List of Publications
by Vladimir D. Tonchev

* Books
** Book Chapters
*** Volumes Edited

9. C. Ding, C. Tang, and V. D. Tonchev, The Projective General Linear Group $PGL_2(2^m)$ and Linear Codes of Length $2^m + 1$, Designs, Codes and Cryptography, 89 7 (2021), 1713-1734.

35. V.D. Tonchev, The existence of optimal quaternary [28,20,6] and quantum [[28,12,6]]
codes, Journal of Algebra Combinatorics Discrete Structures and Applications, 1(1)
(2014), 13-17.

36. D. Clark and V. Tonchev, The nonexistence of (18,3,18,6) relative difference sets, in:
K.-U. Schmidt and A. Winterhof (Eds.):Sequences and Their Applications; SETA 2014,
Lecture Notes in Computer Science 8865, pp. 149-153, 2014.

37. D. Jungnickel and V.D. Tonchev, New invariants for incidence structures, Designs,
Codes and Cryptography, 68 (2013), 163-177.

38. D. Clark and V.D. Tonchev, A new class of majority-logic decodable codes derived
from finite geometry, Advances in Mathematics of Communications, 7, No. 2 (2013),
175-186.

39. D. Clark and V.D. Tonchev, Enumeration of (16,4,16,4) Relative Difference Sets, Elec-

40. Y. Fujiwara and V.D. Tonchev, High-rate self-synchronizing codes, IEEE Trans. In-
formation Theory, 59, No. 4 (2013), 2328-2335.

41. Y. Fujiwara and V.D. Tonchev, A characterization of entanglement-assisted quantum
3347-3353.

42. Y. Fujiwara, V.D. Tonchev, and T.W.H. Wong, Algebraic techniques in designing quan-

43. D. Jungnickel and V.D. Tonchev, A Hamada type characterization of the classical

44. D. Clark and V.D. Tonchev, Nonbinary quantum codes derived from finite geometries,

45. V.D. Tonchev, Incidence structures, codes, and Galois geometry, University of Rijeka

46. Y. Fujiwara and V.D. Tonchev, A direct product construction for high-rate self-synchronizing
codes, ISITA 2012: International Symposium on Information Theory and its Applica-
tions, Honolulu, Hawaii, USA, pp. 226-229.

47. A. Munemasa and V.D. Tonchev, The twisted Grassmann graph is the block graph of

48. ** Dean Crnković and Vladimir Tonchev, eds., Information Security, Coding Theory
and Related Combinatorics, IOS Press, Amsterdam 2011.

64. V. D. Tonchev, Quantum Codes from Caps, *Discrete Math* 308 (2008), 6368-6372.

87. V.D. Tonchev, A formula for the number of Steiner quadruple systems on 2^n points of 2-rank $2^n - n$, Journal of Combinatorial Designs, 11 (2003), 260-274.

104. C. Lam and V. D. Tonchev, Corrigendum to “Classification of affine resolvable 2-
(27,9,4) designs”, J. Statistical Planning and Inference 86 (2000) 277-278.

105. C. Lam, S. Lam, and V. D. Tonchev, Bounds on the number of Affine, Symmetric and

106. S. Stoichev and V. D. Tonchev, Unital designs in planes of order 16, Discrete Appl.

107. D. Jungnickel and V. D. Tonchev, Decompositions of difference sets, J. Algebra 217

108. D. Jungnickel and V. D. Tonchev, Perfect Codes and Balanced Generalized Weighing

109. V. D. Tonchev, Linear perfect codes and a characterization of the classical designs,
Designs, Codes and Cryptography 17 (1999), 121-128.

110. G. McGuire, V. D. Tonchev, and H. N. Ward, Characterizing the Hermitian and Ree

111. V. D. Tonchev, Maximum disjoint bases and constant weight codes, IEEE Transactions

113. D. Jaffe and V. D. Tonchev, Computing linear codes and unitals, Designs, Codes and

114. Z. Janko and V. D. Tonchev, New designs with block size 7, J. Combin. Theory A 83

V.S. Pless and W.C. Huffman eds., Chapter 15, pp. 1229-1267, Elsevier Science B.V.
1998.

116. R. Weishaar and V. D. Tonchev, Steiner triple systems of order 15 and their codes, J.

117. V. D. Tonchev, Binary codes derived from the Hoffman-Singleton and Higman-Sims

118. M. van Eupen and V. D. Tonchev, Linear Codes and the Existence of a Reversible
Hadamard Difference Set in $Z_2 \times Z_2 \times Z_5^4$, J. Combin. Theory, Ser. A 79 (1997),
161-167.

158. V. D. Tonchev, Some new classes of codes admitting majority decoding, Mathematics and Mathematical Education (1990), 334-337.

170. V. D. Tonchev, Embedding of the Witt-Mathieu system S(3,6,22) in a symmetric 2-(78,22,6) design, Geometriae Dedicata 22 (1987) 49-75.

202. V. D. Tonchev, Embeddability of 2-(9,6,10) designs without repeated blocks, Mathematics and Education in Mathematics (1982) 300-306. (in Bulgarian).

208. V. D. Tonchev, On the mutual embeddability of (2k,k,k-1) and (2k-1,k,k) designs, J. Combin. Theory, A 29 (1980) 329-335.

212. V. D. Tonchev, Permutation groups and block designs, Mathematics and Education in Math., (1979) 552-564. (in Bulgarian).

