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Response letter for the manuscript titled ‘3D Lymphoma Segmentation on PET/CT Images via Multi-1 
Scale Information Fusion with Cross-Attention’ 2 

 3 

Dear Editor and Reviewers, 4 

We are grateful for the comments and suggestions from the editors and the reviewers, which are crucial for 5 
improving our work. We have revised the manuscript to address the reviewers’ comments fully. Our point-6 
by-point reply to the review comments is summarized below. In this document, the original reviewers’ 7 
comments are in black; our responses are in blue; the quotations in the revised manuscript are in red. 8 

 9 

Reviewer #1:  10 

General Comments: 11 

1. This research paper proposes a new deep learning-based method for segmenting DLBCL lesions in 12 
PET/CT images. The method uses a dual-branch encoder with shifted window transformers and a MSIF 13 
module to integrate features from both PET and CT modalities. The MSIF module uses cross-attention 14 
mechanisms to enhance the interaction between features at different scales, improving segmentation 15 
accuracy. The study also examines the impact of various network parameters on segmentation performance 16 
and assesses the method's ability to calculate the TMTV. The authors conclude that their proposed method 17 
outperforms existing methods in terms of segmentation accuracy and TMTV calculation, offering a 18 
promising tool for lymphoma diagnosis and treatment. 19 

Reply: Thank you for your detailed and positive feedback. We greatly appreciate your recognition of our 20 
work and the potential clinical value it offers for lymphoma diagnosis and treatment. Your insightful 21 
comments are highly encouraging and affirm the significance of our study. Thank you again for your unique 22 
perspective and thoughtful review. 23 

2. The study used a dataset of 165 PET/CT scans from patients clinically diagnosed with DLBCL, provided 24 
by Peking University People's Hospital, using the Discovery VCT PET/CT scanner (GE Healthcare, 25 
Milwaukee, Wisconsin, USA). These datasets were used for both training and testing, employing a 5-fold 26 
cross-validation approach. Based on this, the study is a single-center study, which affects the 27 
generalizability of the segmentation model. It is highly recommended to include publicly available datasets, 28 
such as autoPET (which contains more than 100 lymphoma cases with manual segmentation), to assess the 29 
model's performance. Otherwise, the metrics provided by the authors may not be valid for general 30 
application of the proposed segmentation model for lymphoma. Further validation on a larger, more diverse 31 
dataset is needed to demonstrate the robustness and clinical applicability of the model. 32 

Reply: Thank you for your insightful suggestion. We fully agree with your point regarding the need to 33 
validate the model's generalizability on publicly available datasets. To address this, we conducted additional 34 
experiments using the lymphoma cases in the autoPET dataset. Specifically, we trained and tested our 35 
method on the autoPET dataset following the same 5-fold cross-validation protocol as used for our private 36 
dataset. The results from these experiments confirm the robustness and generalizability of our method 37 
across diverse datasets. These findings have been incorporated into the revised manuscript, specifically in 38 
the [Abstract, Section 2.1, Section 2.2, Section 2.5, Section 3.1, and Section 3.2]. We sincerely appreciate 39 
your suggestion, which has significantly enhanced the rigor and applicability of our study. 40 

 41 

 42 

 43 

 44 



 

2 
 

(Abstract) 45 

Results: The model was trained and validated on a private dataset of 165 DLBCL patients and a publicly 46 
available dataset (autoPET) containing 145 PET/CT scans of lymphoma patients. Both datasets were 47 
analyzed using 5-fold cross-validation. On the private dataset, our model achieved a DSC of 0.7512, 48 
sensitivity of 0.7548, precision of 0.7611, an Average Surface Distance (ASD) of 3.61 mm, and a Hausdorff 49 
Distance at the 95th percentile (HD95) of 15.25 mm. On the autoPET dataset, the model achieved a DSC of 50 
0.7441, sensitivity of 0.7573, precision of 0.7427, ASD of 5.83 mm, and HD95 of 21.27 mm, outperforming 51 
state-of-the-art methods (p < 0.05, t-test). For TMTV quantification, Pearson correlation coefficients of 52 
0.91 (private dataset) and 0.86 (autoPET) were observed, with R² values of 0.89 and 0.75, respectively. 53 
Extensive ablation studies demonstrated the MSIF module’s contribution to enhanced segmentation 54 
accuracy. 55 

 56 

(Section 2.1 Dataset) 57 

This study utilized two datasets: (1) our private dataset comprising 165 PET/CT scan datasets from patients 58 
clinically diagnosed with DLBCL, provided by Peking University People's Hospital, and (2) the FDG-59 
PET/CT dataset (autoPET), comprising 145 PET/CT scans of lymphoma patients with manually annotated 60 
tumor lesions, obtained from The Cancer Imaging Archive (TCIA). The use of the autoPET dataset in this 61 
study complies with TCIA's data usage policy and is authorized for research purposes23. 62 

 63 

(Section 2.2 Data preprocessing) 64 

For the autoPET dataset, we followed the official preprocessing steps provided by TCIA. These steps 65 
included rigid-body registration, resampling consistent voxel spacing, and intensity normalization. To 66 
ensure compatibility with our network, we further applied center cropping to obtain slices of 224×224 pixels. 67 

 68 

(Section 2.5 Implementation and experiments) 69 

We evaluated the effectiveness of our method on both the private dataset and the autoPET dataset, 70 
comparing its performance with various state-of-the-art (SOTA) methods, including UnetR32, Swin-71 
UnetR21, Att-Unet33, Unet++34, SegResNet35, and SwinCross22. Consistent data splitting was ensured for all 72 
methods by employing the same 5-fold cross-validation approach. In each fold, the training set consisted 73 
of 60% of the data, while the validation and test set each accounted for 20%. 74 
To ensure fairness, all experiments were conducted within the same computational environment, using 75 
identical hardware and software configurations. A sliding window technique was employed to reduce GPU 76 
memory consumption, extracting 32 consecutive slices per batch to form a 3D volume. Hyperparameter 77 
optimization, including adjustments to learning rates, batch sizes, and optimizer settings, was performed 78 
for each method based on validation set performance. 79 

 80 

(Section 3.1 Results of segmentation) 81 

Table 1: Results of different methods on the private dataset for lymphoma segmentation. 82 
Method DSC ↑ Sensitivity ↑ Precision ↑ ASD (mm) ↓ HD95 (mm) ↓ 

UnetR 0.7107±0.0178 ** 0.7608±0.0128 0.6686±0.0298 ** 4.10±0.20 ** 18.05±2.36 

SegResNet 0.7223±0.0146 * 0.7175±0.0466  0.7289±0.0125 ** 4.61±0.26 ** 21.01±0.69 ** 

