
MTU MRI GPU Cluster Blizzard User Manual
Tao Liu, Hamid Ismail, Joshua Kemppainen, Dukka KC

04/04/2024

Get an account to use Blizzard
Send an email to Dr. Dukka KC (dbkc@mtu.edu) to request an account.

Description of the cluster

DeepBlizzard was acquired through an NSF MRI grant () and it has the following nodes.
Deepblizzard has the following nodes:

Qty 7 - GPU Nodes - 64 Cores (AMD EPYC) CPU, NVIDIA HGX A100 (4x A100 SXM4 80GB),
512GB Ram
Qty 3 - Large memory nodes - 64 Cores (AMD EPYC) CPU, 1T memory
Qty 2 - compute nodes - 64 Cores (AMD EPYC) CPU, NVIDIA A30 24GB

Hence the partitions: mrigpu, mrilargemem, and mrijobs for each of these nodes. You can use
the sinfo command to see the working status of each partition.

1. Connecting to the cluster
Several options are available to log on to your account using Secure Shell (SSH). The users of
old Windows versions can install MobaXterm (https://mobaxterm.mobatek.net/download.html) or
Putty (https://www.putty.org/), which are open-source software and can be installed for free. In
Linux and MacOS, use the terminal to connect to the server. In the following, we describe the
use of each method to connect to the Blizzard server.

A- MobaXterm
To connect to the server follow these steps:

- Launch MobaXterm (Fig. 1).
- Click the Session icon on the upper left.
- On the session setting dialog window, click “SSH” on the upper left.
- On the remote host field enter “login-mri.research.mtu.edu”
- Check the checkbox next to “Specify username” and enter your MTU email username

without “@mtu.edu”.
- Leave the default port number 22 and click “OK”.
- The terminal will prompt you to enter your password. Enter your MTU SSO password

and press enter.
- A dialog box will pop up asking whether you want to save your password or not. Press

“Yes” or “No” to log on.
Once you log on, the terminal with the command line prompt appears as in Fig. 2.

1

mailto:dbkc@mtu.edu
https://mobaxterm.mobatek.net/download.html
https://www.putty.org/

Fig. 1: This figure shows you how to use the session dialog window to enter the hostname and
username.

Fig. 2: The screen shows the shell command line prompt when you log on.

B- PuTTy
To connect to the server using PuTTy:
- Launch PuTTy
- From the Category tree items on the left side, select “Session”.
- On the host field, you can enter your user name + “@” + the hostname as shown in Fig 3

(e.g. yourusername@login-mri.research.mtu.edu) and click “Open”.
- A dialog box may pop up when you log on for the first time, telling you that the host key is

not cached for this server. Click “Accept”. Enter your password and press enter. The
command line prompt will show up (Fig. 4).

2

mailto:yourusername@login-mri.research.mtu.edu

Fig 3: Connecting to the server using PuTTy

Fig. 4: The command line prompt when you use PuTTy.

C- Windows Prompt
- On search at the bottom, type “Command Prompt” and launch it.
- On the command prompt type

ssh yourusername@login-mri.research.mtu.edu
and press enter.

3

- You will be asked if are sure that you want to connect. Type “yes” and enter.
- You will be prompted to enter your password. Once you enter it and press the enter key,

the Linux command line prompt will show up as shown in Fig. 5.

Fig. 5: Connecting to the server using Windows Command Prompt.

D- Linux and MacOS
To connect to the server from the Linux or Linux-like operating system:
- launch the Terminal that comes with the system. Then, connect to the server by typing the

following and pressing enter:
ssh yourusername@login-mri.research.mtu.edu

- The command line prompt on the server will show up as shown in Fig. 6.

Fig. 6: Connecting to the server using a terminal on a Linux or MacOS computer.

2- Creating a working directory
When you log on, you will be in your home directory. Use the Linux command “pwd” to display
the directory that you are currently in. It will be “/home/yourusername”. Please avoid storing your
files in the home folder. Instead, you need to create a working directory with your username in
“/mnt/mridata” or “/mnt/mridatafast”. To create a working directory in those two directories,

4

mailto:yourusername@login-mri.research.mtu.edu

please avoid using the mkdir command directly. Instead, you need to run the bash script in
“/mnt/mridata/husky/create_user_folder_mridata.sh”. From your default working directory run the
following on the command line prompt:
bash /mnt/mridata/husky/create_user_folder_mridata.sh
A directory with your username will be created in “/mnt/mridata” and you will be the owner of
that directory as shown in Fig. 7:

Fig. 7: Creating a working directory using a bash script “create_user_folder_mridata.sh”.
Since your working directory will not be in your default directory when you log on, the absolute
path of your working directory, where you store your files, is “/mnt/mridata/yourusername/”. The
following command may help you to navigate your working directory:
To display the content of your working directory, run:
ls -l /mnt/mridata/yourusername

To move to your working directory, run:
cd /mnt/mridata/yourusername

To move back to your default directory, run:
cd ~

Use the Linux command “pwd” to know where you are.

