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Medium Access Control (MAC) Protocols

Many networks use a broadcast channel (medium).
e.g., WiFi, satellite, radio, optical, sensor.

The MAC protocol coordinates all packet transmissions.
The MAC protocol has a fundamental impact on overall network
performance.
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Mobile Ad Hoc Wireless Networks (MANETs)

A mobile ad hoc network is a self-organizing collection of mobile
wireless nodes.

It has no centralized control or wired infrastructure.
The network is multi-hop, and allows spatial re-use.

The simplest way to model a MANET is to use a unit disk graph.
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MAC in Mobile Ad Hoc Networks 
•  Self-organizing collection of mobile 

wireless nodes 
–  No centralized control, wired infrastructure 
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Approaches to Medium Access Control

There is a spectrum of approaches to medium access control.
Contention-based protocols:

Pros: agile and adapt quickly to changes in perceived contention.
Cons: short-term unfair, large variations in delay, and poor
performance at high load.

Schedule-based protocols:
Pros: stable persistences, low variation in delay and throughput, can
sometimes bound maximum delay.
Cons: adapt slowly, if at all, to changes in the network.

schedules

CSMA/CA

Pure contention-based
schemes

Nonpersistent CSMA

p-persistence

Scheduled
p-persistence

schedules
Topology-aware

Pure schedule-based
schemes

Topology transparent
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How to Cope with Topology Changes?

The topology of a MANET is dynamic, due to node mobility and
physical characteristics of radio transmission.
Topology-dependent approaches to cope topology change:

Recompute the schedule when the topology changes.
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Topology and Scheduling 

•  Topology-dependent approaches 
–  Recompute access on topology change 

•  Topology-transparent approaches 

–  Independent of topology change 
–  Neighbour information not used 
–  Two design parameters: N, Dmax 

Topology-transparent approaches to cope with topology change:
Schedules are independent of topology change, i.e., each node’s
schedule is fixed at initialization and does not change.
Constructions use two design parameters: N the number of nodes,
and Dmax the maximum neighbourhood size.
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Combinatorial Characterization of TT Scheduling

The combinatorial problem asks for each node i ∈ {0, . . . ,N − 1}
to be given a subset Si of {0,1, . . . ,n − 1} slots with the property
that the union of Dmax or fewer other subsets cannot contain Si .

This may be expressed mathematically by requiring that⋃
j∈X

Sj

 6⊃ Si ,

where X ⊆ {0, . . . ,N − 1} \ {i} with |X | ≤ Dmax .
In the language of sets this is precisely a cover-free family.

These are equivalent to disjunct matrices and to certain
superimposed codes.
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A Very Small Example from S(2,4,13)
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Example from S(2,4,13) 
{0,1,3,9} 

{2,3,5,11} 

{4,8,9,11} 

{0,1,2,3,4,5,8,9,11} 

Red, yellow, and green nodes each 
transmit in assigned slots. While 
there are collisions (black), each 
node has 2 successful slots. 

This example is from a Steiner system, S(2,4,13); it can support
N = 13 nodes and Dmax = 3.
While there are collisions (≥ 2 nodes transmit at the same time; in
black), each node has 2 successful slots!
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Sensor Networks

Most constructions consider two slot states: transmit and receive.
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Energy Demands on  
 Lightweight Nodes 

Radio Transmit Receive Idle 
1 15W 11W 0.05W 
2 5.76W 2.88W 0.35W 

Listening is 
expensive! 
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Extension to Three States

Introduce a third slot state — sleep — for energy efficiency.
The cover-free requirements are more complex.
For each time slot, we need a slot schedule, i.e., a partition
[T ,R,S] of the N nodes into nodes T that can transmit, nodes R
that are eligible to receive, and nodes in S that are asleep.

Indirect (recursive) constructions include dual cover-free families
and packcovers.
Direct constructions include addition sets, and computational
methods (e.g., hill climbing).
It is still possible to bound delay!
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Example of Cyclic DK3,4-design  
 of Order 13 and Index 1 
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T1={1,5,9}, R1={10,11,12,13}, S1={2,3,4,6,7,8} 

Take cyclic 
shifts to form  
frame schedule 
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Example of Binary vs. Ternary TT Schedules
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Example 3 vs. 2-State Schedule 

Receive ρ Transmit τ Sleep σ 

Energy budget: cost of 4τ + 9ρ per 
slot vs. 3τ + 4ρ + 6σ per slot  

Receive ρ, Transmit τ , Sleep σ
Energy budget: cost of 4τ + 9ρ per slot vs. 3τ + 3ρ+ 6σ per slot
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Constant- vs. Variable-Weight Schedules

TDMA schedules are trivially topology transparent.
Constant-weight schedules place an unnecessary constraint on
throughput in neighbourhoods smaller than Dmax.
Variable-weight schedules have the potential to recover
throughput lost to constant-weight schedules.
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Requirements of Variable-Weight TT Schedules

The variable-weight topology-transparent schedule design
problem:

Suppose there are N nodes, m schedule weights, and a frame
length of n.
Let Wmax be a fixed fraction of n.
We are to form schedules Si = {Si,j : 0 ≤ i < N,0 ≤ j < m} so that
the weight wt(Si,j) is wj ; and whenever {i0, . . . , iD} ⊆ {0, . . . ,N − 1}
and j` ∈ {0, . . . ,m − 1} for 0 ≤ ` ≤ D,(

D⋃
`=1

Si` j`

)
6⊃ Si0 j0 (the cover-free condition)

whenever

D∑
`=1

wt(Si` j`) ≤Wmax (the weight condition).
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Variable-Weight Schedules from a TD(t+1,v,v)

We construct a set of variable-weight topology-transparent
schedules for each node in the network from the blocks of a
transversal design, TD(t + 1, v , v).

It supports a maximum of N = v t nodes, each with m = v
schedules of length n = v t .
That is, each node i has a collection of m schedules
Si = {Si,j : 0 ≤ i < N,0 ≤ j < m} where the weight
wt(Si,j) = wj = (j + 1)t − 1.

The weight wj is an upper bound on the number of collisions node
i operating with schedule Si,j can experience while still satisfying
the cover-free condition.

For a TD(t + 1, v , v), this is W = {t − 1,2t − 1, . . . ,mt − 1}, and
Wmax = v .
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Weakening the Assumption on Synchronization

Most known topology-transparent schedules assume
synchronization on frame boundaries.
Constructions are generalized for synchronization on slot
boundaries and the asynchronous case.
Idea: For slot synchronization, give a node a schedule and all its
cyclic shifts.

Constructions from cyclic superimposed codes and optical
orthogonal codes exist.

It is somewhat of a surprise that the construction for the
asynchronous model is achieved by a simple variant of the
construction for the slot synchronized model.
A substantial loss in the delay guarantee results each time the
synchronization model is weakened.
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Summary

We introduced the combinatorial requirements on
topology-transparent scheduling in MANETs.
We provided extensions from binary to ternary schedules for
energy-efficiency.
We provided extensions from constant-weight to variable-weight to
accommodate changes in network load.
Finally, we weakened the assumption on frame synchronization to
slot synchronization and the asynchronous case.
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Thanks!
:-)
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