Swin-UnetR 0.7271±0.0163 * 0.7659±0.0123 0.7041±0.0246 ** 3.92±0.22 * 15.74±0.98 

SwinCross 0.7414±0.0209 0.7405±0.0213 0.7432±0.0176 4.04±0.22 ** 16.82±1.51 

Unet++ 0.7446±0.0129 0.7322±0.0072 ** 0.7577±0.0137 4.21±0.09 ** 18.05±1.51 ** 

Att-Unet 0.7463±0.0113 0.7622±0.0075 0.7314±0.0179 * 4.75±0.04 ** 17.16±2.26 

Ours 0.7512±0.0078 0.7548±0.0063 0.7611±0.0078 3.61±0.11 15.20±0.78 
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The best metric is shown in bold. Statistical significance was assessed using paired t-tests across all metrics, where * indicates p < 83 
0.05, and ** indicates p < 0.01 when compared to our method. 84 

 85 
Table 1 presents the segmentation performance of various methods on our private dataset. Our model 86 
achieves the highest DSC (0.7512) and precision (0.7611), demonstrating significant advantages in overall 87 
performance and false positive reduction. Although our sensitivity score (0.7548) was slightly lower than 88 
that of Swin-UnetR (0.7659), it remains competitive, indicating that our approach effectively balances 89 
multiple metrics for accurate and reliable tumor segmentation. Furthermore, our method achieved the 90 
lowest ASD (3.61 mm) and HD95 (15.20 mm), confirming its effectiveness in capturing accurate tumor 91 
boundaries. 92 

 93 
Table 2: Results of different methods on the autoPET dataset for lymphoma segmentation. 94 

Method DSC ↑ Sensitivity ↑ Precision ↑ ASD (mm) ↓ HD95 (mm) ↓ 

UnetR 0.6865±0.0478 ** 0. 6924±0.0812 0.6851±0.0404 * 6.65±0.73 22.38±1.95 * 

SegResNet 0.6740±0.0412 * 0.6951±0.0627  0.6483±0.0505 * 6.12±1.02 21.26±1.29 

Swin-UnetR 0.7282±0.0605 0.7311±0.0833 0.7274±0.0450 5.40±0.92 19.08±2.63 

SwinCross 0.7267±0.0146 ** 0.7382±0.0717 * 0.7233±0.0525 6.40±1.48 23.37±2.95 

Unet++ 0.7302±0.0192 0.7424±0.0818 0.7277±0.0523 5.11±0.92 19.92±1.59 

Att-Unet 0.6941±0.0261 ** 0.7016±0.0657 0.6917±0.0401 ** 6.17±1.04 21.29±1.25 

Ours 0.7441±0.0241 0.7573±0.0874 0.7427±0.0647 5.83±1.18 21.27±1.44 

The best metric is shown in bold. Statistical significance was assessed using paired t-tests across all metrics, where * indicates p < 95 
0.05, and ** indicates p < 0.01 when compared to our method. 96 

 97 
To validate the generalizability of our method, we further evaluated its performance on the 98 
autoPET dataset. Table 2 presents the results of various methods on this publicly available dataset. 99 
Our method achieved the highest DSC (0.7441), sensitivity (0.7573), and precision (0.7427), 100 
demonstrating robust segmentation accuracy and reliability across datasets. While the ASD (5.83 101 
mm) and HD95 (21.27 mm) of our method were comparable to other approaches, they did not 102 
exhibit a significant advantage. This indicates that while our model exceled in capturing lesion 103 
characteristics and reducing false positives, further refinement may be required to enhance 104 
boundary delineation accuracy, particularly in datasets with greater variability. 105 
To evaluate the stability of our model under different conditions, we employed the box plots to 106 
display the distribution of DSC, sensitivity, precision, ASD and HD95 across five-fold cross-107 
validation on both the private and autoPET datasets. Fig. 4 (a) shows the results on the private 108 
dataset and autoPET dataset. In both cases, our method demonstrates a more concentrated 109 
distribution with less variability compared to other methods, indicating higher stability across 110 
experiments. 111 
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 112 
Fig. 4. Stability analysis using box plots for the private and autoPET datasets: This Fig. presents the ranges of DSC, sensitivity, 113 
precision, ASD and HD95 across five cross-validation folds for different models. Subfigure (a) displays the results on the private 114 
dataset, while subfigure (b) shows the corresponding results on the autoPET dataset. The box shows the 1st quartile (lower 115 
boundary), median (red line), and 3rd quartile (upper boundary). The whiskers represent the range of data, excluding outliers, which 116 
are marked as blue dots. 117 
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To provide a comprehensive comparison of different methods, we visualized the segmentation results on 118 
both the private dataset and the autoPET dataset. Fig. 5 and Fig. 6 show the difference maps generated by 119 
each method, highlighting true positive (green), false negative (red), and false positive (blue) regions. For 120 
the private dataset (shown in Fig. 5), our method demonstrated superior accuracy, particularly in smaller 121 
lesion regions and areas with complex shapes or blurred edges. Similarly, on the autoPET dataset (shown 122 
in Fig. 6), our method consistently reproduced the ground truth with higher precision, confirming its 123 
robustness and effectiveness on a public dataset. 124 

 125 
Fig. 5. Difference maps of segmentation results compared with ground truth for private datasets. The green, red, and blue regions 126 
represent true positive, false negative, and false positive pixels, respectively. Subfigures (a)–(g) show results generated by our 127 
method, Att-Unet, Unet++, SwinCross, Swin-UnetR, SegResNet, and UnetR, respectively.  128 
 129 
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 130 
Fig. 6. Difference maps of segmentation results compared with ground truth for autoPET datasets. The green, red, and blue regions 131 
represent true positive, false negative, and false positive pixels, respectively. Subfigures (a)–(g) show results generated by our 132 
method, Att-Unet, Unet++, SwinCross, Swin-UnetR, SegResNet, and UnetR, respectively.  133 
 134 
Fig. 7 presents the segmentation results visualized on the maximum intensity projection of the PET images 135 
for whole-body lymphoma cases. On both the private dataset (Fig. 7 (a)) and the autoPET dataset (Fig. 7 136 
(b)), our method achieved superior lesion delineation compared to other methods. The improved 137 
performance was particularly noticeable in regions with irregular boundaries, emphasizing the 138 
generalizability of our approach across datasets. 139 
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 140 
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Fig. 7. Segmentation results visualized on the maximum intensity projection of PET images for the private (a) and the autoPET (b) 141 
datasets. Ground truth (GT) masks and predicted segmentation masks are overlaid on the maximum intensity projection of PET 142 
images. 143 