3- Using scratch directory
The scratch directory is available at “/scratch”. This directory is typically used for temporary
storage of data and intermediate files during computational tasks or jobs running on the cluster.
Therefore, as the cluster user, use the scratch directory “/scratch” for temporary storage of data
that is only needed during a job or computation. Using this directory for temporary storage
during computing is efficient as the storage drive (where this directory is found) is optimized for
high throughput and low latency, making it well-suited for handling input/output-intensive
workloads in parallel computing environments. The scratch directory is often configured to
automatically delete data after a job has been completed or after a certain period has elapsed.
Therefore, use it only for temporary storage. For permanent storage, use your working directory.
To use the scratch directory, save the following bash script in a file say “myscratch.sh”:

5

#!/bin/bash
if [! -d /scratch/$USER]; then

mkdir /scratch/$USER;
chmod 700 /scratch/$USER;

fi

Then, run the script file using:
bash myscratch.sh

This will create a directory with your username in the scratch directory. So, the path to your
scratch directory will be as follows:
/scratch/yourUserName

4. Copying files
You may need to copy files from or to your working directory. There are two ways to do this: (i)
using the Linux command “scp” on the command line prompt or (ii) using WinSCP if you are
using Windows. Remember that your working directory is a container for all your files. So, it is
better to organize your files in directories inside this working directory.

i- Using “scp” command
The “scp” command can be used from any Linux and MacOS terminal and the Command
Prompt of the late versions of Windows.
A- Copying files from your local computer to your working directory
The general syntax for “scp” command to copy a file from a local computer to your working
directory is as follows:
scp yourFileName yourusername@mri.research.mtu.edu:/mnt/mridata/yourUserName/.

You should provide the absolute or relative path of your file.
For example, to copy “test1.txt” from a local directory to my working directory, I will use this
command:
scp test1.txt hdismail@login-mri.research.mtu.edu:/mnt/mridata/hdismail/.

When you enter, you will be asked to enter your password. Once you enter it and press enter,
the single file will be copied to your remote working directory as shown in Fig. 8.

Fig. 8: Copying a single file from a local computer to a remote working directory.

6

mailto:hdismail@login-mri.research.mtu.edu

For multiple files with some common characters, you can use wild cards (*, ?, []). For example,
since I have the files “test1.txt, test2.txt, test3.txt, and test4.txt” I can use the following
command:
scp test*.txt hdismail@login-mri.research.mtu.edu:/mnt/mridata/hdismail/.

To copy a directory, use “scp -r”. For example, to copy the directory “test” from my local
computer to my working directory:
scp -r test hdismail@login-mri.research.mtu.edu:/mnt/mridata/hdismail/.

Fig. 9: Copying a directory from a local computer to a remote working directory.

In your remote working directory, you can display the copied file and directory using as shown in
Fig. 10.:
ls -l /mnt/mridata/yourusername/

Fig. 10: Displaying the file and directory copied to the working directory.

A- Copying files from your working directory to a local computer
To copy a file from your working directory to a local computer, you need to open the terminal or
Command prompt on your local computer
scp yourusername@mri.research.mtu.edu:/mnt/mridata/yourUserName/yourFileName filePath/.

If you are inside the directory on the local computer where you want to copy the file, you replace
“filePath/.” with “.”:
scp yourusername@mri.research.mtu.edu:/mnt/mridata/yourUserName/yourFileName .

