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Abstract We prove that every polarity of PG(2k − 1, q), where k ≥ 2, gives rise to a1

design with the same parameters and the same intersection numbers as, but not isomorphic to,2

PGk(2k, q). In particular, the case k = 2 yields a new family of quasi-symmetric designs. We3

also show that our construction provides an infinite family of counterexamples to Hamada’s4

conjecture, for any field of prime order p. Previously, only a handful of counterexamples5

were known.6
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1 Introduction10

We prove that every polarity of PG(2k − 1, q), where k ≥ 2, gives rise to a design with the11

same parameters and the same intersection numbers as, but not isomorphic to, PGk(2k, q),12

the design of points and k-spaces in projective 2k-space over G F(q). The new designs are13

obtained by distorting the classical geometric designs with the help of the given polarity,14

acting on a fixed hyperplane in PG(2k, q). In particular, the case k = 2 yields a new family15

of quasi-symmetric designs.16
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By construction, our new examples of designs with classical geometric parameters still17

share many properties with the geometric designs PGk(2k, q). In particular, there always is18

a set H of q2k−1 +· · ·+q +1 points on which the blocks of the design induce an isomorphic19

copy of PG(2k − 1, q), while a copy of an affine 2k-space AG(2k, q) is induced on the set20

A formed by the remaining q2k points. Moreover, the lines of the design joining two points21

of H or two points of A still have the natural geometric size, that is, q + 1 or q , respectively,22

whereas a point of H and a point of A always determine a line of size 2.23

We also show that our construction provides an infinite family of counterexamples to24

Hamada’s conjecture [8] from 1973, for fields of arbitrary prime order, and for any dimension25

2k ≥ 4. Previously, only a handful of counterexamples were known, namely two parameter26

sets, 2-(31, 7, 7) [7,29] and 3-(32, 8, 7) [29] for the binary case, and a single parameter set27

2-(64, 16, 5) for the quaternary case (q = 4) [10,22].28

Hamada’s conjecture is of fundamental importance for two reasons. First, it indicates29

that the classical geometric designs, as designs having minimum p-rank among all pos-30

sible designs with the given parameters, are the best choice to use for the construction31

of error-correcting codes with majority-logic decoding [24,25]. It is known that the32

number of non-isomorphic designs having the same parameters as the classical geomet-33

ric designs of hyperplanes in PG(n, q) or AG(n, q), n ≥ 3, grows exponentially with linear34

growth of n [15,17–19]. Secondly, the conjecture provides an elegant and computationally35

simple characterization of the classical geometric designs in terms of the p-rank of their inci-36

dence matrices: the complexity of computing the rank of a matrix is a cubic polynomial in the37

number of rows (or columns), while the complexity of finding isomorphisms between block38

designs is as hard as the notoriously difficult graph isomorphism problem; see [5, Remark39

VII.6.6].40

2 A construction method for pseudo-geometric designs41

We begin by describing a general method for constructing 2-designs with the same parameters42

as some classical geometric designs. To this end, let � denote PG(2k, q), the 2k-dimen-43

sional projective space over the field G F(q) with q elements. As is well-known, the points44

and k-spaces of � form a 2-(v, K , λ) design D = PGk(2k, q) with parameters45

v =
q2k+1 − 1

q − 1
, K =

qk+1 − 1

q − 1
, λ =

(q2k−1 − 1) . . . (qk+1 − 1)

(qk−1 − 1) . . . (q − 1)
. (1)46

Furthermore, the lines of D are just the lines of � and hence all have cardinality q + 1.147

