max} or fewer other subsets cannot contain *S_i*.
- This may be expressed mathematically by requiring that

$$\left(\bigcup_{j\in X}S_{j}
ight)
eq S_{i},$$

where $X \subseteq \{0, \ldots, N-1\} \setminus \{i\}$ with $|X| \leq D_{max}$.

- In the language of sets this is precisely a cover-free family.
 - These are equivalent to disjunct matrices and to certain superimposed codes.

A Very Small Example from S(2,4,13)

- This example is from a Steiner system, S(2,4,13); it can support N = 13 nodes and $D_{max} = 3$.
- While there are collisions (≥ 2 nodes transmit at the same time; in black), each node has 2 successful slots!

Sensor Networks

• Most constructions consider two slot states: transmit and receive.

Radio	Transmit	Receive	Idle
1	15 W	11 W	0.05 W
2	5.76 W	2.88 W	0.35 W

Listening is expensive!

Syrotiuk et al. (ASU)

Extension to Three States

- Introduce a third slot state sleep for energy efficiency.
- The cover-free requirements are more complex.
- For each time slot, we need a slot schedule, *i.e.*, a partition [T, R, S] of the *N* nodes into nodes *T* that can transmit, nodes *R* that are eligible to receive, and nodes in *S* that are asleep.
 - Indirect (recursive) constructions include dual cover-free families and packcovers.
 - Direct constructions include addition sets, and computational methods (*e.g.*, hill climbing).
 - It is still possible to bound delay!

Example of Binary vs. Ternary TT Schedules

• Receive ρ , Transmit τ , Sleep σ

• Energy budget: cost of $4\tau + 9\rho$ per slot vs. $3\tau + 3\rho + 6\sigma$ per slot

Constant- vs. Variable-Weight Schedules

- TDMA schedules are trivially topology transparent.
- Constant-weight schedules place an unnecessary constraint on throughput in neighbourhoods smaller than D_{max}.
- Variable-weight schedules have the potential to recover throughput lost to constant-weight schedules.

Requirements of Variable-Weight TT Schedules

- The variable-weight topology-transparent schedule design problem:
 - Suppose there are *N* nodes, *m* schedule weights, and a frame length of *n*.
 - Let W_{max} be a fixed fraction of *n*.
 - We are to form schedules $S_i = \{S_{i,j} : 0 \le i < N, 0 \le j < m\}$ so that the weight wt($S_{i,j}$) is w_j ; and whenever $\{i_0, \ldots, i_D\} \subseteq \{0, \ldots, N-1\}$ and $j_{\ell} \in \{0, \ldots, m-1\}$ for $0 \le \ell \le D$,

$$\left(\bigcup_{\ell=1}^{D} S_{i_{\ell} j_{\ell}}\right)
ot \supset S_{i_{0} j_{0}}$$
 (the *cover-free condition*)

whenever

$$\sum_{\ell=1}^{D} \operatorname{wt}(S_{i_{\ell}j_{\ell}}) \leq W_{\max}$$
 (the *weight condition*).

Variable-Weight Schedules from a TD(t+1,v,v)

- We construct a set of variable-weight topology-transparent schedules for each node in the network from the blocks of a transversal design, TD(t + 1, v, v).
 - It supports a maximum of $N = v^t$ nodes, each with m = v schedules of length $n = v^t$.
 - That is, each node *i* has a collection of *m* schedules $S_i = \{S_{i,j} : 0 \le i < N, 0 \le j < m\}$ where the weight wt $(S_{i,j}) = w_j = (j+1)t 1$.
- The weight w_j is an upper bound on the number of collisions node *i* operating with schedule $S_{i,j}$ can experience while still satisfying the cover-free condition.
 - For a TD(t + 1, v, v), this is $W = \{t 1, 2t 1, ..., mt 1\}$, and $W_{max} = v$.

Weakening the Assumption on Synchronization

- Most known topology-transparent schedules assume synchronization on frame boundaries.
- Constructions are generalized for synchronization on slot boundaries and the asynchronous case.
- Idea: For slot synchronization, give a node a schedule and all its cyclic shifts.
 - Constructions from cyclic superimposed codes and optical orthogonal codes exist.
- It is somewhat of a surprise that the construction for the asynchronous model is achieved by a simple variant of the construction for the slot synchronized model.
- A substantial loss in the delay guarantee results each time the synchronization model is weakened.

- We introduced the combinatorial requirements on topology-transparent scheduling in MANETs.
- We provided extensions from binary to ternary schedules for energy-efficiency.
- We provided extensions from constant-weight to variable-weight to accommodate changes in network load.
- Finally, we weakened the assumption on frame synchronization to slot synchronization and the asynchronous case.

Thanks! :-)