Once you press enter, you will be asked for the password to copy the file.
For a group of files with common characters or a file extension, you can use the right wildcard
[*,?, or []).
To copy a directory, use “scp -r”:
Scp yourusername@mri.research.mtu.edu:/mnt/mridata/yourUserName/yourDirName filePath/.

ii- Using “WinSCP”
WinSCP is an open-source software (for Windows) used to copy files/directories from or to the
remote working directory. If you are using Windows, you can download this software from
“https://winscp.net/eng/index.php”. WinSCP provides an easy way to transfer files from a local

7

mailto:hdismail@login-mri.research.mtu.edu
mailto:hdismail@login-mri.research.mtu.edu
mailto:yourusername@mri.research.mtu.edu
mailto:yourusername@mri.research.mtu.edu
mailto:yourusername@mri.research.mtu.edu
https://winscp.net/eng/index.php

computer to a remote working directory or from a remote directory to a local computer by
dragging the file or directory. Once you install it, launch it, and connect to the server as shown in
Fig. 11. On the session dialog box, you will be asked to enter the file protocol, hostname, port
number, username, and password. For the file protocol, you can either provide “scp” or “sftp”
(pay attention that sftp protocol may be blocked by a firewall). The tree of files and directories
are shown on both the local computer and the remote computer. Use the mouse to navigate to
the right directory or file and drag it to its destination.

Fig. 11: Using WinSCP to transfer files and directories from or to a remote working directpry.

5. Using the cluster computational resources
A- Listing and loading the available models
As a computer cluster, the programs installed are managed by the SLURM (Simple Linux
Utility for Resource Management). Therefore, the available programs on the servers must be
loaded first before being used. When you use a loaded program, you can use it interactively like
a standalone computer and this is not recommended as it may not be efficient for your
computing or you can use it non-interactively by allocating the needed number of processors,
memory, time, and then submitting your jobs to the queue, where it is executed based on priority
and availability of the computational resources. Submitting jobs to the cluster queue will be
discussed in detail. Here are some useful commands that you can use to get some information
about the cluster.
● sinfo: the sinfo command in SLURM is used to display information about available

compute resources in the cluster managed by SLURM. This command provides an
overview of the nodes, their states, partitions, and other relevant details. Run “sinfo --help”
to display the options used with this command. However, you can use this command simply
by running “sinfo” as shown in Fig 12.

8

Fig. 12: The output of the sinfo command. The figure shows the partitions, the number of
nodes in each partition, and the distribution of the compute nodes.

● module avail: A shortcut for this command is “ml avail”. This command will output a list
of available modules along with their versions as shown in Fig 13. These modules typically
include software packages, libraries, compilers, and other tools that can be loaded into your
environment to customize it for your needs. However, to list the modules on this server, you
need to run the following commands:

module use /mnt/it_software/easybuild/modules/all
module avail

Fig. 13: Displaying available modules managed by SLURM using “module avail”
command.
Press the enter key to scroll down to display more modules. Press the “q” key to
exit.

● module load: This command would load a module, making it and its associated
tools and libraries available for your use within the current environment. To load a
module select any of the modules shown above e.g. Anaconda2/2019.10 and the command
as follows:

module load Anaconda2/2019.10

9

● module list: This command will display the list of the currently loaded modules
as shown in Fig. 14.
module list

Fig. 14: Displaying the loaded list of modules by using the “module list” command.

B- Submitting your job to the SLURM queue
The programs managed by SLURM are usually unloaded until the user loads them using the
above command “module load”. As a user, you must submit your jobs to the queue, since
other users may be using computational resources like processors and memory. Therefore,
submitting your job to the queue allows the jobs to be executed based on priority and availability
of the resources. A bash script will be used to choose the number of processors, memory, and
time required to execute your computing job. Use the resources wisely namely do not allocate
resources more than what your b needs. That may affect the job executions of other users
waiting in the queue. In the following, we will show you how to submit your job to the SLURM
queue. Assume that you want to run a Python program named “mypyprog.py”, which contains
the following script that sums the number from 0 to 10000000 and writes the sum to a text file
named “output.txt”:

outFile = open("output.txt", "w")
sum = 0
for i in range(10000000):

sum = sum + i
outFile.write(str(sum))
outFile.close()

To submit this script to the queue to be executed, you need to create a bash script in a file e.g.
“myslurm.sh”. The script in the file can be as follows:

#!/bin/bash
#SBATCH --job-name=myjob # Job name
#SBATCH --nodes=1 # Number of nodes
#SBATCH --ntasks-per-node=1 # Number of tasks per node
#SBATCH --cpus-per-task=1 # Number of CPU cores per task
#SBATCH --mem=4G # Memory per CPU core
#SBATCH --time=00:10:00 # Time limit hrs:min:sec

10

#SBATCH --partition=mrijobs # Partition (queue) name
Load any necessary modules
module use /mnt/it_software/easybuild/modules/all
module load Python/3.9.5-GCCcore-10.3.0
Change directory to your working directory
cd /mnt/mridata/hdismail
Execute your program or command
python mypyprog.py