 144 

 145 

(Section 3.2 Results of TMTV) 146 

 147 
Fig. 8. Linear regression results of the predicted TMTV as cTMTV vs. the ground truth of TMTV as gtTMTV on: (a) private dataset 148 
and (b) autoPET dataset. The red line represents the linear regression fit, with the 𝑅2 indicating the goodness of fit.  149 
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 150 
Fig. 9. Bland-Altman analysis for cTMTV vs. gtTMTV on (a) our private dataset and (b) autoPET dataset. The horizontal axis 151 
represents the mean of cTMTV and gtTMTV, while the vertical axis represents their difference. The red dashed line shows the 152 
mean difference, and the green dashed lines represent the 95% limits of agreement, calculated as the mean difference ± 1.96 153 
standard deviations of the differences. 154 
 155 
We evaluated TMTV predictions on both the private dataset and the autoPET dataset using five-fold cross-156 
validation. For the private dataset, the mean cTMTV was 802.69 ± 1192.95 mL, and the mean gtTMTV 157 
was 792.36 ± 1133.78 mL, with a mean difference of 10.33 ± 360.03 mL. Similarly, on the autoPET dataset, 158 
the mean cTMTV was 3074.83 ± 4080.80 mL, and the mean gtTMTV was 2637.70 ± 3636.79 mL, resulting 159 
in a mean difference of 437.12 ± 1961.38 mL. To further quantify prediction accuracy, we calculated the 160 
MAE and MRE. For the private dataset, the MAE was 123.42 ± 61.84 mL, with an MRE of 15.75% ± 161 
2.00%. Meanwhile, on the autoPET dataset, the MAE was 1069.17 ± 1699.52 mL, and the MRE reached 162 
173.91 % ± 741.42 %. Although the MRE on the autoPET dataset appeared high, this was driven by a few 163 
extreme cases involving small ground-truth volumes. Overall, these results indicated that our model 164 
achieved robust performance across both datasets, maintaining a relatively low absolute error compared to 165 
the total volume in most cases. 166 
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Fig. 8 illustrates the linear regression analysis for both datasets. On the private dataset, the 𝑅2 ranged from 167 
0.79 to 0.95 across folds, with lower values potentially influenced by outliers in specific folds. In contrast, 168 
the autoPET dataset showed a broader span of 𝑅2 (0.60-0.96), indicating that while some folds achieved 169 
strong linear correlations, others exhibited weaker fits—likely reflecting greater variability or differences 170 
in data collection and labeling. Nonetheless, these findings suggest that, overall, our model captures an 171 
appreciable linear relationship between cTMTV and gtTMTV in both datasets. 172 

Fig. 9 shows the Bland-Altman analysis for both datasets. Most differences fell within the acceptable range, 173 
indicating general alignment with true TMTV values, though a few outliers were noted. These discrepancies 174 
stemmed from patient-specific variations, such as tumor irregularities or low contrast in certain PET regions, 175 
which challenged the boundary detection. Additionally, noise in PET images, particularly in low-activity 176 
regions, influenced the measurement accuracy. The analysis revealed a trend of increasing discrepancies 177 
with higher TMTV values, which was attributed to the limited number of cases, reducing the 178 
generalizability for larger tumor volumes and increases variability in predictions. 179 

 180 

3. The discussion section lacks a comparison of ease of use with other existing techniques for TMTV 181 
segmentation and quantification. Addressing this would provide a more comprehensive assessment of the 182 
proposed method's practicality. 183 

Reply: Thank you for your insightful comment. In response, we have revised [Section 4.2] in the discussion 184 
to include a detailed comparison of the ease of use and practicality of our method relative to other state-of-185 
the-art techniques for TMTV segmentation and quantification. 186 

(Section 4.2 Comparison with Existing TMTV Calculation Methods) 187 

Compared to existing techniques for TMTV segmentation and quantification, our method offers clear 188 
advantages in practicality, automation, and accuracy. While Yousefirizi et al.37,38 and Blanc-Durand et al.14 189 
evaluated their approaches on single-center or multi-center datasets, the validation on publicly available 190 
datasets was not conducted, limiting the generalizability of their methods. In contrast, our approach was 191 
rigorously evaluated on both a private dataset and the autoPET dataset, demonstrating consistent 192 
performance across varied imaging protocols. This dual validation underscores the robustness of our 193 
method in diverse clinical settings. 194 

In terms of accuracy, Yousefirizi et al.38 achieved a Pearson correlation coefficient of R²=0.83 for TMTV 195 
quantification but reported lower segmentation accuracy (DSC=0.68) due to single-modality constraints. 196 
Similarly, Blanc-Durand et al.14 achieved a DSC of 0.73 but faced significant TMTV underestimation on 197 
the external validation dataset. By leveraging multi-scale and cross-modal feature fusion, our method 198 
effectively integrates PET and CT information, achieving superior segmentation accuracy with DSC values 199 
of 0.7512 on the private dataset and 0.7441 on the autoPET dataset. 200 

Furthermore, the semi-automated workflows proposed by Burggraaff et al.39 required manual threshold 201 
adjustments, leading to time-consuming processes prone to variability. In contrast, our fully automated 202 
pipeline eliminates the need for manual intervention, ensuring consistent, reproducible results while 203 
significantly reducing analysis time. These features make our method particularly suitable for routine 204 
clinical applications. 205 

In conclusion, our method combines automation, accuracy, and generalizability to provide a practical and 206 
efficient solution for TMTV segmentation and quantification, supporting both research and clinical 207 
workflows. 208 

Specific Comments: 209 

1. The paper could benefit from a Fig. in the results section showing the segmentation ground truth mask 210 
and the predicted mask by the model, overlaid on maximum intensity images, to provide a visual inspection 211 
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measure. Since lymphoma lesions can appear anywhere in the body, a whole-body Fig. comparison would 212 
be beneficial. 213 

Reply: Thank you for your valuable suggestion. We completely agree that visualizing segmentation results 214 
is essential for providing a clear inspection measure. In response, we have added a new Fig. in [Section 215 
3.1], showing the ground truth masks and the predicted masks overlaid on maximum intensity projections 216 
(MIPs) of PET images.  217 

 218 

(Section 3.1 Results of segmentation) 219 

Fig. 7 presents the segmentation results visualized on the maximum intensity projection of the PET images 220 
for whole-body lymphoma cases. On both the private dataset (Fig. 7 (a)) and the autoPET dataset (Fig. 7 221 
(b)), our method achieved superior lesion delineation compared to other methods. The improved 222 
performance was particularly noticeable in regions with irregular boundaries, emphasizing the 223 
generalizability of our approach across datasets. 224 
 225 
 226 
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 227 
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Fig. 7. Segmentation results visualized on the maximum intensity projection of PET images for the private (a) and the autoPET (b) 228 
datasets. Ground truth (GT) masks and predicted segmentation masks are overlaid on the maximum intensity projection of PET 229 
images. 230 
 231 
 232 

2. The authors mentioned: "Rigid-body registration was used to align the PET and CT volumes into the 233 
same coordinate space, a standard practice in PET/CT segmentation. The PET images were upsampled to 234 
a target size of 256×256 using bicubic interpolation, while the CT images were downsampled to the same 235 
size." Upsampling and downsampling can introduce errors. It is unclear why the authors did not 236 
downsample the CT images to match the PET size, instead of upsampling PET and downsampling CT. 237 
Clarifying this choice would strengthen the methodology. 238 

