Finite geometry codes, generalized Hadamard matrices, and Hamada and Assmus' conjectures

Vladimir D. Tonchev^a

Department of Mathematical Sciences

Michigan Technological University

Houghton, Michigan 49931, USA

tonchev@mtu.edu, www.math.mtu.edu/~tonchev

^aSpeaker's participation sponsored by Fulbright Grant #1868.

Overview

- All generalized Hadamard matrices of order 16 over a group of order 4 are classified up to equivalence.
- The quaternary codes spanned by these matrices and the binary linear codes spanned by the incidence matrices of related symmetric nets are computed and classified.

- The binary codes include the affine geometry [64, 16, 16] code spanned by the planes in AG(3,4) and two new codes that support non-isomorphic designs with the same 2-rank as the classical affine design in AG(3,4), hence provide counter-examples to Hamada's and Assmus' conjectures.
- Many of the F_4 -codes spanned by generalized Hadamard matrices yield quantum error-correcting codes, including some codes with optimal parameters.

Designs

A t- (v, k, λ) design \mathcal{D} is a set X of v points together with a collection \mathcal{B} of b k-subsets of X called *blocks* such that every t-subset of X is contained in exactly λ blocks.

A design is symmetric if v = b.

Two designs are isomorphic if there exists a bijection between their point sets that maps the blocks of the first design into blocks of the second design.

Incidence Matrices

An incidence matrix of \mathcal{D} is a $b \times v$ (0,1) matrix $A = (a_{ij})$ with rows indexed by the blocks, and columns indexed by the points, where $a_{ij} = 1$ if the ith block contains the jth point and $a_{ij} = 0$ otherwise.

The dual design \mathcal{D}^* of \mathcal{D} is the design with incidence matrix A^T .

Resolvable Designs

A parallel class in a t- (qk, k, λ) design is a set of q pairwise disjoint blocks.

A resolution is a partition of the collection of blocks into disjoint parallel classes.

A design is resolvable if it admits a resolution.

A resolvable design is affine resolvable or affine, if every two blocks that belong to different parallel classes of $\mathcal R$ intersect in a constant number of $\mu=k^2/v$ points.

The classical affine 2- $(q^n, q^{n-1}, (q^{n-1} - 1)/(q - 1))$ design has the hyperplanes in the affine geometry AG(n, q) as blocks.

Symmetric Nets

A symmetric (μ, q) -net is a symmetric 1- $(\mu q^2, \mu q, \mu q)$ design $\mathcal D$ such that both $\mathcal D$ and $\mathcal D^*$ are affine.

A symmetric (μ, q) -net is class-regular if it admits a group of automorphisms G of order q that acts transitively on every point and block parallel class.

The Classical Nets

The classical class-regular (q, q)-net, where q is a prime power, is obtained from the 3-dimensional affine space AG(3,q) over the field of order q as follows:

Choose a class \mathcal{P} of q^2 parallel lines in AG(3,q), that is, \mathcal{P} consists of a given 1-dimensional vector subspace and its cosets in $GF(q)^3$, and consider as blocks of the net the q^3 planes in AG(3,q) that do not contain any line from \mathcal{P} . The group of bitranslations G in this case is an elementary Abelian group of order q.

Generalized Hadamard matrices

A generalized Hadamard matrix $H(\mu,G)=(h_{ij})$ over a group G of order q is a $q\mu \times q\mu$ matrix with entries from G with the property that for every i, j, $1 \leq i < j \leq q\mu$, the multi-set

$$\{h_{is}h_{js}^{-1} \mid 1 \le s \le q\mu\}$$

contains every element of G exactly μ times.

A generalized Hadamard matrix over the multiplicative group of order two $G = \{1, -1\}$ is an ordinary Hadamard matrix.

GH Matrices and Nets

Every generalized Hadamard matrix $H = H(\mu, G)$ over a group G of order q determines a class-regular symmetric (μ, q) -net N as follows: let \bar{G} be a group of q by q permutation matrices isomorphic to G, and let ϕ be an isomorphism between G and \overline{G} . Replacing each element h_{ij} of H by $\phi(h_{ij})$ gives a (0,1)-incidence matrix of a class-regular symmetric (μ, q) -net N.

EXAMPLE

Class-Regular (q, q)-Nets: Classicifa

q	Group	Class-regular nets	Total # nets
2	Z_2	1	1
3	Z_3	2	4
4	Z_4	13	≥ 239
4	$Z_2 \times Z_2$	226	≥ 239

The Class-Regular (4,4)-Nets

- There are 13 non-isomorphic (4,4)-nets with group \mathbb{Z}_4 .
- There are 226 non-isomorphic (4,4)-nets with group $Z_2 \times Z_2$.