In the bash script, the SLURM command begins with “#SBATCH” followed by a parameter and
its value. The value of the parameters are set by the users. Here are the descriptions of those
parameters:
--job-name=myjob: The job name, which is an identifier and can be any name chosen by
the user to describe the nature of the job submitted.
--nodes=1: The number of nodes needed for computing. The number of nodes is determined
by the workload. A single node may be enough for many users, however, for heavy scientific
computing, in which we use Message Passing Interface (MPI) or OpenMP, we may need to
allocate multiple nodes for parallel computing. Tasks can also be parallelized using the loops
(e.g. for loop) in multiprocessing programming. The user may need to learn how to benefit from
the computer cluster by running multiple tasks simultaneously. This is usually done through
programming.
--ntasks-per-node=1: This parameter determines the number of tasks. This parameter is
particularly important in multithreading programming such as the use of “pthread” and OpenMP
library in C/C++, and multithreading in Python. Again, choosing the right number of tasks
requires programming knowledge.
--cpus-per-task=1: The number of CPUs for each task. This parameter is important for
multithreading as well.
--mem=4G: This parameter is for memory allocation. Choose the memory amount that is
sufficient for your computing task. This can be determined by the size of data and the data type.
#SBATCH --time=00:10:00: The time policy is not enforced in this computer cluster (No
time limit). In case the time policy is enforced, the time chosen will be part of the resource
allocation (i.e. the job will be killed if it takes more than the requested time).
--partition=jobs: The partition name where the compute nodes will be used (the jobs will
be sent to the queue of this partition). You can run the “sinfo” command to list the partition. Each
partition may include compute nodes for specific tasks. For example, if you need to use the
GPU you can choose the partition with GPU compute nodes.

The cluster has six partitions as shown in Table 1. Each partition is dedicated for a specific
purpose as shown in the description table.

Table 1: The descriptions of the partitions on the cluster.

11

Partition # nodes Node list Description

mrigpu 7 compute-1-[0-6] For programs that use GPUs

mrilargemem 3 compute-1-[7-9]

mrijobs 2 compute-1-[10-11]

module load Python/3.9.5-GCCcore-10.3.0: You have to load the modules that you
will use. Use the “module avail” commands to list the available modules as shown above. Here,
we loaded the show python version to be used.
cd /mnt/mridata/hdismail: It is recommended to use your working directory to store your
files as discussed above. This command will change the directory to your working directory if it
is not already there.
python mypyprog.py: The line will execute the Python script in the “mypyprog.py”. In this
line, type the command as you type it on the command line.

So far, we have the above bash script saved in “myslurm.sh”. To submit the job to the queue of
the chosen partition use “sbatch” command as follows:
sbatch myslurm.sh
When you run this on the command line, your job will be placed in the queue and a batch job ID
number will be generated as shown in Fig. 15.

Fig. 15: Submitting a job to the queue using “sbatch” command.

The time taken to execute your job depends on the number of jobs waiting in the queue and the
time complexity of your tasks. You can run “squeue” command to check the status of your job.
You can also use “skill or scancel” with the job ID to kill or cancel the job if you want to
cancel its execution.

When the job is completed, a file will be written to the directory where you run the script. By
default, the file name is “slurm-ID.out”, ID is the batch job ID generated upon job submission. It
is good practice to open this file and study its content to see if your program has been executed
without error.

C- Submitting your job to the GPU compute nodes
You may need to benefit from the computing power of the GPUs in your computing. The GPUs
can be used in different programs like Python (PyTorch and TensorFlow) for deep learning and
tensor computing or C/C++ for CUDA programming. In the case of Python, it is straightforward
to use a GPU if the GPU driver and API are configured by the administrator. You only need to

12

choose the partition where the GPU nodes are found. For CUDA programming, make sure that
the NVIDIA toolkit is installed by the administrator. After creating your program, you need to
compile it interactively using the nvcc compiler and when you want to run it, you can run it using
the above batch script, however, you need to choose a partition with GPUs.

6. Creating an anaconda environment
Anaconda is a popular open-source distribution of the Python and R programming languages for
scientific computing, data science, and machine learning tasks. It aims to simplify package
management and deployment by providing a comprehensive set of pre-installed libraries and
tools commonly used in these fields. Anaconda allows users to create isolated environments,
each with its own set of packages, dependencies, and Python versions. This makes it easier to
manage different projects, each with specific requirements.
When you have a specific project using Python with specific package requirements, you can
create an Anaconda environment for that project. First, you need to load the right Anaconda
module. Use the following commands to mount and display the list of the available modules; use
the enter key to scroll down until you find the right Anaconda module (see Fig. 16).