Reply: To address your concern, we have revised [Section 2.2] to clarify our choice of upsampling PET 239 
images to 256×256 and downsampling CT images to the same resolution. This approach was selected to 240 
preserve the anatomical details critical for segmentation accuracy, which would otherwise be significantly 241 
degraded if CT images were directly downsampled to the PET resolution of 128×128. 242 

Additionally, we conducted experiments to compare segmentation performance under different resolutions 243 
for PET and CT images. As shown in table RL1, our method achieved significantly better results at a 244 
resolution of 256×256 for both PET and CT images. These results confirmed the importance of preserving 245 
anatomical details through our chosen preprocessing strategy. 246 

Table RL1: Segmentation performance under different resolutions of PET and CT images 247 

CT Resolution PET Resolution DSC ↑ Sensitivity ↑ Precision ↑ ASD (mm) ↓ HD95 (mm) ↓ 

256×256 256×256 0.7512±0.0078 0.7548±0.0063 0.7611±0.0078 3.61±0.11 15.20±0.78 

128×128 128×128 0.7135±0.0225 0.7316±0.0562  0.7219±0.0211 4.71±0.42 17.79±1.12 

Our method achieved significantly better results (e.g., higher DSC and lower ASD) at a resolution of 248 
256×256 for both PET and CT images. These results confirm the importance of preserving detail through 249 
our chosen preprocessing strategy. 250 

 251 

(Section 2.2 Data preprocessing) 252 

To ensure optimal detail preservation, we upsampled the PET images to a target resolution of 256×256 253 
using bicubic interpolation, while downsampling the CT images to the same resolution. This approach was 254 
chosen to avoid the substantial loss of anatomical detail essential for segmentation accuracy which would 255 
occur if the CT images were downsampled directly to 128×128, the original PET resolution. Subsequently, 256 
all slices were cropped to 224×224 pixels, removing peripheral regions irrelevant to segmentation. 257 

 258 

3. In addition to Dice, sensitivity, and specificity, the paper would benefit from using additional 259 
performance metrics, such as the Hausdorff Distance at the 95th percentile or the Normalized Surface 260 
Distance, to better evaluate segmentation quality. 261 

Reply: Thank you for your valuable suggestion. We completely agree that incorporating additional 262 
performance metrics can provide a more comprehensive evaluation of segmentation quality. In response, 263 
we have added the Hausdorff Distance at the 95th percentile (HD95) and the Average Surface Distance 264 
(ASD) as supplementary evaluation metrics in the results section. The corresponding results and discussions 265 
have been included in [Section 2.4, Section 3.1 and Section 4.1] of the revised manuscript. 266 

(Section 2.4 Segmentation evaluation criteria) 267 

Average Surface Distance (ASD): ASD calculates the average distance between the predicted and 268 
ground truth boundaries, providing a measure of segmentation accuracy in terms of surface alignment. The 269 
normalized ASD is defined in Eq. 18: 270 
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𝐴𝑆𝐷(𝐴, 𝐵) =
1

|𝐴| + |𝐵|
(∑ 𝑚𝑖𝑛𝑏∈𝐵𝑑(𝑎, 𝑏)

𝑎∈𝐴

+ ∑ 𝑚𝑖𝑛𝑎∈𝐴𝑑(𝑏, 𝑎)

𝑏∈𝐵

) (18) 271 

where 𝑑(𝑎, 𝑏) represents the distance from point 𝑎 ∈ 𝐴 to the nearest point 𝑏 ∈ 𝐵, and |𝐴| and |𝐵| are the 272 
number of points in sets 𝐴 and 𝐵, respectively. 273 

Hausdorff Distance at the 95th percentile (HD95): HD95 measures the maximum distance between 274 
the predicted and ground truth segmentation boundaries, taking the 95th percentile of all such distances to 275 
avoid extreme outliers, as shown in Eq. 19: 276 

𝐻𝐷95(𝐴, 𝐵) = 𝑚𝑎𝑥(𝑝𝑟𝑒𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑑(𝐴, 𝐵), 95), 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑑(𝐵, 𝐴), 95)) (19) 277 
where 𝑑(𝐴, 𝐵)  represents the distance from each point in set 𝐴  to its nearest point in set 𝐵 , and 278 
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑑(𝐴, 𝐵), 95) denotes the 95th percentile of these distances. 279 
 280 
(Section 3.1 Results of segmentation) 281 
Table 1: Results of different methods on the private dataset for lymphoma segmentation. 282 

Method DSC ↑ Sensitivity ↑ Precision ↑ ASD (mm) ↓ HD95 (mm) ↓ 

UnetR 0.7107±0.0178 ** 0.7608±0.0128 0.6686±0.0298 ** 4.10±0.20 ** 18.05±2.36 

SegResNet 0.7223±0.0146 * 0.7175±0.0466  0.7289±0.0125 ** 4.61±0.26 ** 21.01±0.69 ** 

Swin-UnetR 0.7271±0.0163 * 0.7659±0.0123 0.7041±0.0246 ** 3.92±0.22 * 15.74±0.98 

SwinCross 0.7414±0.0209 0.7405±0.0213 0.7432±0.0176 4.04±0.22 ** 16.82±1.51 

Unet++ 0.7446±0.0129 0.7322±0.0072 ** 0.7577±0.0137 4.21±0.09 ** 18.05±1.51 ** 

Att-Unet 0.7463±0.0113 0.7622±0.0075 0.7314±0.0179 * 4.75±0.04 ** 17.16±2.26 

Ours 0.7512±0.0078 0.7548±0.0063 0.7611±0.0078 3.61±0.11 15.20±0.78 

The best metric is shown in bold. Statistical significance was assessed using paired t-tests across all metrics, where * indicates p < 283 
0.05, and ** indicates p < 0.01 when compared to our method. 284 
 285 
Table 1 presents the segmentation performance of various methods on our private dataset. Our model 286 
achieves the highest DSC (0.7512) and precision (0.7611), demonstrating significant advantages in overall 287 
performance and false positive reduction. Although our sensitivity score (0.7548) was slightly lower than 288 
that of Swin-UnetR (0.7659), it remains competitive, indicating that our approach effectively balances 289 
multiple metrics for accurate and reliable tumor segmentation. Furthermore, our method achieved the 290 
lowest ASD (3.61 mm) and HD95 (15.20 mm), confirming its effectiveness in capturing accurate tumor 291 
boundaries. 292 
 293 
Table 2: Results of different methods on the autoPET dataset for lymphoma segmentation. 294 

