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Overview

All generalized Hadamard matrices of order
16 over a group of order 4 are classified up to
equivalence.

The quaternary codes spanned by these
matrices and the binary linear codes spanned
by the incidence matrices of related
symmetric nets are computed and classified.
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The binary codes include the affine geometry
[64, 16, 16] code spanned by the planes in
AG(3, 4) and two new codes that support
non-isomorphic designs with the same 2-rank
as the classical affine design in AG(3, 4),
hence provide counter-examples to Hamada’s
and Assmus’ conjectures.

Many of the F4-codes spanned by
generalized Hadamard matrices yield
quantum error-correcting codes, including
some codes with optimal parameters.
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Designs

A t-(v, k, λ) design D is a set X of v points
together with a collection B of b k-subsets of X
called blocks such that every t-subset of X is
contained in exactly λ blocks.

A design is symmetric if v = b.

Two designs are isomorphic if there exists a
bijection between their point sets that maps the
blocks of the first design into blocks of the
second design.
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Incidence Matrices

An incidence matrix of D is a b × v (0, 1) matrix
A = (aij) with rows indexed by the blocks, and
columns indexed by the points, where aij = 1 if
the ith block contains the jth point and aij = 0
otherwise.

The dual design D∗ of D is the design with
incidence matrix AT .
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Resolvable Designs

A parallel class in a t-(qk, k, λ) design is a set of
q pairwise disjoint blocks.
A resolution is a partition of the collection of
blocks into disjoint parallel classes.
A design is resolvable if it admits a resolution.
A resolvable design is affine resolvable or affine,
if every two blocks that belong to different parallel
classes of R intersect in a constant number of
µ = k2/v points.
The classical affine 2-(qn, qn−1, (qn−1 − 1)/(q − 1))
design has the hyperplanes in the affine
geometry AG(n, q) as blocks.
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Symmetric Nets

A symmetric (µ, q)-net is a symmetric
1-(µq2, µq, µq) design D such that both D and D∗

are affine.

A symmetric (µ, q)-net is class-regular if it admits
a group of automorphisms G of order q that acts
transitively on every point and block parallel
class.
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The Classical Nets

The classical class-regular (q, q)-net, where q is a
prime power, is obtained from the 3-dimensional
affine space AG(3, q) over the field of order q as
follows:

Choose a class P of q2 parallel lines in AG(3, q),
that is, P consists of a given 1-dimensional
vector subspace and its cosets in GF (q)3, and
consider as blocks of the net the q3 planes in
AG(3, q) that do not contain any line from P. The
group of bitranslations G in this case is an
elementary Abelian group of order q.
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Generalized Hadamard matrices

A generalized Hadamard matrix H(µ,G) = (hij)
over a group G of order q is a qµ × qµ matrix with
entries from G with the property that for every i,
j, 1 ≤ i < j ≤ qµ, the multi-set

{hish
−1

js | 1 ≤ s ≤ qµ}

contains every element of G exactly µ times.

A generalized Hadamard matrix over the
multiplicative group of order two G = {1,−1} is
an ordinary Hadamard matrix.
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GH Matrices and Nets

Every generalized Hadamard matrix
H = H(µ,G) over a group G of order q
determines a class-regular symmetric (µ, q)-net
N as follows: let Ḡ be a group of q by q
permutation matrices isomorphic to G, and let φ
be an isomorphism between G and Ḡ. Replacing
each element hij of H by φ(hij) gives a
(0, 1)-incidence matrix of a class-regular
symmetric (µ, q)-net N .
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EXAMPLE
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Class-Regular (q, q)-Nets: Classicifation

q Group Class-regular nets Total # nets
2 Z2 1 1
3 Z3 2 4
4 Z4 13 ≥ 239

4 Z2 × Z2 226 ≥ 239
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The Class-Regular (4, 4)-Nets

There are 13 non-isomorphic (4, 4)-nets with
group Z4.

There are 226 non-isomorphic (4, 4)-nets with
group Z2 × Z2.

These nets give rise to 13 inequivalent
generalized Hadamard matrices of order 16 over
the cyclic group Z4 of order 4, and 226 such
matrices over the elementary Abelian group
Z2 × Z2.
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Hamada’s Conjecture

Conjecture (N. Hamada, 1973):

A geometric design having as points and blocks
the points and subspaces of a given dimension
of a finite affine or projective space over GF (q) is
characterized as the unique design with the
given parameters having minimum q-rank of its
incidence matrix.
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The Proven Cases

Hamada’s conjecture was proved to be true in
the following cases:

Classical (hyperplane) designs in AG(n, 2)
and PG(n, 2) (Hamada and Ohmori ’75);

Lines in PG(n, 2) and AG(n, 3) (Doyen,
Hubaut and Vandensavel ’78);

Planes in AG(n, 2) (Teirlinck ’80).

Finite geometry codes, generalized Hadamard matrices, and Hamada and Assmus’ conjectures – p. 15/23



Counter-Examples

The only previously known counter-examples of
Hamada’s conjecture were five 3-(32, 8, 7)
designs supported by extremal doubly-even
self-dual [32, 16, 8] codes (one being the second
order Reed-Muller, or affine geometry code), and
their derived 2-(31, 7, 7) designs supported by the
shortened codes, all having 2-rank 16 (V.D.
Tonchev 1986).
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Assmus Conjecture

Assmus’ Conjecture:

Hamada’s conjecture is true for designs with
classical parameters.

Theorem. (V.D. Tonchev 1999).
The Assmus conjecture is true for generalized
incidence matrices with entries over GF (q).
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Binary Codes from (4, 4)-Nets

The binary linear codes spanned by the 64 × 64
incidence matrices of the (4, 4)-nets were
computed and classified.

Three codes (C1, C20 and C36), have the following
weight enumerator:

W (y) = 1 + 84y16 + 3360y24 + · · · + y64.
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New Counter-Examples

The vectors of weight 16 in each of the codes
C1, C20 and C36 support an affine 2-(64, 16, 5)
design.

The design in C1 is isomorphic to the classical
design of the planes in AG(3, 4).

The 2-(64,16,5) designs in C20 and C36 are
the only known designs with classical
parameters that are not geometric but have
the same p-rank as a geometric design.

These designs are counter-examples to both
Hamada’s and Assmus’ conjectures.
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Quantum Codes

The hermitian product of
x = (x1, . . . , xn), y = (y1, . . . , yn) over GF (4):

(x, y) = x1y
2

1 + x2y
2

2 + · · · + xny
2

n

Theorem. Calderbank, Rains, Shor and Sloane, 1998:

A hermitian self-orthogonal GF (4)-code C of
length n with dual distance d(C⊥) (where C⊥ is
the hermitian dual code of C) yields a quantum
error-correcting code with parameters
[[n, k = n − 2dimC, d = d(C⊥)]].
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Quantum Codes from GH Matrices

Normalizing a generalized Hadamard matrix
of order 16 over Z2 × Z2 gives a generator
matrix of a self-orthogonal code of length 15
over GF (4).

Among these codes, 150 are hermitian
self-orthogonal, hence give rise to quantum
codes.

The matrix related to the classical net yields
an optimal quantum [[15, 11, 2]] code.

Several matrices give optimal quantum
[[15, 7, 3]] codes.
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Thank You!
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