Polarities, quasi-symmetric designs, and Hamada's conjecture

Dieter Jungnickel · **Vladimir D. Tonchev**

Received: 10 July 2008 / Revised: 24 September 2008 / Accepted: 17 October 2008 © Springer Science+Business Media, LLC 2008

- 1 **Abstract** We prove that every polarity of $PG(2k 1, q)$, where $k \ge 2$, gives rise to a
- ² design with the same parameters and the same intersection numbers as, but not isomorphic to,
- $\mathcal{G}_k(2k, q)$. In particular, the case $k = 2$ yields a new family of quasi-symmetric designs. We
- ⁴ also show that our construction provides an infinite family of counterexamples to Hamada's
- ⁵ conjecture, for any field of prime order *p*. Previously, only a handful of counterexamples
- ⁶ were known.

⁷ **Keywords** Polarity · Projective geometry · Design · Quasi-symmetric design · Hamada's ⁸ conjecture

⁹ **Mathematics Subject Classification (2000)**

¹⁰ **1 Introduction**

- 11 We prove that every polarity of $PG(2k 1, q)$, where $k \ge 2$, gives rise to a design with the
- 12 same parameters and the same intersection numbers as, but not isomorphic to, $PG_k(2k, q)$,
- 13 the design of points and *k*-spaces in projective 2*k*-space over $GF(q)$. The new designs are
- ¹⁴ obtained by distorting the classical geometric designs with the help of the given polarity,
- 15 acting on a fixed hyperplane in $PG(2k, q)$. In particular, the case $k = 2$ yields a new family
- ¹⁶ of quasi-symmetric designs.

Communicated by J. D. Key.

SSI-Symmetric designs, and Hamada's

Vladimir D. Tonchev

Vladimir Case $K = 2$, gives the to a

parameters and the D. Jungnickel (\boxtimes) Lehrstuhl für Diskrete Mathematik, Optimierung, und Operations Research, Universität Augsburg, 86135 Augsburg, Germany e-mail: jungnickel@math.uni-augsburg.de

V. D. Tonchev

Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA

 $\textcircled{2}$ Springer

¹⁷ By construction, our new examples of designs with classical geometric parameters still ¹⁸ share many properties with the geometric designs $PG_k(2k, q)$. In particular, there always is a set *H* of q^{2k-1} + · · · + *q* + 1 points on which the blocks of the design induce an isomorphic 20 copy of $PG(2k - 1, q)$, while a copy of an affine 2*k*-space $AG(2k, q)$ is induced on the set 21 A formed by the remaining q^{2k} points. Moreover, the lines of the design joining two points 22 of *H* or two points of *A* still have the natural geometric size, that is, $q + 1$ or q , respectively, ²³ whereas a point of *H* and a point of *A* always determine a line of size 2.

²⁴ We also show that our construction provides an infinite family of counterexamples to ²⁵ Hamada's conjecture [8] from 1973, for fields of arbitrary prime order, and for any dimension $26 \ge 2k \ge 4$. Previously, only a handful of counterexamples were known, namely two parameter 27 sets, $2-(31, 7, 7)$ [7,29] and $3-(32, 8, 7)$ [29] for the binary case, and a single parameter set 28 2-(64, 16, 5) for the quaternary case $(q = 4)$ [10, 22].

 $+q+1$ points on which the blocks of the design induceran isomorphic
 q), while a copy of an affine $2k$ -space $AG(2k, q)$ is induced on the set

aining q^{2k} points. Moreover, the lines of the design joining two points Hamada's conjecture is of fundamental importance for two reasons. First, it indicates that the classical geometric designs, as designs having minimum *p*-rank among all pos- sible designs with the given parameters, are the best choice to use for the construction 32 of error-correcting codes with majority-logic decoding $[24,25]$. It is known that the number of non-isomorphic designs having the same parameters as the classical geomet- ric designs of hyperplanes in $PG(n, q)$ or $AG(n, q)$, $n \geq 3$, grows exponentially with linear growth of *n* [15,17–19]. Secondly, the conjecture provides an elegant and computationally simple characterization of the classical geometric designs in terms of the *p*-rank of their inci- dence matrices: the complexity of computing the rank of a matrix is a cubic polynomial in the number of rows (or columns), while the complexity of finding isomorphisms between block designs is as hard as the notoriously difficult graph isomorphism problem; see [5, Remark VII.6.6].

⁴¹ **2 A construction method for pseudo-geometric designs**

⁴² We begin by describing a general method for constructing 2-designs with the same parameters 43 as some classical geometric designs. To this end, let Π denote $PG(2k, q)$, the 2*k*-dimen-44 sional projective space over the field $GF(q)$ with q elements. As is well-known, the points 45 and *k*-spaces of Π form a 2-(v, *K*, λ) design $\mathcal{D} = PG_k(2k, q)$ with parameters

$$
^{46}
$$

$$
v = \frac{q^{2k+1}-1}{q-1}, \ K = \frac{q^{k+1}-1}{q-1}, \ \lambda = \frac{(q^{2k-1}-1)\dots(q^{k+1}-1)}{(q^{k-1}-1)\dots(q-1)}.\tag{1}
$$

Furthermore, the lines of D are just the lines of Π and hence all have cardinality $q + 1$.¹ 47