Method DSC ↑ Sensitivity ↑ Precision ↑ ASD (mm) ↓ HD95 (mm) ↓ 

UnetR 0.6865±0.0478 ** 0. 6924±0.0812 0.6851±0.0404 * 6.65±0.73 22.38±1.95 * 

SegResNet 0.6740±0.0412 * 0.6951±0.0627  0.6483±0.0505 * 6.12±1.02 21.26±1.29 

Swin-UnetR 0.7282±0.0605 0.7311±0.0833 0.7274±0.0450 5.40±0.92 19.08±2.63 

SwinCross 0.7267±0.0146 ** 0.7382±0.0717 * 0.7233±0.0525 6.40±1.48 23.37±2.95 

Unet++ 0.7302±0.0192 0.7424±0.0818 0.7277±0.0523 5.11±0.92 19.92±1.59 

Att-Unet 0.6941±0.0261 ** 0.7016±0.0657 0.6917±0.0401 ** 6.17±1.04 21.29±1.25 

Ours 0.7441±0.0241 0.7573±0.0874 0.7427±0.0647 5.83±1.18 21.27±1.44 

The best metric is shown in bold. Statistical significance was assessed using paired t-tests across all metrics, where * indicates p < 295 
0.05, and ** indicates p < 0.01 when compared to our method. 296 
 297 
To validate the generalizability of our method, we further evaluated its performance on the autoPET dataset. 298 
Table 2 presents the results of various methods on this publicly available dataset. Our method achieved the 299 
highest DSC (0.7441), sensitivity (0.7573), and precision (0.7427), demonstrating robust segmentation 300 
accuracy and reliability across datasets. While the ASD (5.83 mm) and HD95 (21.27 mm) of our method 301 
were comparable to other approaches, they did not exhibit a significant advantage. This indicates that while 302 
our model exceled in capturing lesion characteristics and reducing false positives, further refinement may 303 
be required to enhance boundary delineation accuracy, particularly in datasets with greater variability. 304 
To evaluate the stability of our model under different conditions, we employed the box plots to display the 305 
distribution of DSC, sensitivity, precision, ASD and HD95 across five-fold cross-validation on both the 306 
private and autoPET datasets. Fig. 4 (a) shows the results on the private dataset and autoPET dataset. In 307 
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both cases, our method demonstrates a more concentrated distribution with less variability compared to 308 
other methods, indicating higher stability across experiments. 309 

 310 
Fig. 4. Stability analysis using box plots for the private and autoPET datasets: This figure presents the ranges of DSC, sensitivity, 311 
precision, ASD and HD95 (shown in mm) across five cross-validation folds for different models. Subfigure (a) displays the results 312 
on the private dataset, while subfigure (b) shows the corresponding results on the autoPET dataset. The box shows the 1st quartile 313 
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(lower boundary), median (red line), and 3rd quartile (upper boundary). The whiskers represent the range of data, excluding outliers, 314 
which are marked as blue dots. 315 
 316 
(Section 4.1 Optimization of Network Design and Ablation Study) 317 
Table 4: Impact of each module on overall model performance. 318 

Model MSM CMA GFM DSC ↑ Sensitivity ↑ Precision ↑ ASD (mm) ↓ HD95 (mm) ↓ 

Baseline ☐  ☐  ☐ 0.7291±0.0112 0.7405±0.0123 0.7152±0.0184 4.35±0.25 22.98±2.64 

MSM ☑  ☐  ☐ 0.7386±0.0121 0.7549±0.0115 0.7228±0.0173 4.01±0.18 21.77±1.71 

CMA ☐ ☑  ☐ 0.7405±0.0101 0.7538±0.0099 0.7284±0.0112 3.79±0.26 18.23±1.64 

GFM ☑ ☐  ☑ 0.7369±0.0132 0.7443±0.0109 0.7415±0.0118 4.22±0.21 19.47±2.13 

MSM+CMA ☑  ☑  ☐ 0.7458±0.0137 0.7544±0.0172 0.7329±0.0201 3.77±0.19 17.43±1.65 

Full Model ☑  ☑  ☑ 0.7466±0.0118 0.7648±0.0145 0.7591±0.0178 3.62±0.17 16.35±1.55 

Table 4 highlights the contributions of each module to overall model performance, offering insight into 319 
their roles in improving segmentation accuracy and robustness. Below, we provide a detailed analysis of 320 
each configuration: 321 

• Baseline: The Baseline model excludes multi-scale features and advanced cross-modal fusion 322 
mechanisms. Instead, it employs feature map concatenation and convolution layers for feature 323 
fusion across PET and CT modalities. This design limits the model’s ability to leverage 324 
complementary information from the two modalities, resulting in suboptimal performance (DSC: 325 
0.7291, ASD: 4.35 mm). The achieved HD95 (22.98 mm) indicates difficulties in accurately 326 
delineating complex tumor boundaries using the baseline model, especially in regions with blurred 327 
edges or low contrast. 328 

• MSM: Based on the baseline model, we added the MSM to extract the multi-scale features through 329 
convolutional layers with varying kernel sizes. However, the feature fusion across modalities and 330 
scales still relies on feature map concatenation and convolution layers. This addition improves DSC 331 
and sensitivity (0.7386 and 0.7549, respectively), highlighting the importance of multi-scale feature 332 
aggregation in capturing fine-grained tumor details. Nevertheless, the modest improvement in 333 
precision (0.7228) suggests that the increased feature complexity may amplify noise in certain 334 
regions, resulting in false positives. 335 

• CMA: Based on the baseline model, the CMA model employs the cross-modal attention 336 
mechanism for feature fusion between PET and CT modalities. This mechanism aligns spatial 337 
features from CT with metabolic features from PET, improving boundary delineation and 338 
enhancing the integration of complementary information. As a result, the CMA model significantly 339 
reduced the ASD (3.79 mm) and HD95 (18.23 mm) compared to baseline and MSM models, while 340 
the improved the DSC to 0.7405. However, the limited gain in precision (0.7284) indicates that 341 
challenges remain in handling low-contrast or heterogeneous regions. 342 

• GFM: By adding the GFM individually to baseline model, we replaced the concatenation and 343 
convolution operation for multi-scale feature fusion with a gated fusion mechanism. This allows 344 
the model to dynamically adjust feature contributions from different scales, selectively 345 
emphasizing high-confidence features and suppressing noise. While GFM showed limited 346 
improvement in DSC (0.7369) and sensitivity (0.7443), the precision was increased notably to 347 
0.7415, reflecting the module’s effectiveness in mitigating false positives. However, the slightly 348 
higher ASD (4.22 mm) and HD95 (19.47 mm) suggested a focus on local optimization at the 349 
expense of global consistency. 350 