Now let H denote a fixed hyperplane of �. Trivially, the subspaces of � induce a geom-48

etry �0 isomorphic to PG(2k − 1, q) on H . Since the lines of �0 are just those lines of D49

which are contained in H , we may view H as a copy of the projective space PG(2k − 1, q)50

in the design D. Moreover, let A be the set of points not contained in H . Then the subspaces51

of � induce a geometry � isomorphic to the affine space AG(2k, q) on A. Now each line52

of � corresponds to a line ℓ of �; of course, considered as a line of the affine space �, the53

projective line ℓ loses its infinite point ℓ ∩ H . Since ℓ is also a line of the design D, we may54

view A as a copy of the affine space AG(2k, q) in D. In view of the preceding observations,55

we shall refer to H also as a hyperplane of D.56

1 Recall that the line determined by two points of a design is defined as the intersection of all blocks containing

these two points. See [4] for background on designs, and [12,11] for background on finite projective spaces.
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Polarities, quasi-symmetric designs, and Hamada’s conjecture

More generally, let D
′ be any design with the parameters (1) of PGk(2k, q). If there exists57

a set H of q2k−1 + · · · + q + 1 points on which the lines of the design induce an isomorphic58

copy of PG(2k − 1, q), while a copy of AG(2k, q) is induced on the set A formed by the59

remaining q2k points, we shall call H a hyperplane of D
′. The points of H will be referred60

to as the infinite points of D
′, and the points in A as the affine points of D

′.61

If, in addition, the intersection numbers of D
′ are the same as those of PGk(2k, q), we62

shall call D
′ a pseudo-geometric design. Our main result will be a construction method for63

designs which are pseudo-geometric but not actually geometric.64

We begin with a more general method yielding designs with the parameters of a geometric65

design PGk(2k, q). Given any affine block B of D = PGk(2k, q)—that is, any k-space of66

� which is not contained in the hyperplane H—we write B in the form67

B = B∞ ∪ Baff , (2)68

where B∞ := B ∩ H is a projective (k − 1)-space contained in the hyperplane H and69

Baff := B ∩ A is a k-space of the affine space � induced on A. In particular,70

|Baff | = qk and |B∞| = qk−1 + · · · + q + 1 =
qk − 1

q − 1
. (3)71

If B and C are affine blocks and B∞ = C∞, then Baff and Caff are affine translates of each72

other.73

Now let α be any permutation of the projective (k−1)-spaces contained in H , and associate74

with each affine block B of D a point set α(B) as follows:75

α(B) := α(B∞) ∪ Baff . (4)76

Thus, we keep the affine points of all affine blocks unchanged, and merely exchange their77

infinite parts, using the permutation α. We shall denote the incidence structure obtained from78

D by replacing each affine block B by its distorted version α(B) as α(D). Then it is easy to79

prove the following result.80

Lemma 2.1 For each permutation α of the (k − 1)-spaces contained in H, the incidence81

structure α(D) is a 2-design with the same parameters as D = PGk(2k, q).82

In general, the designs just constructed may have intersection numbers different from83

those of D. If we wish to preserve intersection sizes, we will have to choose α judiciously.84

Before we address this problem, let us remark that Lemma 2.1 can be used to show that the85

number of 2-designs with the parameters of PGk(2k, q) grows exponentially; this is a special86

case of a more general result which will be presented elsewhere [16].87

As it turns out, our aim can be achieved by choosing α as a polarity of the projective space88

�0
∼= PG(2k − 1, q) induced on H . Recall that a polarity of a projective space PG(n, q) is89

an involutory isomorphism between PG(n, q) and its dual space; in other words, a polarity90

is an incidence preserving bijection interchangeing points and hyperplanes. Note that any91

polarity of �0 maps i-spaces to (2k − i − 2)-spaces, for i = 0, . . . , 2k − 2; in particular,92

α induces a permutation on the (k − 1)-spaces contained in H , and hence can be used in93

our construction. We refer the reader to [12] for a thorough discussion of polarities in finite94

projective spaces.95

Lemma 2.2 For each polarity α of �0
∼= PG(2k − 1, q), the design α(D) has the same96

intersection numbers as D = PGk(2k, q).97
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Proof The interesting case to consider concerns the intersection sizes of blocks of D
′ which98

correspond to affine blocks of D. As we will see, α even preserves these intersection sizes:99

|α(B) ∩ α(C)| = |B ∩ C | (5)100

for any two affine blocks B and C of D.101

With the notation introduced in (2), the infinite parts B∞ and C∞ of the given two blocks102

are (k − 1)-subspaces of H ∼= PG(2k − 1, q). In view of the construction given in (4), the103

validity of (5) is clear provided that B∞ = C∞.104

Next, note that B∞ and C∞ are disjoint if and only if their images under α are disjoint.105

