LIST OF PUBLICATIONS
by Vladimir D. Tonchev

* Books
** Book Chapters
*** Volumes Edited

11. C. Ding, C. Tang, and V. D. Tonchev, The Projective General Linear Group $PGL_2(2^m)$ and Linear Codes of Length $2^m + 1$, *Designs, Codes and Cryptography*, **89** 7 (2021), 1713-1734.

22. C. Ding, H. Liu, and V. D. Tonchev, All binary linear codes that are invariant under $PSL_2(n)$, *IEEE Transactions on Information Theory*, **64** (2018), 5769-5775.

37. V.D. Tonchev, The existence of optimal quaternary [28,20,6] and quantum [[28,12,6]]

38. D. Clark and V. Tonchev, The nonexistence of (18,3,18,6) relative difference sets, in:
K.-U. Schmidt and A. Winterhof (Eds.):Sequences and Their Applications; SETA 2014,
Lecture Notes in Computer Science 8865, pp. 149-153, 2014.

39. D. Jungnickel and V.D. Tonchev, New invariants for incidence structures, Designs,
Codes and Cryptography, 68 (2013), 163-177.

40. D. Clark and V.D. Tonchev, A new class of majority-logic decodable codes derived
from finite geometry, Advances in Mathematics of Communications, 7, No. 2 (2013),
175-186.

43. Y. Fujiwara and V.D. Tonchev, A characterization of entanglement-assisted quantum
3347-3353.

60. V.D. Tonchev, Quantum Codes from Finite Geometry and Combinatorial Designs, *Finite Groups, Vertex Operator Algebras, and Combinatorics*, Research Institute for Mathematical Sciences, **1656** pp. 44-54.

66. V. D. Tonchev, Quantum Codes from Caps, *Discrete Math* 308 (2008), 6368-6372.

89. V.D. Tonchev, A formula for the number of Steiner quadruple systems on 2^n points of 2-rank $2^n - n$, *Journal of Combinatorial Designs*, **11** (2003), 260-274.

106. C. Lam and V. D. Tonchev, Corrigendum to “Classification of affine resolvable 2-
(27,9,4) designs”, *J. Statistical Planning and Inference* **86** (2000) 277-278.

107. C. Lam, S. Lam, and V. D. Tonchev, Bounds on the number of Affine, Symmetric and

Math.** **102** (2000), 151-158.

110. D. Jungnickel and V. D. Tonchev, Perfect Codes and Balanced Generalized Weighing

111. V. D. Tonchev, Linear perfect codes and a characterization of the classical designs,

112. G. McGuire, V. D. Tonchev, and H. N. Ward, Characterizing the Hermitian and Ree

113. V. D. Tonchev, Maximum disjoint bases and constant weight codes, *IEEE Transactions

114. Y. Ding, S. Houghten, C. Lam, S. Smith, L. Thiel, and V. D. Tonchev, Quasi-
symmetric 2-(28,12,11) Designs with an Automorphism of Order 7, *J. Combin. Designs*

115. D. Jaffe and V. D. Tonchev, Computing linear codes and unitals, *Designs, Codes and

117. **”V. D. Tonchev, “Codes and Designs”**, Chapter in: “Handbook of Coding Theory”,
V.S. Pless and W.C. Huffman eds., Chapter 15, pp. 1229-1267, Elsevier Science B.V.
1998.

118. R. Weishaar and V. D. Tonchev, Steiner triple systems of order 15 and their codes, *J.

119. V. D. Tonchev, Binary codes derived from the Hoffman-Singleton and Higman-Sims

120. M. van Eupen and V. D. Tonchev, Linear codes and the Existence of a Reversible
161-167.

160. V. D. Tonchev, Some new classes of codes admitting majority decoding, Mathematics and Mathematical Education (1990), 334-337.

166. V. D. Tonchev, “Combinatorial configurations”, Visha Shchola, Kiev, 1988 (Russian translation of [172]).

172. V. D. Tonchev, Embedding of the Witt-Mathieu system S(3,6,22) in a symmetric 2-(78,22,6) design, Geometriae Dedicata 22 (1987) 49-75.

204. V. D. Tonchev, Embeddability of 2-(9,6,10) designs without repeated blocks, Mathematics and Education in Mathematics (1982) 300-306. (in Bulgarian).

210. V. D. Tonchev, On the mutual embeddability of (2k,k,k-1) and (2k-1,k,k) designs, J. Combin. Theory, A 29 (1980) 329-335.

214. V. D. Tonchev, Permutation groups and block designs, Mathematics and Education in Math., (1979) 552-564. (in Bulgarian).