 48 Now let *H* denote a fixed hyperplane of Π . Trivially, the subspaces of Π induce a geom-49 etry Π_0 isomorphic to $PG(2k - 1, q)$ on *H*. Since the lines of Π_0 are just those lines of D 50 which are contained in *H*, we may view *H* as a copy of the projective space $PG(2k - 1, q)$ ⁵¹ in the design D. Moreover, let *A* be the set of points not contained in *H*. Then the subspaces 52 of Π induce a geometry Σ isomorphic to the affine space $AG(2k, q)$ on A. Now each line 53 of Σ corresponds to a line ℓ of Π ; of course, considered as a line of the affine space Σ, the 54 projective line ℓ loses its *infinite point* $\ell \cap H$. Since ℓ is also a line of the design \mathcal{D} , we may 55 view *A* as a copy of the affine space $AG(2k, q)$ in D. In view of the preceding observations, ⁵⁶ we shall refer to *H* also as a *hyperplane* of D.

¹ Recall that the *line* determined by two points of a design is defined as the intersection of all blocks containing these two points. See [4] for background on designs, and [12,11] for background on finite projective spaces.

57 More generally, let \mathcal{D}' be any design with the parameters (1) of $PG_k(2k, q)$. If there exists as a set *H* of $q^{2k-1} + \cdots + q + 1$ points on which the lines of the design induce an isomorphic 59 copy of $PG(2k - 1, q)$, while a copy of $AG(2k, q)$ is induced on the set *A* formed by the ϵ ⁰ remaining q^{2k} points, we shall call *H* a *hyperplane* of \mathcal{D}' . The points of *H* will be referred ϵ_1 to as the *infinite points* of \mathcal{D}' , and the points in *A* as the *affine points* of \mathcal{D}' .

Equal is 1.6. If, in addition, the intersection numbers of \mathcal{D}' are the same as those of $PG_k(2k, q)$, we shall call D′ ⁶³ a *pseudo-geometric* design. Our main result will be a construction method for ⁶⁴ designs which are pseudo-geometric but not actually geometric.

⁶⁵ We begin with a more general method yielding designs with the parameters of a geometric 66 design $PG_k(2k, q)$. Given any *affine* block *B* of $\mathcal{D} = PG_k(2k, q)$ —that is, any *k*-space of 67 T which is not contained in the hyperplane *H*—we write *B* in the form

$$
^{68}
$$

$$
B = B_{\infty} \cup B_{\text{aff}},\tag{2}
$$

69 where $B_{\infty} := B \cap H$ is a projective $(k - 1)$ -space contained in the hyperplane *H* and *B*_{aff} := *B* \cap *A* is a *k*-space of the affine space Σ induced on *A*. In particular,

$$
|B_{\text{aff}}| = q^k \quad \text{and} \quad |B_{\infty}| = q^{k-1} + \dots + q + 1 = \frac{q^k - 1}{q - 1},\tag{3}
$$

72 If *B* and *C* are affine blocks and $B_{\infty} = C_{\infty}$, then B_{aff} and C_{aff} are affine translates of each ⁷³ other.

⁷⁴ Now let α be any permutation of the projective (*k*−1)-spaces contained in *H*, and associate 75 with each affine block *B* of *D* a point set α (*B*) as follows:

$$
\alpha(B) := \alpha(B_{\infty}) \cup B_{\text{aff}}.\tag{4}
$$

 Thus, we keep the affine points of all affine blocks unchanged, and merely exchange their infinite parts, using the permutation α . We shall denote the incidence structure obtained from 79 D by replacing each affine block *B* by its distorted version $\alpha(B)$ as $\alpha(\mathcal{D})$. Then it is easy to prove the following result.

⁸¹ **Lemma 2.1** *For each permutation* α *of the* (*k* − 1)*-spaces contained in H, the incidence* 82 *structure* α(D) *is a* 2-design with the same parameters as $D = PG_k(2k, q)$.

83 In general, the designs just constructed may have intersection numbers different from 84 those of D. If we wish to preserve intersection sizes, we will have to choose α judiciously. ⁸⁵ Before we address this problem, let us remark that Lemma 2.1 can be used to show that the 86 number of 2-designs with the parameters of $PG_k(2k, q)$ grows exponentially; this is a special 87 case of a more general result which will be presented elsewhere [16].

q), while a copy of $AG(C\lambda, q)$ is induced on the set A fromed by the
 q, we shall call H a *hyperplane* of D^* . The points of H will be referred
 us, we shall call H a *hyperplane* of D^* cm the same as tho 88 As it turns out, our aim can be achieved by choosing α as a polarity of the projective space B_9 $\Pi_0 \cong PG(2k-1, q)$ induced on *H*. Recall that a *polarity* of a projective space $PG(n, q)$ is 90 an involutory isomorphism between $PG(n, q)$ and its dual space; in other words, a polarity ⁹¹ is an incidence preserving bijection interchangeing points and hyperplanes. Note that any 92 polarity of Π_0 maps *i*-spaces to $(2k - i - 2)$ -spaces, for $i = 0, \ldots, 2k - 2$; in particular, 93 α induces a permutation on the $(k - 1)$ -spaces contained in *H*, and hence can be used in 94 our construction. We refer the reader to [12] for a thorough discussion of polarities in finite ⁹⁵ projective spaces.