Indeed, by the dimension formula, these two (k − 1)-subspaces of H intersect if and only106

if they are both contained in a hyperplane H0 of H ; as α is incidence preserving, this holds107

if and only if their images α(B∞) and α(C∞) intersect in the point α(H0). This proves the108

validity of (5) in the special case where B∞ ∩ C∞ = ∅.109

We may now assume that U := B∞∩C∞ is an i-subspace of H , where 0 ≤ i ≤ k−2. Then110

α(U ) is a (2k − i − 2)-subspace which contains the two (k − 1)-spaces α(B∞) and α(C∞),111

as α is incidence preserving. Again using the dimension formula, α(B∞) and α(C∞) have112

to intersect in a j-subspace for some j ≥ i . Applying this argument to α(B∞) and α(C∞)113

and using that α is an involution shows that also i ≥ j . Hence α(B∞) ∩ α(C∞) is again an114

i-subspace, and therefore (5) holds also in the case B∞ ∩ C∞ 	= ∅.115

Finally, note that the multiset of the remaining intersection numbers does not change, as116

blocks of D contained in H are kept in α(D) and as the infinite parts of the affine blocks are117

merely permuted under α. (However, in general, the image α(B) of a given affine block B118

may intersect a specific infinite block C in a different manner as B does). ⊓⊔119

Lemma 2.3 For each polarity α of �0
∼= PG(2k − 1, q), the design α(D) has line sizes120

q + 1, q and 2. More precisely, any line of α(D) joining two infinite points has cardinality121

q + 1; any line of α(D) joining two affine points has cardinality q; finally, an infinite point122

and an affine point always determine a line of size 2 in α(D).123

Proof Let us consider a fixed (affine) (k − 1)-subspace Uaff of the affine space � ∼=124

AG(2k, q) induced on the set A of affine points of D. Then Uaff is contained in exactly125

qk + · · · q + 1 affine blocks of D, as this is the number of k-dimensional subspaces of126

AG(2k, q) containing a given (k − 1)-space. Recall that each such block B has the form127

given in (2).128

Now Uaff extends to a unique (k − 1)-subspace U of the underlying projective space �.129

Note that U contains exactly qk−2 + · · · + q + 1 infinite points, as U has to intersect the130

hyperplane H of � in a (k − 2)-dimensional subspace U∞. Hence any two distinct affine131

blocks containing Uaff share exactly qk−2 +· · ·+ q + 1 infinite points, namely those in U∞;132

and by (3), any such block B has precisely qk−1 infinite points outside of U∞. But then the133

remaining q2k−1 +· · ·+qk +qk−1 infinite points are partitioned by the qk +· · · q +1 affine134

blocks through Uaff :135

(qk + · · · + q + 1)qk−1 = q2k−1 + · · · + qk + qk−1.136

Thus, the infinite parts B∞ of the qk +· · · q +1 affine blocks B through Uaff form the bundle137

of (k − 1)-subspaces of H through the common (k − 2)-subspace U∞. Under the polarity138