• MSM+CMA: Combining MSM and CMA introduces multi-scale features with cross-modal 351 
attention for modality fusion but retains concatenation and convolution for multi-scale feature 352 
integration. This configuration achieved the highest DSC  (0.7458) among other baseline models, 353 
reflecting the complementary roles of multi-scale and cross-modal mechanisms. The sensitivity 354 
(0.7544) was also improved significantly, but the achieved precision remained moderate (0.7329) 355 
due to the lack of dynamic scale weighting. The reduced HD95 (17.43 mm) indicated better 356 
handling of outliers and boundary refinement. 357 

• Full Model: The Full Model integrates all three components, combining multi-scale features, cross-358 
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modal attention, and gated fusion. This configuration achieved the best overall performance (DSC: 359 
0.7466, ASD: 3.62 mm, HD95: 16.35 mm). The integration of GFM with MSM and CMA allows 360 
for robust feature selection and fusion, balancing local and global segmentation challenges. The 361 
significant improvement in precision (0.7591) confirmed the effectiveness of GFM in addressing 362 
false positives, while MSF and CMA enhance sensitivity and boundary delineation. These results 363 
demonstrate the comprehensive capabilities of the Full Model in extracting lymphoma lesions with 364 
high accuracy and robustness using CT and PET images. 365 

 366 

4. Although correlation analysis and Bland-Altman are useful for evaluating TMTV quantification 367 
performance, the authors could also report absolute and relative errors to better demonstrate quantification 368 
accuracy. 369 
Reply: Thank you for your insightful suggestion. We fully agree that absolute and relative errors are 370 
essential for a more comprehensive evaluation of TMTV quantification accuracy. In response, we have 371 
added the mean absolute error (MAE) and mean relative error (MRE) as additional metrics in [Section 2.6 372 
and Section 3.2].  373 

(Section 2.6 TMTV calculation) 374 

Furthermore, we calculate the Mean Absolute Error (MAE) and Mean Relative Error (MRE) to quantify 375 
the accuracy of cTMTV. The formulas are defined as shown in Eqs. 22 and 23: 376 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑐𝑇𝑀𝑇𝑉𝑖  −  𝑔𝑡𝑇𝑀𝑇𝑉𝑖|

𝑁

𝑖=1

(22) 377 

𝑀𝑅𝐸 =
1

𝑁
∑

𝑐𝑇𝑀𝑇𝑉𝑖 − 𝑔𝑡𝑇𝑀𝑇𝑉𝑖

𝑔𝑡𝑇𝑀𝑇𝑉𝐼

𝑁

𝑖=1

× 100 (23) 378 

where 𝑁 represents the total number of samples, 𝑐𝑇𝑀𝑇𝑉𝑖  is the calculated TMTV for the 𝑖-th sample, 379 
𝑔𝑡𝑇𝑀𝑇𝑉𝑖 is the ground truth TMTV for the 𝑖-th sample. 380 

 381 

 382 

(Section 3.2 Results of TMTV) 383 

We evaluated TMTV predictions on both the private dataset and the autoPET dataset using five-fold cross-384 
validation. For the private dataset, the mean cTMTV was 802.69 ± 1192.95 mL, and the mean gtTMTV 385 
was 792.36 ± 1133.78 mL, with a mean difference of 10.33 ± 360.03 mL. Similarly, on the autoPET dataset, 386 
the mean cTMTV was 3074.83 ± 4080.80 mL, and the mean gtTMTV was 2637.70 ± 3636.79 mL, resulting 387 
in a mean difference of 437.12 ± 1961.38 mL. To further quantify prediction accuracy, we calculated the 388 
MAE and MRE. For the private dataset, the MAE was 123.42 ± 61.84 mL, with an MRE of 15.75% ± 389 
2.00%. Meanwhile, on the autoPET dataset, the MAE was 1069.17 ± 1699.52 mL, and the MRE reached 390 
173.91 % ± 741.42 %. Although the MRE on the autoPET dataset appeared high, this was driven by a few 391 
extreme cases involving small ground-truth volumes. Overall, these results indicated that our model 392 
achieved robust performance across both datasets, maintaining a relatively low absolute error compared to 393 
the total volume in most cases. 394 
 395 

5. The Bland-Altman analysis indicates some inconsistencies in TMTV predictions, with a few outliers. 396 
Discussing potential reasons for these discrepancies would be valuable. 397 

Reply: Thank you for your thoughtful comment. We have revised [Section 3.2] to discuss potential reasons 398 
for the observed outliers in the Bland-Altman analysis. Specifically, we attribute these discrepancies to 399 
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factors such as patient-specific variations (e.g., tumor irregularities or low contrast in certain PET regions) 400 
and noise in PET images, which may impact boundary detection and volume measurement accuracy. This 401 
additional discussion provides a deeper understanding of the challenges and limitations of our method. 402 

(Section 3.2 Results of TMTV) 403 

Fig. 9 shows the Bland-Altman analysis for both datasets. Most differences fell within the acceptable range, 404 
indicating general alignment with true TMTV values, though a few outliers were noted. These discrepancies 405 
stemmed from patient-specific variations, such as tumor irregularities or low contrast in certain PET regions, 406 
which challenged the boundary detection. Additionally, noise in PET images, particularly in low-activity 407 
regions, influenced the measurement accuracy. The analysis revealed a trend of increasing discrepancies 408 
with higher TMTV values, which was attributed to the limited number of cases, reducing the 409 
generalizability for larger tumor volumes and increases variability in predictions. 410 

 411 
Fig. 9. Bland-Altman analysis for cTMTV vs. gtTMTV on (a) private dataset and (b) autoPET dataset. The horizontal axis 412 
represents the mean of cTMTV and gtTMTV, while the vertical axis represents their difference. The red dashed line shows the 413 
mean difference, and the green dashed lines represent the 95% limits of agreement, calculated as the mean difference ± 1.96 414 
standard deviations of the differences. 415 

 416 
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 417 

6. It would be helpful to clearly mention the statistical tests used in Table 1 and how the authors ensured 418 
consistent data splitting across all the state-of-the-art (SOTA) techniques compared. The significant digits 419 
could also be reduced to two for metric evaluations, as four digits may be excessive in the context of 420 
segmentation metrics. 421 

Thank you for your valuable suggestion. In response, we have clarified in [Section 2.5] that consistent data 422 
splitting across all SOTA methods was ensured by employing identical five-fold cross-validation sets. 423 
Additionally, we have explicitly stated the statistical test used (paired t-tests) in Table 1 and Table 2 under 424 
[Section 3.1]. Regarding the significant digits, while we appreciate your suggestion to reduce them to two 425 
decimal places, we chose to retain four decimal places for the following reasons: 426 

1) Precision in Statistical Comparison: Small differences in segmentation metrics (e.g., DSC, Sensitivity, 427 
Precision) can be statistically significant, especially when values are close. Retaining four decimal 428 
places ensures these differences are not lost or misinterpreted. 429 

2) Consistency with Related Literature: Reporting four decimal places aligns with practices in recent 430 
studies on medical image segmentation, facilitating direct comparison with existing methods. 431 