Lemma 2.2 *For each polarity* α *of* $\Pi_0 \cong PG(2k - 1, q)$ *, the design* $\alpha(\mathcal{D})$ *has the same* 97 *intersection numbers as* $\mathcal{D} = PG_k(2k, q)$ *.*

 $\textcircled{2}$ Springer

 P_{root} The interesting case to consider concerns the intersection sizes of blocks of \mathcal{D}' which 99 correspond to affine blocks of D. As we will see, α even preserves these intersection sizes:

$$
f_{\rm{max}}
$$

$$
|\alpha(B) \cap \alpha(C)| = |B \cap C| \tag{5}
$$

¹⁰¹ for any two affine blocks *B* and *C* of D.

102 With the notation introduced in (2), the infinite parts B_{∞} and C_{∞} of the given two blocks 103 are $(k-1)$ -subspaces of $H \cong PG(2k-1, q)$. In view of the construction given in (4), the 104 validity of (5) is clear provided that $B_{\infty} = C_{\infty}$.

105 Next, note that B_{∞} and C_{∞} are disjoint if and only if their images under α are disjoint. ¹⁰⁶ Indeed, by the dimension formula, these two (*k* − 1)-subspaces of *H* intersect if and only 107 if they are both contained in a hyperplane H_0 of H ; as α is incidence preserving, this holds 108 if and only if their images $\alpha(B_{\infty})$ and $\alpha(C_{\infty})$ intersect in the point $\alpha(H_0)$. This proves the 109 validity of (5) in the special case where $B_{\infty} \cap C_{\infty} = \emptyset$.

110 We may now assume that $U := B_\infty \cap C_\infty$ is an *i*-subspace of *H*, where $0 \le i \le k-2$. Then ¹¹¹ α(*U*) is a (2*k* − *i* − 2)-subspace which contains the two (*k* − 1)-spaces α(*B*∞) and α(*C*∞), 112 as α is incidence preserving. Again using the dimension formula, $\alpha(B_{\infty})$ and $\alpha(C_{\infty})$ have 113 to intersect in a *j*-subspace for some $j \geq i$. Applying this argument to $\alpha(B_{\infty})$ and $\alpha(C_{\infty})$ 114 and using that α is an involution shows that also $i \geq j$. Hence $\alpha(B_{\infty}) \cap \alpha(C_{\infty})$ is again an 115 *i*-subspace, and therefore (5) holds also in the case $B_{\infty} \cap C_{\infty} \neq \emptyset$.

¹¹⁶ Finally, note that the multiset of the remaining intersection numbers does not change, as 117 blocks of D contained in *H* are kept in α (D) and as the infinite parts of the affine blocks are 118 merely permuted under α . (However, in general, the image $\alpha(B)$ of a given affine block *B* ¹¹⁹ may intersect a specific infinite block *C* in a different manner as *B* does). ⊓⊔

Lemma 2.3 *For each polarity* α *of* Π_0 \cong $PG(2k − 1, q)$ *, the design* α(D) *has line sizes q* + 1*, q and* 2*. More precisely, any line of* α(D) *joining two infinite points has cardinality q* + 1*; any line of* $\alpha(\mathcal{D})$ *joining two affine points has cardinality q; finally, an infinite point and an affine point always determine a line of size* 2 *in* $\alpha(\mathcal{D})$ *.*

124 *Proof* Let us consider a fixed (affine) $(k-1)$ -subspace U_{aff} of the affine space Σ ≅ *AG*(2*k*, *q*) induced on the set *A* of affine points of *D*. Then U_{aff} is contained in exactly ¹²⁶ $q^k + \cdots q + 1$ affine blocks of D, as this is the number of *k*-dimensional subspaces of ¹²⁷ *AG*(2*k*, *q*) containing a given (*k* − 1)-space. Recall that each such block *B* has the form 128 given in (2) .

 $|\alpha(B) \cap \alpha(C)| = |B \cap C|$ (5)

ords *B* and *C* of *D*,

introduced in (2), the infinite parts *B*_∞ and *C*_∞ of the given two blocks

so of *H* \cong *P*($O(2k - 1, q)$. In view of the construction given in (4), the

provid 129 Now *U*_{aff} extends to a unique $(k - 1)$ -subspace *U* of the underlying projective space Π. Note that *U* contains exactly $q^{k-2} + \cdots + q + 1$ infinite points, as *U* has to intersect the ¹³¹ hyperplane *H* of in a (*k* − 2)-dimensional subspace *U*∞. Hence any two distinct affine blocks containing *U*_{aff} share exactly $q^{k-2} + \cdots + q + 1$ infinite points, namely those in U_{∞} ; and by (3), any such block *B* has precisely q^{k-1} infinite points outside of U_{∞} . But then the ¹³⁴ remaining $q^{2k-1} + \cdots + q^k + q^{k-1}$ infinite points are partitioned by the $q^k + \cdots + q1$ affine $_{135}$ blocks through U_{aff} :

$$
(q^k + \cdots + q + 1)q^{k-1} = q^{2k-1} + \cdots + q^k + q^{k-1}.
$$

Thus, the infinite parts B_{∞} of the $q^k + \cdots q + 1$ affine blocks *B* through U_{aff} form the bundle 138 of $(k - 1)$ -subspaces of *H* through the common $(k - 2)$ -subspace U_{∞} . Under the polarity α , this bundle is mapped to a set of $q^k + \cdots + q + 1(k - 1)$ -dimensional subspaces of the 140 *k*-subspace $\alpha(U_{\infty})$. Hence, the images $\alpha(B_{\infty})$ are simply all hyperplanes of the projective 141 space $\alpha(U_{\infty}) \cong PG(k, q)$. Therefore, the images of the infinite parts of any two distinct α ¹⁴² affine blocks through *U*_{aff} intersect in a (*k* − 2)-dimensional subspace of α (*U*_∞). Hence,