α, this bundle is mapped to a set of qk + · · · + q + 1(k − 1)-dimensional subspaces of the139

k-subspace α(U∞). Hence, the images α(B∞) are simply all hyperplanes of the projective140

space α(U∞) ∼= PG(k, q). Therefore, the images of the infinite parts of any two distinct141

affine blocks through Uaff intersect in a (k − 2)-dimensional subspace of α(U∞). Hence,142
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Polarities, quasi-symmetric designs, and Hamada’s conjecture

no point of U∞ lies in the intersection of all affine blocks α(B) through Uaff , and thus the143

intersection of all these blocks in α(D) is simply Uaff .144

Now, let ℓ be any line of D joining two affine points, so that ℓ has size q + 1 and consists145

of q affine points and one infinite point ℓ∞. Note that ℓ is the intersection of all (k − 1)-146

dimensional affine subspaces Uaff of � extended to subspaces U of �, and we have just seen147

that the affine part Uaff of each such subspace U is simply the intersection of all blocks of148

α(D) containing Uaff . This shows that the line corresponding to ℓ in α(D) is precisely the149

q-set ℓ \ ℓ∞: the distortion by α results in ℓ losing its infinite point.2150

Finally, it is clear that any line joining two infinite points of D remains a line of α(D).151

Now it easily follows that an infinite point and an affine point always determine a line of size152

2 in α(D). ⊓⊔153

Combining the preceding three Lemmas, we obtain our main result:154

Theorem 2.4 Consider the design D = PGk(2k, q). Let H be a hyperplane of D, and155

let A be the set of points not in H. In addition, let α be any polarity of the hyperplane156

H ∼= PG(2k −1, q). Then the design α(D) defined above is a pseudo-geometric design with157

the same parameters as, but not isomorphic to, PGk(2k, q). ⊓⊔158

We conclude this section by pointing out that any two polarities of �0
∼= PG(2k − 1, q)159

lead to isomorphic pseudo-geometric designs, even if the polarities are of different types.160

While this might seem surprising, it is in fact easy to prove: the product of two polarities is161

a collineation, hence any two polarities differ by a collineation only. Now it is easy to check162

that applying a non-trivial collineation β in our construction yields a design β(D) different163

from, but isomorphic to, D.164

3 New quasi-symmetric designs165

In this section, we consider the special case k = 2. Here the points and planes of � =166

PG(4, q) yield a 2-design which is quasi-symmetric; that is, it has just two intersection num-167

bers, namely 1 and q + 1. Also, the lines of this design are just the lines of � and hence all168

have cardinality q + 1.3169

The designs PG2(4, q) form a well-known family of quasi-symmetric designs. They170

have been studied quite intensively, and several characterizations are available. To mention171

the most natural result, a quasi-symmetric design with the parameters of PG2(4, q) and172

intersection numbers 1 and q + 1 is classical if and only if all lines have size q + 1. This is173

due to Sane and Shrikhande [26], who also gave various other characterizations.174

Theorem 2.4 specializes to the following construction for a new family of quasi-symmetric175

designs with the parameters of PG2(4, q):176

Theorem 3.1 Consider the design D = PG2(4, q), let H be a hyperplane of D, and let A be177

the set of points not in H. In addition, let α be any polarity of the hyperplane H ∼= PG(3, q).178

Then the design α(D) defined in Sect.2 is a pseudo-geometric quasi-symmetric design with179

the same parameters as, but not isomorphic to, PG2(4, q). ⊓⊔180

With the exception of the smallest case, i.e. q = 2, none of the designs in Theorem 3.1 was181

known previously; thus we indeed have a new infinite family of quasi-symmetric designs.182

2 More generally, all subspaces of � of dimension at most k−1 which are not contained in H can be recovered

as suitable intersections of blocks of D; under α, the intersection of the corresponding distorted blocks no

longer contains an infinite point and simply is the original affine part of the subspace.

