$\begin{array}{c} {\rm Test}\ \#1\\ {\rm MA3160},\, {\rm Spring}\ '06 \end{array}$

Please **show work** or give reasoning for **every** answer. (No credit will be given for correct answers without an indication of how you arrived at your conclusion.)

If you obtain an answer or part of an answer with your **calculator**, please indicate what you punched into your calculator and what the output was.

If you use a **formula**, please write down the formula that you are using.

1. Suppose the size of Barney's snow statue S depends on the amount of rain (x) and the amount of direct sunlight (y) hitting the statue during January, so the height (in meters) of his statue is given by a function

$$S = g(x, y)$$

where x is measured in inches and y is measured in hours.

(a) Explain in words the meaning of the statement "g(2,0) = 82." (Include units for all three numbers.)

(b) If $g_y(2,0) = -6$, what are the units of the "-6"?

- 2. The table contains function values for a linear function of two variables, l(x,y).
 - (a) Finish filling in the table.
 - (b) Write a formula for l(x, y).

			x	
		4	6	8
	0	1	2	
y	1	5		
	2			

- 3. Consider the point P=(2,3,5).
 - (a) How far is the point \mathbf{P} from the y-z plane?
 - (b) How far is the point \mathbf{P} from the z axis?

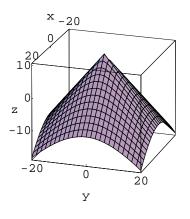
4. Suppose you know the following facts about a function h(x, y):

$$h(10, 20) = 2,$$
 $h_x(10, 20) = 3,$ $h_y(10, 20) = 4.$

- (a) What is $\nabla h(10, 20)$? (the gradient of h at (10, 20))
- (b) Estimate h(9.5, 18). (Show how you get to your answer.)

(c) Compute $h_{\vec{v}}(10, 20)$, the directional derivative of h in the direction of the vector $\vec{v} = 5\vec{i} + \vec{j}$.

(Show how you get to your answer.)


(d) If h is measured in dollars and x and y are both measured in meters, what are the units for $h_{\vec{v}}$ (the directional derivative of h)?

5. The following questions refer to the function

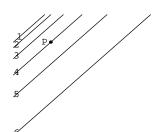
$$f(x,y) = 10 - \sqrt{x^2 + y^2}.$$

A graph of z = f(x, y) is shown at right.

(a) Sketch a cross-section of f with y fixed. Label the axes ("x" and/or"y" and/or"z").

(b) Find an equation for the cross-section of f with y = 8.

(c) Sketch a set of level curves for f.Show the correct shape and spacing.(You do not need to label the levels.)


(d) Find a vector which is perpendicular to the level curve of f at the point (3,4). (Show how to get to your answer.)

(e) Find a vector which is perpendicular to the graph of f at the point (3, 4, 5). (Show how to get to your answer.)

6. Find an equation for the intersection of the surface $z = 10 - \sqrt{x^2 + y^2}$ with the x-y plane. Sketch and/or describe the intersection graphically.

7. The following shows a set of level curves for a function g(x, y). Determine the sign (positive, negative, or zero) of each of the following partial derivatives at the point P, and justify your answer. (Assume the x- and y- axes are in the usual orientation.)

(a) g_x

(b) g_y

(c) g_{xx}

contours for g(x, y)

(d) g_{xy}

8. Given z = f(x, y), x = u + v, y = uv, calculate $z_u(3, 2)$ using the data shown:

$$f(3,2) = 2$$

$$f(5,6) = 4$$

$$f_x(3,2) = 1$$

$$f_x(2,4) = 7$$

$$f_x(5,6) = 3$$

$$f_y(3,2) =$$

$$f_{u}(2,4) = 9$$

$$f_{y}(5,6) = 6$$