Author Proof

no point of U_{∞} lies in the intersection of all affine blocks $\alpha(B)$ through U_{aff} , and thus the intersection of all these blocks in $\alpha(\mathcal{D})$ is simply U_{aff} .

Now, let ℓ be any line of $\mathcal D$ joining two affine points, so that ℓ has size $q + 1$ and consists 146 of *q* affine points and one infinite point ℓ_{∞} . Note that ℓ is the intersection of all $(k - 1)$ -147 dimensional affine subspaces U_{aff} of Σ extended to subspaces U of Π , and we have just seen that the affine part U_{aff} of each such subspace U is simply the intersection of all blocks of 149 $\alpha(\mathcal{D})$ containing U_{aff} . This shows that the line corresponding to ℓ in $\alpha(\mathcal{D})$ is precisely the *q*-set $\ell \setminus \ell_{\infty}$: the distortion by α results in ℓ losing its infinite point.² 150

151 Finally, it is clear that any line joining two infinite points of D remains a line of $\alpha(D)$. ¹⁵² Now it easily follows that an infinite point and an affine point always determine a line of size $153 \quad 2 \text{ in } \alpha(\mathcal{D}).$

¹⁵⁴ Combining the preceding three Lemmas, we obtain our main result:

155 Theorem 2.4 *Consider the design* $\mathcal{D} = PG_k(2k, q)$ *. Let H be a hyperplane of* D *, and let A be the set of points not in H. In addition, let* α *be any polarity of the hyperplane H* ∼= *PG*(2*k* −1, *q*)*. Then the design* α(D) *defined above is a pseudo-geometric design with the same parameters as, but not isomorphic to,* $PG_k(2k, q)$ *.* □

line of \mathcal{D} joining two affine points, so that *f* has size $q + 1$ and consists.
In this case, i.e., the case of the microscetic different and the size of the microscience of and ($k - 1$),
by paces U_{aff} of Σ We conclude this section by pointing out that any two polarities of $\Pi_0 \cong PG(2k - 1, q)$ ¹⁶⁰ lead to isomorphic pseudo-geometric designs, even if the polarities are of different types. ¹⁶¹ While this might seem surprising, it is in fact easy to prove: the product of two polarities is ¹⁶² a collineation, hence any two polarities differ by a collineation only. Now it is easy to check 163 that applying a non-trivial collineation β in our construction yields a design $\beta(\mathcal{D})$ different 164 from, but isomorphic to, \mathcal{D} .

¹⁶⁵ **3 New quasi-symmetric designs**

166 In this section, we consider the special case $k = 2$. Here the points and planes of $\Pi =$ ¹⁶⁷ *PG*(4, *q*) yield a 2-design which is *quasi-symmetric*; that is, it has just two intersection num-168 bers, namely 1 and $q + 1$. Also, the lines of this design are just the lines of Π and hence all have cardinality $q + 1$ ³ 169

170 The designs $PG_2(4, q)$ form a well-known family of quasi-symmetric designs. They ¹⁷¹ have been studied quite intensively, and several characterizations are available. To mention 172 the most natural result, a quasi-symmetric design with the parameters of $PG_2(4, q)$ and 173 intersection numbers 1 and $q + 1$ is classical if and only if all lines have size $q + 1$. This is ¹⁷⁴ due to Sane and Shrikhande [26], who also gave various other characterizations.

¹⁷⁵ Theorem2.4 specializes to the following construction for a new family of quasi-symmetric 176 designs with the parameters of $PG₂(4, q)$:

177 Theorem 3.1 *Consider the design* $D = PG_2(4, q)$ *, let H be a hyperplane of* D*, and let A be the set of points not in H. In addition, let* α *be any polarity of the hyperplane H* \cong *PG*(3, *q*). *Then the design* α(D) *defined in Sect.2 is a pseudo-geometric quasi-symmetric design with the same parameters as, but not isomorphic to,* $PG₂(4, q)$ *.* □

181 With the exception of the smallest case, i.e. $q = 2$, none of the designs in Theorem 3.1 was ¹⁸² known previously; thus we indeed have a new infinite family of quasi-symmetric designs.

² More generally, all subspaces of Π of dimension at most *k*−1 which are not contained in *H* can be recovered as suitable intersections of blocks of D ; under α , the intersection of the corresponding distorted blocks no longer contains an infinite point and simply is the original affine part of the subspace.

 3 See [27] for a monograph on quasi-symmetric designs.

183 By a result of Tonchev $[29]$, there are exactly five quasi-symmetric 2— $(31,7,7)$ -designs with intersection numbers 1 and 3; among these designs is, of course, the classical example $PG₂(4, 2)$. It is interesting to note that just one of the further four examples contains a hyper- plane; hence this design has to arise from Theorem3.1. Actually, we discovered our general construction for pseudo-geometric designs when we tried to get a better understanding of this specific design which shares so many properties with the classical example. It seemed to us that there ought to be a geometric way of obtaining it—an intuition which fortunately turned out to be correct.