3 See [27] for a monograph on quasi-symmetric designs.
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By a result of Tonchev [29], there are exactly five quasi-symmetric 2—(31,7,7)-designs183

with intersection numbers 1 and 3; among these designs is, of course, the classical example184

PG2(4, 2). It is interesting to note that just one of the further four examples contains a hyper-185

plane; hence this design has to arise from Theorem 3.1. Actually, we discovered our general186

construction for pseudo-geometric designs when we tried to get a better understanding of187

this specific design which shares so many properties with the classical example. It seemed188

to us that there ought to be a geometric way of obtaining it—an intuition which fortunately189

turned out to be correct.190

A more recent characterization of the geometric designs PG2(4, q) in terms of good191

blocks—a notion introduced in [23]—is due to Mavron, McDonough and Shrikhande [21].192

In any quasi-symmetric design with intersection numbers x and y, where 0 ≤ x < y, a193

block B is said to be good if, for any block C with |B ∩ C | = y and any point p /∈ C , there194

is a (unique) block containing p and B ∩ C . The result of [21] characterizes the geometric195

design PG2(4, q) among all quasi-symmetric designs with the same parameters and with196

intersection numbers 1 and q + 1 by the property that all blocks of the design are good.197

Subsequently, this result was strengthened by Baartmans and Sane [3] who proved that it198

suffices to assume that all the blocks passing through a fixed point p are good.199

The authors of [21] also knew4 just one example of a quasi-symmetric design with the200

parameters of PG2(4, q) where some of the blocks, but not all blocks, are good, namely the201

pseudo-geometric 2—(31,7,7)-design discussed above. It is easy to check that if α(D) is a202

design obtained using a polarity α in a hyperplane H , then precisely the blocks contained in203

H are good.204

4 Counterexamples to Hamada’s conjecture205

In this section, we shall see that our construction from Sect. 2 provides an infinite family of206

counterexamples to a famous conjecture by Hamada [8] from 1973. This conjecture reads as207

follows:208

Conjecture 4.1 (Hamada’s Conjecture) Let D be a design with the parameters of a geomet-209

ric design PGd(n, q) or AGd(n, q), where q is a power of a prime p. Then the p-rank of the210

incidence matrix of D is greater than or equal to the p-rank of the corresponding geometric211

design. Moreover, equality holds if and only if D is isomorphic to the geometric design.212

Hamada’s conjecture has been proved in the following cases: Hamada and Ohmori [9]213

established the conjecture for the design of hyperplanes in a binary projective or affine space214

(q = 2, d = n − 1). Doyen et al. [6] proved the conjecture for the design of lines in a binary215

projective space (q = 2, d = 1), as well as for the design of lines in a ternary affine space216

(q = 3, d = 1). Teirlinck [28] proved the conjecture for the design of planes in a binary affine217

space (q = 2, d = 2). Tonchev [30] proved a modified version of Hamada’s conjecture using218

generalized incidence matrices with entries over G F(q) instead of (0, 1)-incidence matrices,219

for the classical designs having as blocks the complements of hyperplanes in PG(d, q) or220

AG(d, q) (d = n − 1, q an arbitrary prime power).221

Nevertheless, the strong version of Hamada’s conjecture is not true in general: there are222

designs with the same parameters and the same p-rank as a classical geometric design D,223

but not isomorphic to D. The smallest examples for this phenomenon are the quasi-sym-224

metric designs with the parameters of PG2(4, 2), namely, 2-(31, 7, 7) [29], which were225

4 This is not contained in the published paper [21], but was mentioned by Mavron and McDonough to the

second author when he was visiting The University of Wales at Aberystwyth.

123

Journal: DESI MS: 9249 CMS: 10623_2008_9249_article TYPESET DISK LE CP Disp.:2008/11/4 Pages: 10 Layout: Small

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Polarities, quasi-symmetric designs, and Hamada’s conjecture

already discussed in the previous section. We note that one of these 2-(31, 7, 7) designs,226

namely, the design supported by the minimum weight vectors in the quadratic-residue code227

of length 31, was mentioned in the paper by Goethals and Delsarte [7]. The extensions of the228

quasi-symmetric 2-(31, 7, 7) designs are 3-(32, 8, 7) designs having the same parameters229

and block intersection numbers as AG3(5, 2) [29]. All these designs have the same 2-rank,230

namely 16.231

The only other previously known parameter set for which a non-geometric design exists232

that has the same p-rank as the corresponding geometric design is 2-(64, 16, 5): in [10],233