Fig. 16: Finding the right Anaconda module using “module avail”.

As shown in Fig. 16, there are three versions of Anaconda modules. You may decide to use the
latest version in the list, which is “Anaconda3/2022.10”. Load this module with the following
command:
module load Anaconda3/2022.10
Before you create a new environment, you may need to display the list of the environments
created before, using the following commands:
conda info --envs

Fig. 17: Displaying the list of the Anaconda environments.

As shown in Fig. 17, there is only the default environment, which is “base”.
Assume that you want to create a new Anaconda environment named “bio” for a new
bioinformatics project that requires specific Python packages. Use the following command to
create that new environment with a specific Python version:
conda create --name bio python=3.9
You may be asked whether you want to proceed or not as shown in Fig. 18. Type “y” and press
enter to start downloading and installing the essential packages for the new environment.

13

Fig. 18: Creating a new Anaconda environment.
The new environment will be created, when the screen shows what is displayed in Fig. 19.

Fig. 19: The screen shows that the new environment has been created and it can be activated
using the “conda activate bio” command.

You display the list of the Anaconda environments to be sure that your environment has been
created as shown in Fig. 20:
conda info --envs

Fig. 20: Displaying the Anaconda environment.

i-Installing new Python package on your Anaconda environment
You may need to install some packages to your new environment. Package installation in an
Anaconda environment on a cluster is different from that on a standalone computer. Here, you

14

have an SLURM script in a bash file, say “install_package.sh”. Assume that you want to install
the BioPython package on your “bio” environment, so you can use this script:

#!/bin/bash
#SBATCH --job-name=install_packages
#SBATCH --output=install_packages.log
#SBATCH --partition=jobs
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=1
#SBATCH --time=1:00:00
Load Anaconda
module use /mnt/it_software/easybuild/modules/all
module load Anaconda3/2022.10
Activate Conda Environment
conda activate bio
Install Package
conda install anaconda::biopython

Then, run the script using:
sbatch install_package.sh
If you use the “squeue” command, you can check the job name and id on the queue as shown
in Fig 21.

Once package installation is complete, check the log file “install_packages.log” as named above
to check if the installation has been completed successfully.

i-Using Anaconda environment on the cluster
Executing a Python program on an Anaconda environment on the computer cluster is not like
executing it on a standalone machine. Use the SLURM scrip discussed above under
“Submitting your job to the SLURM queue”. However, you should load Anaconda, activate
the environment, and then run the program.
For example, you can save this Python script in a file e.g. mypyprog2.py”:

import os
outFile = open("output.txt", "w")
sum = 0
for i in range(10000000):

sum = sum + i

15

cmd = "which python"
os.system(cmd)
outFile.write(str(sum))
outFile.close()

The SLURM script (e.g. myslurm2.sh) can be as follows:

#!/bin/bash
#SBATCH --job-name=myjob # Job name
#SBATCH --nodes=1 # Number of nodes
#SBATCH --ntasks-per-node=1 # Number of tasks per node
#SBATCH --cpus-per-task=1 # Number of CPU cores per task
#SBATCH --mem=4G # Memory per CPU core
#SBATCH --time=00:10:00 # Time limit hrs:min:sec
#SBATCH --partition=jobs # Partition (queue) name
Load any necessary modules
module use /mnt/it_software/easybuild/modules/all
module load Anaconda3/2022.10
Activate Conda Environment
source activate bio
Change directory to your working directory
cd /mnt/mridata/hdismail
Execute your program or command
python mypyprog2.py

Use the “sbatch” command to submit the job to the queue:
sbatch myslurm2.sh

Check the “slurm-ID.out” (where ID is the job ID) to be sure that the Python used is one installed
on your Anaconda environment.

Acknowledgments
We would like to acknowledge Jarrod Karrau from the IT department for his help with the
management of the cluster. Judy Long, Revanth Mattey, and Shashank Pathrudkar also
contributed to making this user guide possible by testing the Blizzard system during its
development stage.

Funding
Please don’t forget to acknowledge the NSF MRI grant in your publications and grants.
The GPU cluster was funded by NSF Major Research Instrumentation (MRI) Grant
Award # 221734, MRI: Acquisition of a GPU-accelerated cluster for research, training, and
outreach.

16

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2117575
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2117575