¹⁹¹ A more recent characterization of the geometric designs *PG*2(4, *q*) in terms of *good* ¹⁹² *blocks*—a notion introduced in [23]—is due to Mavron, McDonough and Shrikhande [21]. 193 In any quasi-symmetric design with intersection numbers x and y, where $0 \le x \le y$, a 194 block *B* is said to be *good* if, for any block *C* with $|B \cap C| = y$ and any point $p \notin C$, there 195 is a (unique) block containing *p* and $B \cap C$. The result of [21] characterizes the geometric 196 design $PG₂(4, q)$ among all quasi-symmetric designs with the same parameters and with 197 intersection numbers 1 and $q + 1$ by the property that all blocks of the design are good. ¹⁹⁸ Subsequently, this result was strengthened by Baartmans and Sane [3] who proved that it ¹⁹⁹ suffices to assume that all the blocks passing through a fixed point *p* are good.

200 The authors of $[21]$ also knew⁴ just one example of a quasi-symmetric design with the 201 parameters of $PG_2(4, q)$ where some of the blocks, but not all blocks, are good, namely the 202 pseudo-geometric 2—(31,7,7)-design discussed above. It is easy to check that if $\alpha(\mathcal{D})$ is a 203 design obtained using a polarity α in a hyperplane *H*, then precisely the blocks contained in ²⁰⁴ *H* are good.

²⁰⁵ **4 Counterexamples to Hamada's conjecture**

²⁰⁶ In this section, we shall see that our construction from Sect. 2 provides an infinite family of ²⁰⁷ counterexamples to a famous conjecture by Hamada [8] from 1973. This conjecture reads as ²⁰⁸ follows:

 Conjecture 4.1 (Hamada's Conjecture) *Let* D *be a design with the parameters of a geomet- ric design PG^d* (*n*, *q*) *or AG^d* (*n*, *q*)*, where q is a power of a prime p. Then the p-rank of the incidence matrix of* D *is greater than or equal to the p-rank of the corresponding geometric design. Moreover, equality holds if and only if* D *is isomorphic to the geometric design.*

esting to note that is to end for the further four examples contains a hyper-
ign has to arise from Theorem 3.1. Actually, we discovered our general
ade-geometric designs when we tried to get a better understanding of
whi ²¹³ Hamada's conjecture has been proved in the following cases: Hamada and Ohmori [9] ²¹⁴ established the conjecture for the design of hyperplanes in a binary projective or affine space 215 ($q = 2, d = n - 1$). Doyen et al. [6] proved the conjecture for the design of lines in a binary 216 projective space $(q = 2, d = 1)$, as well as for the design of lines in a ternary affine space $q = 3, d = 1$. Teirlinck [28] proved the conjecture for the design of planes in a binary affine 218 space $(q = 2, d = 2)$. Tonchev [30] proved a modified version of Hamada's conjecture using 219 generalized incidence matrices with entries over $GF(q)$ instead of (0, 1)-incidence matrices, 220 for the classical designs having as blocks the complements of hyperplanes in $PG(d, q)$ or 221 *AG*(*d*, *q*) (*d* = *n* − 1, *q* an arbitrary prime power).

 Nevertheless, the strong version of Hamada's conjecture is not true in general: there are designs with the same parameters and the same p -rank as a classical geometric design D , but not isomorphic to D. The smallest examples for this phenomenon are the quasi-sym-225 metric designs with the parameters of $PG₂(4, 2)$, namely, 2-(31, 7, 7) [29], which were

⁴ This is not contained in the published paper [21], but was mentioned by Mavron and McDonough to the second author when he was visiting The University of Wales at Aberystwyth.

nioned in the paper by Goethals and Delsarde [7]. The extensions of the

nioned in the paper by Goethals and Delsarde [7]. The extensions of the

21.7, 7) designs are 3-(32, 8, 7) designs having the same parameters

numbe ²³² The only other previously known parameter set for which a non-geometric design exists 233 that has the same *p*-rank as the corresponding geometric design is 2- $(64, 16, 5)$: in [10], 234 Harada et al. found two affine $2-(64, 16, 5)$ designs having the same 2 -rank (equal to 16) as 235 the classical geometric design of the planes in $AG(3, 4)$. The two exceptional designs were ²³⁶ found as minimum weight vectors in binary codes spanned by incidence matrices of sym-237 metric $(4, 4)$ -nets. Mavron et al. [22] showed that one of the pseudo-geometric 2- $(64, 16, 5)$ 238 designs from [10] can be obtained also by using a certain line spread in $PG(5, 2)$.

 However, the weak version of Conjecture 4.1, that is, the statement that the *p*-rank of any 240 design with the same parameters as a geometric design $PG_d(n, q)$ or $AG_d(n, q)$ is at least as large as that of the corresponding geometric design, is still open in general, with the exception of the few proven cases mentioned above.