Harada et al. found two affine 2-(64, 16, 5) designs having the same 2-rank (equal to 16) as234

the classical geometric design of the planes in AG(3, 4). The two exceptional designs were235

found as minimum weight vectors in binary codes spanned by incidence matrices of sym-236

metric (4, 4)-nets. Mavron et al. [22] showed that one of the pseudo-geometric 2-(64, 16, 5)237

designs from [10] can be obtained also by using a certain line spread in PG(5, 2).238

However, the weak version of Conjecture 4.1, that is, the statement that the p-rank of any239

design with the same parameters as a geometric design PGd(n, q) or AGd(n, q) is at least as240

large as that of the corresponding geometric design, is still open in general, with the exception241

of the few proven cases mentioned above.242

Thus, it is rather interesting that the designs described in Theorem 2.4 in the case when q243

is a prime number provide the first infinite family of counterexamples to the strong version244

of Hamada’s conjecture:245

Theorem 4.2 If q = p is a prime number, the pseudo-geometric designs described in The-246

orem 2.4 have the same p-rank as the geometric design PGk(2k, p).247

We will need two lemmas for the proof of Theorem 4.2.248

Lemma 4.3 Let α be a polarity in PG(2k − 1, q), where q = ps and p is a prime. The249

p-rank rp(α) of the incidence matrix of the design α(D) from Theorem 2.4 satisfies the250

inequalities251

rp(D) ≤ rp(α) ≤
1

2

(

q2k+1 − 1

q − 1
+ 1

)

, (6)252

where rp(D) is the p-rank of the geometric design D = PGk(2k, q).253

Proof By the construction described in Sect. 2, the design α(D) has an incidence matrix of254

the form255

M =

(

M1 M2

0 M3

)

,256

where M1 is a point by block incidence matrix of the geometric design PGk(2k − 1, q), and257

M3 is a point by block incidence matrix of the geometric design AGk(2k, q). Thus, we have258

rp(M1) + rp(M3) ≤ rp(α).259

On the other hand, it follows from [1, Corollary 5.7.3, p. 186], that260

rp(PGk(2k, q)) = rp(PGk(2k − 1, q)) + rp(AGk(2k, q)).261

Hence, we have262

rp(D) = rp(M1) + rp(M3).263

This proves the left-hand side inequality in (6). To prove the right-hand side inequality in264

(6), we consider the complementary design α(D). By Lemma 2.2, the design α(D) has the265
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same intersection numbers as D = PGk(2k, q), that is, (q i − 1)/(q − 1) for i in the range266

1 ≤ i ≤ k. Consequently, the block intersection numbers of the complementary design α(D)267

are268

q i (q2k+1−i − 2qk+1−i + 1)

q − 1
, 1 ≤ i ≤ k.269

Note that all these numbers are divisible by q , and that the blocks of α(D) are of size270

qk+1(qk − 1)

q − 1
,271

which is also divisible by q . Thus, the incidence vectors of the blocks of α(D) span a linear272

self-orthogonal code of length (q2k+1 − 1)/(q − 1) over G F(p). Hence, the p-rank of the273

incidence matrix (J − M) of α(D), where J denotes the all-one matrix of appropriate size,274

does not exceed (
q2k+1−1

q−1
−1)/2 (note that the number of points of α(D), (q2k+1 −1)/(q −1)275

is an odd number). The columns of J − M have 0 and 1 entries, and the number of 1’s in each276

column is a multiple of p. Therefore, each column of J − M is orthogonal (over G F(p)) to277

the all-one column j, and consequently, the whole column space is orthogonal to j. Since j278

is not orthogonal to itself, j is not in the column space of J − M . On the other hand, j is a279

nonzero multiple of the sum of columns of M over G F(p). This implies280

rp(M) = rp(J − M) + 1,281

and therefore282

rp(M) ≤
1

2

(

q2k+1 − 1

q − 1
− 1

)