These nets give rise to 13 inequivalent generalized Hadamard matrices of order 16 over the cyclic group Z_4 of order 4, and 226 such matrices over the elementary Abelian group $Z_2 \times Z_2$.

Hamada's Conjecture

Conjecture (N. Hamada, 1973):

A geometric design having as points and blocks the points and subspaces of a given dimension of a finite affine or projective space over GF(q) is characterized as the unique design with the given parameters having minimum q-rank of its incidence matrix.

The Proven Cases

Hamada's conjecture was proved to be true in the following cases:

- Classical (hyperplane) designs in AG(n, 2) and PG(n, 2) (Hamada and Ohmori '75);
- Lines in PG(n, 2) and AG(n, 3) (Doyen, Hubaut and Vandensavel '78);
- Planes in AG(n, 2) (Teirlinck '80).

Counter-Examples

The only previously known counter-examples of Hamada's conjecture were five 3-(32, 8, 7) designs supported by extremal doubly-even self-dual [32, 16, 8] codes (one being the second order Reed-Muller, or affine geometry code), and their derived 2-(31, 7, 7) designs supported by the shortened codes, all having 2-rank 16 (V.D. Tonchev 1986).

Assmus Conjecture

Assmus' Conjecture:

Hamada's conjecture is true for designs with classical parameters.

Theorem. (V.D. Tonchev 1999).

The Assmus conjecture is true for generalized incidence matrices with entries over GF(q).

Binary Codes from (4, 4)-**Nets**

The binary linear codes spanned by the 64×64 incidence matrices of the (4,4)-nets were computed and classified.

Three codes $(C_1, C_{20} \text{ and } C_{36})$, have the following weight enumerator:

$$W(y) = 1 + 84y^{16} + 3360y^{24} + \dots + y^{64}.$$

New Counter-Examples

- The vectors of weight 16 in each of the codes C_1 , C_{20} and C_{36} support an affine 2-(64, 16, 5) design.
- The design in C_1 is isomorphic to the classical design of the planes in AG(3,4).
- The 2-(64,16,5) designs in C_{20} and C_{36} are the only known designs with classical parameters that are not geometric but have the same p-rank as a geometric design.
- These designs are counter-examples to both Hamada's and Assmus' conjectures.

Quantum Codes

The hermitian product of

$$x = (x_1, \dots, x_n), \ y = (y_1, \dots, y_n) \text{ over } GF(4)$$
:
$$(x, y) = x_1 y_1^2 + x_2 y_2^2 + \dots + x_n y_n^2$$

Theorem. Calderbank, Rains, Shor and Sloane, 1998:

A hermitian self-orthogonal GF(4)-code C of length n with dual distance $d(C^{\perp})$ (where C^{\perp} is the hermitian dual code of C) yields a quantum error-correcting code with parameters

$$[[n, k = n - 2\dim C, d = d(C^{\perp})]].$$

Quantum Codes from GH Matrices

- Normalizing a generalized Hadamard matrix of order 16 over $Z_2 \times Z_2$ gives a generator matrix of a self-orthogonal code of length 15 over GF(4).
- Among these codes, 150 are hermitian self-orthogonal, hence give rise to quantum codes.
- The matrix related to the classical net yields an optimal quantum [[15, 11, 2]] code.
- Several matrices give optimal quantum [[15, 7, 3]] codes.

REFERENCES

- A.R. Calderbank, E.M. Rains, P.W. Shor, and N.J.A. Sloane, Quantum error correction via codes over GF(4), *IEEE Trans. Inform. Theory* 44 (1998), 1369–1387.
- N. Hamada, On the p-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its applications to error-correcting codes, Hiroshima Math. J. 3 (1973), 153–226.
- M. Harada, C. Lam and V.D. Tonchev, Symmetric (4, 4)-nets and generalized Hadamard matrices over groups of order 4, *Designs, Codes and Cryptography* 34 (2005), 71-87.
- V.D. Tonchev, Quasi-symmetric 2-(31,7,7) designs and a revision of Hamada's conjecture, J. Combin. Theory, Ser. A 42 (1986), 104-110.
- V.D. Tonchev, Linear perfect codes and a characterization of the classical designs, Designs, Codes and Cryptography 17 (1999), 121-128.

Thank You!