²⁴³ Thus, it is rather interesting that the designs described in Theorem2.4 in the case when *q* ²⁴⁴ is a prime number provide the first infinite family of counterexamples to the strong version ²⁴⁵ of Hamada's conjecture:

246 Theorem 4.2 If $q = p$ is a prime number, the pseudo-geometric designs described in The-247 *orem* 2.4 have the same p-rank as the geometric design $PG_k(2k, p)$.

²⁴⁸ We will need two lemmas for the proof of Theorem 4.2.

Lemma 4.3 *Let* α *be a polarity in PG*(2*k* -1 , *q*)*, where* $q = p^s$ *and* p *is a prime. The* 250 *p*-rank $r_p(\alpha)$ of the incidence matrix of the design $\alpha(\mathcal{D})$ from Theorem 2.4 satisfies the ²⁵¹ *inequalities*

$$
r_p(\mathcal{D}) \le r_p(\alpha) \le \frac{1}{2} \left(\frac{q^{2k+1} - 1}{q - 1} + 1 \right),\tag{6}
$$

253 *where* $r_p(\mathcal{D})$ *is the p-rank of the geometric design* $\mathcal{D} = PG_k(2k, q)$ *.*

Proof By the construction described in Sect. 2, the design $\alpha(\mathcal{D})$ has an incidence matrix of ²⁵⁵ the form

$$
M = \left(\frac{M_1 \vert M_2}{0 \vert M_3}\right),
$$

²⁵⁷ where M_1 is a point by block incidence matrix of the geometric design $PG_k(2k-1, q)$, and M_3 is a point by block incidence matrix of the geometric design $AG_k(2k, q)$. Thus, we have 259 $r_p(M_1) + r_p(M_3) \le r_p(\alpha).$

²⁶⁰ On the other hand, it follows from
$$
[1, Corollary 5.7.3, p. 186]
$$
, that

$$
r_p(PG_k(2k, q)) = r_p(PG_k(2k - 1, q)) + r_p(AG_k(2k, q)).
$$

²⁶² Hence, we have

$$
r_p(D) = r_p(M_1) + r_p(M_3).
$$

²⁶⁴ This proves the left-hand side inequality in (6). To prove the right-hand side inequality in

265 (6), we consider the complementary design $\alpha(\mathcal{D})$. By Lemma 2.2, the design $\alpha(\mathcal{D})$ has the

 \bigcirc Springer

same intersection numbers as $\mathcal{D} = PG_k(2k, q)$, that is, $(q^i - 1)/(q - 1)$ for *i* in the range $267 \quad 1 \le i \le k$. Consequently, the block intersection numbers of the complementary design $\overline{\alpha(D)}$ ²⁶⁸ are

$$
\frac{q^i(q^{2k+1-i}-2q^{k+1-i}+1)}{q-1}, \ 1 \le i \le k.
$$

270 Note that all these numbers are divisible by q, and that the blocks of $\alpha(\mathcal{D})$ are of size

$$
\frac{q^{k+1}(q^k-1)}{q-1},
$$

 $\frac{q^i(q^{2k+1-i}-2q^{k+1-i}+1)}{q-1}, 1 \leq i \leq k.$

unbers are divisible by q, and that the blocks of $\overline{o(D)}$ are of size
 $\frac{q^{k+1}(q^k-1)}{q-1}$,

le by q. Thus, the incidence vectors of the blocks of $\overline{o(D)}$ span a linear

o 272 which is also divisible by *q*. Thus, the incidence vectors of the blocks of $\alpha(\mathcal{D})$ span a linear self-orthogonal code of length $(q^{2k+1} - 1)/(q - 1)$ over $GF(p)$. Hence, the *p*-rank of the 274 incidence matrix $(J - M)$ of $\overline{\alpha(D)}$, where *J* denotes the all-one matrix of appropriate size, does not exceed $\left(\frac{q^{2k+1}-1}{q-1}-1\right)/2$ (note that the number of points of $\alpha(\mathcal{D})$, $\left(q^{2k+1}-1\right)/(q-1)$ 276 is an odd number). The columns of $J - M$ have 0 and 1 entries, and the number of 1's in each 277 column is a multiple of *p*. Therefore, each column of $J - M$ is orthogonal (over $GF(p)$) to ²⁷⁸ the all-one column **j**, and consequently, the whole column space is orthogonal to **j**. Since **j** 279 is not orthogonal to itself, **j** is not in the column space of $J - M$. On the other hand, **j** is a 280 nonzero multiple of the sum of columns of *M* over $GF(p)$. This implies

$$
r_p(M) = r_p(J - M) + 1,
$$

²⁸² and therefore

$$
r_p(M) \leq \frac{1}{2} \left(\frac{q^{2k+1}-1}{q-1} - 1 \right) + 1 = \frac{1}{2} \left(\frac{q^{2k+1}+1}{q-1} + 1 \right).
$$

²⁸⁴ This proves the right-hand side inequality in (6). ⊓⊔

²⁸⁵ A summation formula for the *p*-rank of the incidence matrix of a geometric design *PG*_{*r*}(*n*, *q*), $1 \le r \le n - 1$, $q = p^t$, *p* a prime, was found by Hamada [8]. If $r \ne 1$, $n - 1$, ²⁸⁷ Hamada's formula involves some parameters that have to be computed. A simplified formula ²⁸⁸ for the case when $q = p$ is a prime was found by Hirschfeld and Shaw [13, Theorem 5.10]. 289 In particular, the *p*-rank of $\mathcal{D} = PG_k(2k, p)$ is given by:

k−1

$$
290\,
$$

$$
r_p(\mathcal{D}) = \frac{p^{2k+1} - 1}{p-1} - \sum_{i=0}^{k-1} (-1)^i \binom{(k-i)(p-1) - 1}{i} \binom{k+(k-i)p}{2k-i}.
$$
 (7)