3) High Sensitivity Metrics: Segmentation metrics like DSC are highly sensitive, and truncating to two 432 
decimal places could obscure the nuanced differences between methods. 433 

We believe this approach maintains clarity while ensuring scientific rigor. Thank you again for your 434 
valuable feedback, which has significantly improved the clarity and comprehensiveness of our results. 435 

(Section 2.5 Implementation and experiments) 436 
We evaluated the effectiveness of our method on both the private dataset and the autoPET dataset, 437 
comparing its performance with various state-of-the-art (SOTA) methods, including UnetR32, Swin-438 
UnetR21, Att-Unet33, Unet++34, SegResNet35, and SwinCross22. Consistent data splitting was ensured for all 439 
methods by employing the same 5-fold cross-validation approach. In each fold, the training set consisted 440 
of 60% of the data, while the validation and test set each accounted for 20%. 441 
To ensure fairness, all experiments were conducted within the same computational environment, using 442 
identical hardware and software configurations. A sliding window technique was employed to reduce GPU 443 
memory consumption, extracting 32 consecutive slices per batch to form a 3D volume. Hyperparameter 444 
optimization, including adjustments to learning rates, batch sizes, and optimizer settings, was performed 445 
for each method based on validation set performance. 446 

 447 

(Section 3.1 Results of segmentation) 448 
Table 1: Results of different methods on the private dataset for lymphoma segmentation. 449 

Method DSC ↑ Sensitivity ↑ Precision ↑ ASD (mm) ↓ HD95 (mm) ↓ 

UnetR 0.7107±0.0178 ** 0.7608±0.0128 0.6686±0.0298 ** 4.10±0.20 ** 18.05±2.36 

SegResNet 0.7223±0.0146 * 0.7175±0.0466  0.7289±0.0125 ** 4.61±0.26 ** 21.01±0.69 ** 

Swin-UnetR 0.7271±0.0163 * 0.7659±0.0123 0.7041±0.0246 ** 3.92±0.22 * 15.74±0.98 

SwinCross 0.7414±0.0209 0.7405±0.0213 0.7432±0.0176 4.04±0.22 ** 16.82±1.51 

Unet++ 0.7446±0.0129 0.7322±0.0072 ** 0.7577±0.0137 4.21±0.09 ** 18.05±1.51 ** 

Att-Unet 0.7463±0.0113 0.7622±0.0075 0.7314±0.0179 * 4.75±0.04 ** 17.16±2.26 

Ours 0.7512±0.0078 0.7548±0.0063 0.7611±0.0078 3.61±0.11 15.20±0.78 

The best metric is shown in bold. Statistical significance was assessed using paired t-tests across all metrics, where * indicates p < 450 
0.05, and ** indicates p < 0.01 when compared to our method. 451 
 452 

 453 
Table 2: Results of different methods on the autoPET dataset for lymphoma segmentation. 454 

Method DSC ↑ Sensitivity ↑ Precision ↑ ASD (mm) ↓ HD95 (mm) ↓ 

UnetR 0.6865±0.0478 ** 0. 6924±0.0812 0.6851±0.0404 * 6.65±0.73 22.38±1.95 * 

SegResNet 0.6740±0.0412 * 0.6951±0.0627  0.6483±0.0505 * 6.12±1.02 21.26±1.29 

Swin-UnetR 0.7282±0.0605 0.7311±0.0833 0.7274±0.0450 5.40±0.92 19.08±2.63 

SwinCross 0.7267±0.0146 ** 0.7382±0.0717 * 0.7233±0.0525 6.40±1.48 23.37±2.95 
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Unet++ 0.7302±0.0192 0.7424±0.0818 0.7277±0.0523 5.11±0.92 19.92±1.59 

Att-Unet 0.6941±0.0261 ** 0.7016±0.0657 0.6917±0.0401 ** 6.17±1.04 21.29±1.25 

Ours 0.7441±0.0241 0.7573±0.0874 0.7427±0.0647 5.83±1.18 21.27±1.44 

The best metric is shown in bold. Statistical significance was assessed using paired t-tests across all metrics, where * indicates p < 455 
0.05, and ** indicates p < 0.01 when compared to our method. 456 

 457 

7. The model (s) and codes have to be publicly shared for evaluation. 458 

Reply: Thank you for your valuable suggestion. We agree that sharing the model and code is crucial for 459 
ensuring reproducibility and facilitating further research. In response, we have made our implementation 460 
publicly available on GitHub at [https://github.com/chenzhao2023/lymphoma_seg]. This information has 461 
been added to the revised manuscript in the abstract section. 462 

(Abstract) 463 

The code for the proposed method is available at https://github.com/chenzhao2023/lymphoma_seg. 464 

Minor comments: 465 

1. Figure 5 does not seem effective for showing visual performance comparison through inspection. A more 466 
informative visual representation should be considered. 467 

Reply: Thank you for your valuable suggestion. To address this issue, we have replaced the original Fig. 5 468 
with two new figures (Fig. 5 and Fig. 6), which provide a more detailed and informative visual 469 
representation. 470 

 471 
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.  472 
Fig. 5. Difference maps of segmentation results compared with ground truth for private datasets. The green, red, and blue regions 473 
represent true positive, false negative, and false positive pixels, respectively. Subfigures (a)–(g) show results generated by our 474 
method, Att-Unet, Unet++, SwinCross, Swin-UnetR, SegResNet, and UnetR, respectively.  475 
 476 
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 477 
Fig. 6. Difference maps of segmentation results compared with ground truth for autoPET datasets. The green, red, and blue regions 478 
represent true positive, false negative, and false positive pixels, respectively. Subfigures (a)–(g) show results generated by our 479 
method, Att-Unet, Unet++, SwinCross, Swin-UnetR, SegResNet, and UnetR, respectively. 480 

 481 

Reviewer #2:  482 

General Comments (Required) 483 

1. This paper presents a study on lymphoma segmentation using an enhanced network designed with PET 484 
and CT images. The primary originality of this research lies in the MSIF method, which effectively utilizes 485 
the features from both imaging modalities within the network. 486 
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Reply: Thank you for your positive feedback on the originality of our research. We appreciate your 487 
recognition of the MSIF method as a key innovation in leveraging features from both PET and CT 488 
modalities. Your encouraging comments affirm the significance of our work and inspire us to continue 489 
improving its impact. 490 

2. While the accompanying figures are high-quality and excellent for illustrating the concept, the written 491 
explanation lacks sufficient detail for readers to fully understand the method. Furthermore, in terms of 492 
discussion on the results, the study only includes an ablation study, which simply verifies the functionality 493 
of the network. 494 

