1.4 Homework
MA 2321, Fall '03, T. Olson


2.
If defined, compute the product shown using (i) the definition (linear combinations of columns) and (ii) the rule for computing $A\vec{x}$. If the product is undefined, say why.

\begin{displaymath}\left( \begin{array}{rr} 4 & 1 \\
2 & -5 \\
0 & 6 \\
\e...
...} \right)
\left( \begin{array}{r} 5 \\ 2 \end{array} \right)
\end{displaymath}

4.
If defined, compute the product shown using (i) the definition (linear combinations of columns) and (ii) the rule for computing $A\vec{x}$. If the product is undefined, say why.

\begin{displaymath}\left( \begin{array}{rr} 3 & -8 \\
-1 & 5 \\
2 & -3 \\
...
...ht)
\left( \begin{array}{r} -4 \\ 1 \\ 0 \end{array} \right)
\end{displaymath}

8.
Write the system in the form $A \vec{x} = \vec{b}$.

\begin{eqnarray*}3x_2 - 2 x_3 + x_4 & = & 0 \\
x_1 - 2x_2 + 6 x_3 & = & 0 \\
7 x_1 + x_2 - 5x_3 - 8x_4 & = & 0
\end{eqnarray*}


19.
Let $\displaystyle A=
\left( \begin{array}{rr} -3 & 1 \\ 6 & -2 \end{array} \right)$ and $\displaystyle \vec{b}=
\left( \begin{array}{r} b_1 \\ b_2 \end{array} \right)$. Show that the equation $A \vec{x} = \vec{b}$ is not consistent for all possible $\vec{b}$, and describe the set of all $\vec{b}$ for which $A \vec{x} = \vec{b}$ is consistent.
31.
It can be shown that $\displaystyle
\left( \begin{array}{rrr} 4 & 1 & 2 \\
-2 & 0 & 8 \\
3 & 5 &...
...\end{array} \right) =
\left( \begin{array}{r} 4 \\ 18 \\ 5 \end{array} \right)$. Use this fact (and no row operations) to find scalars c1, c2, and c3, such that

\begin{displaymath}\left( \begin{array}{r} 4 \\ 18 \\ 5 \end{array} \right) =
c...
..._3 \left( \begin{array}{r} 2 \\ 8 \\ -6 \end{array} \right) .
\end{displaymath}

32.
Let $\vec{u} = \left( \begin{array}{r} 3 \\ 8 \\ 4 \end{array} \right)$, $\vec{v} = \left( \begin{array}{r} 1 \\ 3 \\ 1 \end{array} \right)$, and $\vec{w} = \left( \begin{array}{r} 1 \\ 1 \\ 3 \end{array} \right)$. It can be shown that $2\vec{u}-5\vec{v}-\vec{w}=0$. Use this fact (and no row operations) to solve the equation $\displaystyle
\left( \begin{array}{rr} 3 & 1 \\
8 & 3 \\
4 & 1 \\
\end{a...
...end{array} \right)
= \left( \begin{array}{r} 1 \\ 1 \\ 3 \end{array} \right)
$.
35.
Let A be a $3 \times 4$ matrix, let $\vec{y_1}$ and $\vec{y_2}$ be vectors in $\mbox{I\hspace{-.14em}R}^3$, and let $\vec{w}=\vec{y_1}+\vec{y_2}$. Suppose that $\vec{y_1}=A \vec{x_1}$ and $\vec{y_2}=A \vec{x_2}$ for some vectors $\vec{x_1}$ and $\vec{x_2}$ in $\mbox{I\hspace{-.14em}R}^4$. What fact allows you to conclude that the system $A \vec{x} = \vec{w}$ is consistent? (Note, $\vec{x_1}$ and $\vec{x_2}$ denote vectors, not scalar entries in vectors.)
36.
Let A be a $5 \times 3$ matrix, and let $\vec{y}$ be a vector in $\mbox{I\hspace{-.14em}R}^3$ and $\vec{z}$ a vector in $\mbox{I\hspace{-.14em}R}^5$. Suppose that $A\vec{y}=\vec{z}$. What fact allows you to conclude that the system $A\vec{x}=4\vec{z}$ is consistent?



  About this document ...
Tamara Olson
trolson@mtu.edu