291 If $p = 2$, the linear code spanned by the blocks of $\mathcal{D} = PG_k(2k, 2)$ is a punctured Reed-Muller code of length $v = 2^{2k+1} - 1$ and order k [1, Proposition 5.3.2], so we have an 293 alternative formula for $r_2(\mathcal{D})$ which can be written in a simple closed form, namely

$$
r_2(\mathcal{D}) = \sum_{i=0}^k \binom{2k+1}{i} = 2^{2k}.
$$

Note that $2^{2k} = (v + 1)/2$, so the inequalities in (6) are replaced by equalities:

$$
r_2(\mathcal{D}) = r_2(\alpha) = 2^{2k} = (v+1)/2.
$$

297 Thus, the pseudo-geometric designs from Sect. 2 for $q = p = 2$ are counter-examples to the ²⁹⁸ "only if" part of Hamada's conjecture.

 \mathcal{D} Springer

299 In addition, the two formulas for $r_2(\mathcal{D})$ imply the following identity:

$$
2^{2k} - 1 = \sum_{i=0}^{k-1} (-1)^i \binom{k-i-1}{i} \binom{3k-2i}{2k-i}.
$$
 (8)

301 It turns out that a similar closed formula for $r_p(\mathcal{D})$ holds for any prime number p.

302 **Lemma 4.4** *If p is any prime, the p-rank of* $\mathcal{D} = PG_k(2k, p)$ *is equal to*

$$
r_p(\mathcal{D}) = \frac{1}{2} \left(\frac{p^{2k+1} - 1}{p - 1} + 1 \right). \tag{9}
$$

³⁰⁴ *Proof* We will use the following result by Hirschfeld and Shaw [13, Corollary 5.5]): if *p* is as a prime and $C^*(k, n, p)$ is the dual of the linear code over $GF(p)$ spanned by the incidence 306 vectors of the *k*-dimensional subspaces of $PG(n, p)$, $1 \le k \le n - 1$, then

$$
\dim C^*(k, n, p) + \dim C^*(n - k, n, p) = \frac{p^{n+1} - 1}{p - 1} - 1.
$$
 (10)

308 In the special case $n = 2k$, (10) implies that

$$
\dim C^*(k, 2k, p) = \frac{1}{2} \left(\frac{p^{2k+1} - 1}{p - 1} - 1 \right).
$$

310 Note that $C^*(k, 2k, p)$ is the code having the incidence matrix of $D = PG_k(2k, p)$ as a parity ³¹¹ check matrix, hence

$$
r_p(\mathcal{D}) = \frac{p^{2k+1} - 1}{p - 1} - \dim C^*(k, 2k, p) = \frac{1}{2} \left(\frac{p^{2k+1} - 1}{p - 1} + 1 \right).
$$

³¹³ ⊓⊔

314 Now Theorem 4.2 follows from Lemmas 4.3 and 4.4.

³¹⁵ We note that comparing (7) and (9) gives the following identity, which generalizes (8):

Corollary 4.5

$$
^{316}
$$

$$
{}_{316} \qquad \frac{1}{2} \left(\frac{p^{2k+1}-1}{p-1} - 1 \right) = \sum_{i=0}^{k-1} (-1)^i \binom{(k-i)(p-1)-1}{i} \binom{k+(k-i)p}{2k-i}.
$$
 (11)

 $2^{2k} - 1 = \sum_{i=0}^{n} (-1)^i {k-i-1 \choose i} \frac{3k-2i}{2k-i}$. (8)

ailar closed formula for $r_p(D)$ holds for any prime number p .

any prime, the p -rank of $D = PG_k(2k, p)$ is equal to
 $r_p(D) = \frac{1}{2} \left(\frac{p^{2k+1}-1}{p-1} + 1 \right)$. (9)

th 317 It was pointed out to us by one of the reviewers, that Eq. 11 is actually true for all positive 318 integers p and not just for primes; it follows from a formula of J.L.W.V. Jensen [14, Eq. 18], 319 which is given a modern setting in [20, Sect. 14.1]. Of course, with (11) in hand, Lemma 4.4 320 is an immediate consequence of (7) .

 321 We finally remark that Theorem 4.2 does not extend to arbitrary prime powers q : the 322 classical design $PG₂(4, 4)$ has 2-rank 146, whereas the pseudo-geometric design obtained ³²³ from a polarity has 2-rank 154.

 Acknowledgments The second author wishes to thank the University of Augsburg, Germany, for the hospitality during his visit. He is also grateful for the support provided by a grant of the Alexander von Hum- boldt Foundation. The authors wish to thank James Hirschfeld for providing them with a copy of [13], Jenny Key for valuable references to [2], and the reviewers for their helpful comments, in particular, for pointing out references [3,7,14,20]. Vladimir D. Tonchev research partially supported by a research grant of the Alexander von Humboldt Foundation, and NSA Grant H98230-08-1-0065.

