
TEST #2
MA3160, Fall ’05

NAME:

Please show work or give reasoning for every answer.

If you obtain an answer or part of an answer with your calculator, please indicate what you punched into your
calculator and what the output was.

If you use a memorized or programmed formula, please write down the formula that you are using.

1. Which of the following three points are critical points of the function f(x, y) = xex(y2 − 4)?
(The Mathematica output at right may be helpful.)

(a) Is (0, 0) a critical point of f?

(b) Is (−1, 0) a critical point of f?

(c) Is (0, 2) a critical point of f?

f[x_, y_] = x*E^x*(y^2-4)

D[f[x,y],x] \\Factor

D[f[x,y],y] \\Factor

Out[1]= e
x
x(−4 + y

2)
Out[2]= e

x(1 + x)(−2 + y)(2 + y)
Out[3]= 2e

x
xy

D[D[f[x,y],x],x] \\Factor

D[D[f[x,y],x],y] \\Factor

D[D[f[x,y],y],x] \\Factor

D[D[f[x,y],y],y] \\Factor

Out[4]= e
x(2 + x)(−2 + y)(2 + y)

Out[5]= 2e
x(1 + x)y

Out[6]= 2e
x(1 + x)y

Out[7]= 2e
x
x

2. If you know that the partial derivatives of g satisfy

gx(1, 3) = 0, gy(1, 3) = 0

and
gxx(1, 3) > 0, gyy(1, 3) > 0, gxy(1, 3) = 0,

what can you conclude about the behavior of the function g near the point (1, 3)?
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3. The graph below shows contours of a function f(x, y) and three critical points of f . For each of these
points, identify the type of critical point: local minimum, local maximum, saddle point, or none of these.
What features of the contour plot are relevant here?

A

C

B

8 7654

32

8 765

A is because

B is because

C is because

4. Suppose we want to maximize the function f(x, y) = x + y subject to the constraint that 2x2 + y2 = 2.

(a)

The bold curve shown at right is the graph of the constraint
(2x2 + y2 = 2) and the other lines are level curves for the
function f(x, y) = x + y. Clearly label the point(s) on the
constraint curve at which f takes its maximum value. What is
the relationship between the level curves and the constraint at
this point?

1 2 3 4

1

2

3

4

(b) Show how to use Lagrange multipliers to find exact values for the coordinates of the point you
identified above.
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5. Values of a function h(x, y) are tabulated below. Using a Riemann sum with four subdivisions, compute
an upper bound for the volume under the graph of h(x, y) and above the rectangle R with 0 ≤ x ≤ 2,
0 ≤ y ≤ 4.

x

0 1 2

0 2 2 2
y 2 2 4 6

4 2 6 10

6. Decide whether the following integrals are positive, negative, or zero. The regions R and B are the right
and bottom halves of a circular disk centered at the origin in the x-y plane (as shown). Give a brief
reason for your answer.

(a)
∫

R
(y3 + y5) dA

(b)
∫

B
(y3 + y5) dA

x

y

R x

y

x

y

B
x

y

7. Set up an iterated integral for
∫

T
f(x, y) dA, where f(x, y) = x2+y2 and T is the triangular region shown.

-3 -2 -1 1 2 3

1

2

3

4

5

6

y=2xy=-2x

y=6
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8. Show how to evaluate the following integral by hand:

∫
4

0

∫
2

0

(1 + xy) dx dy.

(Include enough details to show which integration should be performed first and which variable is treated
as a constant in each integration.)
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DO ANY TWO OF THE REMAINING THREE PROBLEMS
They are triple integrals of the same function over the same 3-D domain, using different coordinates.

9. Use RECTANGULAR (Cartesian) coordinates to set up the iterated triple integral for
∫

W
fdV,

where f(x, y, z) = sin(x2 + y2 + z2)

W is the top half of a sphere of radius 1 described by x2 + y2 + z2 ≤ 1, 0 ≤ z.

-1
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z

(a) Label the top and bottom surfaces with equations.
Sketch and label a slice
(Which variable is held constant?)
(What are the equations for the boundaries of your slice?).

(b) Write the iterated integral for
∫

W
f dV in Cartesian coordinates.
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10. Use CYLINDRICAL coordinates to set up the iterated integral for
∫

W
f dV,

where f(x, y, z) = sin(x2 + y2 + z2)

W is the top half of a sphere of radius 1 described by x2 + y2 + z2 ≤ 1, 0 ≤ z.
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(a) Label the top and bottom surfaces with equations involving only the variables r, θ, and z.
Write the function to be integrated in terms of r, θ, and z. What is dV ?

f = dV =

(b) Graph a slice here or make a sketch which
shows which integration will be performed
first.

(c) Write the iterated integral for
∫

W
f dV in cylindrical coordinates.
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11. Use SPHERICAL coordinates to set up the iterated integral for
∫

W
f dV,

where f(x, y, z) = sin(x2 + y2 + z2)

W is the top half of a sphere of radius 1 described by x2 + y2 + z2 ≤ 1, 0 ≤ z.
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(a) Label the top and bottom surfaces with equations involving only the variables ρ, θ, and φ.
Write the function to be integrated in terms of ρ, θ, and φ. What is dV ?

f = dV =

(b) Graph a slice here or make a sketch which
shows which integration will be performed
first.

(c) Write the iterated integral for
∫

W
f dV in spherical coordinates.
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