+ 1 =
1

2

(

q2k+1 + 1

q − 1
+ 1

)

.283

This proves the right-hand side inequality in (6). ⊓⊔284

A summation formula for the p-rank of the incidence matrix of a geometric design285

PGr (n, q), 1 ≤ r ≤ n − 1, q = pt , p a prime, was found by Hamada [8]. If r 	= 1, n − 1,286

Hamada’s formula involves some parameters that have to be computed. A simplified formula287

for the case when q = p is a prime was found by Hirschfeld and Shaw [13, Theorem 5.10].288

In particular, the p-rank of D = PGk(2k, p) is given by:289

rp(D) =
p2k+1 − 1

p − 1
−

k−1
∑

i=0

(−1)i

(

(k − i)(p − 1) − 1

i

) (

k + (k − i)p

2k − i

)

. (7)290

If p = 2, the linear code spanned by the blocks of D = PGk(2k, 2) is a punctured291

Reed-Muller code of length v = 22k+1 − 1 and order k [1, Proposition 5.3.2], so we have an292

alternative formula for r2(D) which can be written in a simple closed form, namely293

r2(D) =

k
∑

i=0

(

2k + 1

i

)

= 22k .294

Note that 22k = (v + 1)/2, so the inequalities in (6) are replaced by equalities:295

r2(D) = r2(α) = 22k = (v + 1)/2.296

Thus, the pseudo-geometric designs from Sect. 2 for q = p = 2 are counter-examples to the297

“only if” part of Hamada’s conjecture.298
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Polarities, quasi-symmetric designs, and Hamada’s conjecture

In addition, the two formulas for r2(D) imply the following identity:299

22k − 1 =

k−1
∑

i=0

(−1)i

(

k − i − 1

i

) (

3k − 2i

2k − i

)

. (8)300

It turns out that a similar closed formula for rp(D) holds for any prime number p.301

Lemma 4.4 If p is any prime, the p-rank of D = PGk(2k, p) is equal to302

rp(D) =
1

2

(

p2k+1 − 1

p − 1
+ 1

)

. (9)303

Proof We will use the following result by Hirschfeld and Shaw [13, Corollary 5.5]): if p is304

a prime and C∗(k, n, p) is the dual of the linear code over G F(p) spanned by the incidence305

vectors of the k-dimensional subspaces of PG(n, p), 1 ≤ k ≤ n − 1, then306

dim C∗(k, n, p) + dim C∗(n − k, n, p) =
pn+1 − 1

p − 1
− 1. (10)307

In the special case n = 2k, (10) implies that308

dim C∗(k, 2k, p) =
1

2

(

p2k+1 − 1

p − 1
− 1

)

.309

Note that C∗(k, 2k, p) is the code having the incidence matrix of D=PGk(2k, p) as a parity310

check matrix, hence311

rp(D) =
p2k+1 − 1

p − 1
− dim C∗(k, 2k, p) =

1

2

(

p2k+1 − 1

p − 1
+ 1

)

.312

⊓⊔313

Now Theorem 4.2 follows from Lemmas 4.3 and 4.4.314

We note that comparing (7) and (9) gives the following identity, which generalizes (8):315

Corollary 4.5

1

2

(

p2k+1 − 1

p − 1
− 1

)

=

k−1
∑

i=0

(−1)i

(

(k − i)(p − 1) − 1

i

)(

k + (k − i)p

2k − i

)

. (11)316

It was pointed out to us by one of the reviewers, that Eq. 11 is actually true for all positive317

integers p and not just for primes; it follows from a formula of J.L.W.V. Jensen [14, Eq. 18],318

which is given a modern setting in [20, Sect. 14.1]. Of course, with (11) in hand, Lemma 4.4319

is an immediate consequence of (7).320

We finally remark that Theorem 4.2 does not extend to arbitrary prime powers q: the321

classical design PG2(4, 4) has 2-rank 146, whereas the pseudo-geometric design obtained322

from a polarity has 2-rank 154.323
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