References

- 1. Assmus E.F. Jr., Key J.D.: Designs and their Codes. Cambridge University Press, Cambridge (1992).
- 2. Assmus E.F. Jr., Key J.D.: Polynomial codes and finite geometries. In: Pless V., Huffman W.C. (eds.) Handbook of Coding Theory, Vol. II, pp. 1269–1343. North Holland, Amsterdam (1998).
- 3. Baartmans A., Sane S.: A characterization of projective sub- spaces of codimension two as quasi-sym-metric designs with good blocks. Discrete Math. **306**, 1493–1501 (2006).
- 4. Beth T., Jungnickel D., Lenz H.: Design Theory (2nd edn.). Cambridge University Press (1999).
- 5. Colbourn C.J., Dinitz J.H.: Handbook of Combinatorial Designs (2nd edn.). CRC Press, Boca Raton (2007).
- 6. Doyen J., Hubaut X., Vandensavel M.: Ranks of incidence matrices of Steiner triple systems. Math. Z. **163**, 251–259 (1978).
- 7. Goethals J.-M., Delsarte P.: On a class of majority-logic decodable cyclic codes. IEEE Trans. Inform. Theory **14**, 182–188 (1968).
- 8. Hamada N.: On the *p*-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its application to error correcting codes. Hiroshima Math. J. **3**, 154–226 (1973).
- 9. Hamada N., Ohmori H.: On the BIB-design having the minimum *p*-rank. J. Combin. Theory Ser. A **18**, 131–140 (1975).
- 10. Harada M., Lam C.W.H., Tonchev V.D.: Symmetric (4,4)-nets and generalized Hadamard matrices over groups of order 4. Des. Codes Cryptogr. **34**, 71–87 (2005).
- 11. Hirschfeld J.W.P.: Finite Projective Spaces of Three Dimensions. Oxford University Press (1985).
- 12. Hirschfeld J.W.P.: Projective Geometries Over Finite Fields (2nd edn.). Oxford University Press (1998).
- y J.D. Beages and their Codes. Cambridge University Peess, Cambridge (1992).

2. J.D. Evolynomial codes and finite geometries. In: Piess V, Höffman W.C. (eds.)

1. F. D. Evolynomial codes and finite geometries. In: Piess 13. Hirschfeld J.W.P., Shaw R.: Projective geometry codes over prime fields. In: Finite Fields: Theory, Appli- cation and Algorithms. Contemporary Math, vol. 168, pp. 151–163. Amer Math. Soc., Providence, R.I. (1994).
- 14. Jensen J.L.W.V.: Sur une identité d'Abel et sur d'autres formules analogues. Acta Math. **26**, 307–318 (1902).
- 15. Jungnickel D.: The number of designs with classical parameters grows exponentially. Geom. Dedicata **16**, 167–178 (1984).
- 16. Jungnickel D., Tonchev V.D.: The number of designs with classical parameters grows exponentially, II. (In preparation).
- 17. Kantor W.M.: Automorphisms and isomorphisms of symmetric and affine designs. J. Algebraic Combin. **3**, 307–338 (1994).
- 18. Lam C., Lam S., Tonchev V.D.: Bounds on the number of affine, symmetric, and Hadamard designs and matrices. J. Combin. Theory Ser. A **92**, 186–196 (2000).
- 19. Lam C., Tonchev V.D.: A new bound on the number of designs with classical affine parameters. Des. Codes Cryptogr. **27**, 111–117 (2002).
- 20. Larsen M.E.: Summa Summarum. In: CMS Treatises in Mathematics, Canadian Mathematical Society, Ottawa, ON; A K Peters, Ltd., Wellesley, MA (2007).
- 21. Mavron V.C., McDonough T.P., Shrikhande M.S.: Quasi-symmetric designs with good blocks and inter-section number one. Des. Codes Cryptogr. **28**, 147–162 (2003).
- 22. Mavron V.C., McDonough T.P., Tonchev V.D.: On affine designs and Hadamard designs with line spreads. Discrete Math. **308**, 2742–2750 (2008).
- 23. McDonough T.P., Mavron V.C.: Quasi-symmetric designs with good blocks. J. Combin. Des. **3**, 433–441 (1995).
- 24. Rahman M., Blake I.F.: Majority logic decoding using combinatorial designs. IEEE Trans. Inform. Theory **21**, 585–587 (1975).
- 25. Rudolph L.D.: A class of majority-logic decodable codes. IEEE Trans. Inform. Theory **23**, 305–307 (1967).
- 26. Sane S.S., Shrikhande M.S.: Some characterizations of quasi-symmetric designs with a spread. Des. Codes Cryptogr. **3**, 155–166 (1993).
- 27. Shrikhande M.S., Sane S.S.: Quasi-symmetric Designs. Cambridge University Press, Cambridge (1991).
- 28. Teirlinck L.: On projective and affine hyperplanes. J. Combin. Theory Ser. A **28**, 290–306 (1980).
- 29. Tonchev V.D.: Quasi-symmetric 2-(31, 7, 7)-designs and a revision of Hamada's conjecture. J. Combin. Theory Ser. A **42**, 104–110 (1986).
- 30. Tonchev V.D.: Linear perfect codes and a characterization of the classical designs. Des. Codes Cryptogr. **17**, 121–128 (1999).

 \mathcal{D} Springer