Reply: Thank you for your constructive feedback. We have carefully revised the manuscript to include 495 
more detailed explanations in [Section 2.3.2], ensuring that readers can fully understand our method. 496 
Additionally, we have expanded the discussion section to provide a broader analysis of the results beyond 497 
the ablation study. Specifically, in [Section 4.2], we compared our approach with other state-of-the-art 498 
methods, highlighting its advantages in segmentation accuracy and its practical strengths in real-world 499 
clinical applications. 500 

(Section 2.3.2 Multi-Scale Information Fusion) 501 

As shown in Fig. 3 (i), we compute 𝑄 (𝑞𝑢𝑒𝑟𝑦), 𝐾 (𝑘𝑒𝑦), and 𝑉(𝑣𝑎𝑙𝑢𝑒)for each patch as show in 502 
Eqs. 2 to 4: 503 

𝑄𝑚𝑜𝑑𝑎𝑙𝑛

𝑙 = 𝐹𝑚𝑜𝑑𝑎𝑙𝑛

𝑙 𝑊𝑄 (2) 504 

𝐾𝑚𝑜𝑑𝑎𝑙𝑛

𝑙 = 𝐹𝑚𝑜𝑑𝑎𝑙𝑛

𝑙 𝑊𝐾 (3) 505 

𝑉𝑚𝑜𝑑𝑎𝑙𝑛

𝑙 = 𝐹𝑚𝑜𝑑𝑎𝑙𝑛

𝑙 𝑊𝑉 (4) 506 

where 𝑙 is the layer of Swin Transformer. 𝑊𝑄 , 𝑊𝐾, 𝑊𝑉  ∈ 𝑅𝐷𝑓×𝐷𝑞 are the weight matrices, where 507 

𝐷𝑓 is the feature dimension, and 𝐷𝑞 is the dimension of the queries and keys. Here, 𝑄 captures the 508 

specific features within a modality's patch that should attend to features in the other modality. 𝐾 509 
represents the features from the complementary modality that the query seeks alignment with, 510 
while 𝑉 provides the actual information from the complementary modality that will contribute to 511 
the fused representation.   512 

As shown in Fig. 3 (ii), cross-modal attention is then computed as shown in Eqs. 5 and 6:  513 

𝐴𝑡𝑡1
𝑙 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑄1
𝑙 (𝐾2

𝑙)
𝑇

√𝐷𝑘

) 𝑉1
𝑙 (5) 514 

𝐴𝑡𝑡2
𝑙 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑄2
𝑙 (𝐾1

𝑙)
𝑇

√𝐷𝑘

) 𝑉2
𝑙 (6) 515 

where 𝐷𝑘 is the dimension of the keys and queries, 𝑇 denotes the matrix transpose. Normalizing 516 

the dot product of queries and keys by √𝐷𝑘 ensures stable gradient flow by preventing excessively 517 

large values during the Softmax operation. This mechanism allows the PET query ( 𝑄1
𝑙 ) to 518 

selectively attend to relevant CT features (𝐾2
𝑙 ) and vice versa(𝑄2

𝑙  𝑎𝑛𝑑 𝐾1
𝑙). This bidirectional 519 

interaction enables spatial features from CT to provide anatomical context for PET’s metabolic 520 
activity, while PET’s metabolic features enhance CT’s structural understanding. To maintain 521 
consistency and stability in feature alignment, we empirically set 𝐷𝑞 = 𝐷𝑘. 522 
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At each layer 𝑙, the image is partitioned into windows of size 𝑀 × 𝑀 × 𝑀. In the subsequent layer 523 

𝑙 + 1 , these windows are shifted by [
𝑀

2
,

𝑀

2
,

𝑀

2
] voxels, allowing interaction between adjacent 524 

windows and reducing redundant calculations. This shifting strategy eliminates the repeated 525 
processing of overlapping regions, which is common in fixed-window attention mechanisms, thus 526 
optimizing computational efficiency. Moreover, by enabling neighboring regions to interact across 527 
layers, the shifted window multi-head self-attention (𝑆𝑊_𝑀𝑆𝐴) facilitates seamless information 528 
flow, addressing the issue of isolated window processing. 529 

 530 

(Section 4.1 Optimization of Network Design and Ablation Study) 531 

Table 3: Optimal Network Configuration. 532 
Configuration Attention Heads Swin Transformer Layers Patch Embedding Dimension  Windows Size 

Best Setting [3,6,12,24) [2, 2, 2, 2] 24 [3,3,3] 

 533 
To identify the optimal network configuration, we conducted ablation experiments by varying key 534 
parameters, including the number of attention heads, the number of layers in each stage of the Swin 535 
Transformer, and the patch embedding dimension. Based on these experiments, we determined the optimal 536 
configuration that balances segmentation performance and computational efficiency. Table 3 summarizes 537 
the best settings for each parameter. 538 

To evaluate the contributions of the MSM, CMA, and GFM, we conducted an ablation study with the 539 
following experimental setups in Table 4. The Baseline model was designed with single-scale fusion and 540 
dual encoders, without attention mechanisms or gated networks, serving as the benchmark for comparison. 541 

 542 
Table 4: Impact of each module on overall model performance. 543 

Model MSM CMA GFM DSC ↑ Sensitivity ↑ Precision ↑ ASD (mm) ↓ HD95 (mm) ↓ 

Baseline ☐  ☐  ☐ 0.7291±0.0112 0.7405±0.0123 0.7152±0.0184 4.35±0.25 22.98±2.64 

MSM ☑  ☐  ☐ 0.7386±0.0121 0.7549±0.0115 0.7228±0.0173 4.01±0.18 21.77±1.71 

CMA ☐ ☑  ☐ 0.7405±0.0101 0.7538±0.0099 0.7284±0.0112 3.79±0.26 18.23±1.64 

GFM ☑ ☐  ☑ 0.7369±0.0132 0.7443±0.0109 0.7415±0.0118 4.22±0.21 19.47±2.13 

MSM+CMA ☑  ☑  ☐ 0.7458±0.0137 0.7544±0.0172 0.7329±0.0201 3.77±0.19 17.43±1.65 

Full Model ☑  ☑  ☑ 0.7466±0.0118 0.7648±0.0145 0.7591±0.0178 3.62±0.17 16.35±1.55 

 544 

Table 4 highlights the contributions of each module to overall model performance, offering insight into 545 
their roles in improving segmentation accuracy and robustness. Below, we provide a detailed analysis of 546 
each configuration: 547 

• Baseline: The Baseline model excludes multi-scale features and advanced cross-modal fusion 548 
mechanisms. Instead, it employs feature map concatenation and convolution layers for feature 549 
fusion across PET and CT modalities. This design limits the model’s ability to leverage 550 
complementary information from the two modalities, resulting in suboptimal performance (DSC: 551 
0.7291, ASD: 4.35 mm). The achieved HD95 (22.98 mm) indicates difficulties in accurately 552 
delineating complex tumor boundaries using the baseline model, especially in regions with blurred 553 
edges or low contrast. 554 

• MSM: Based on the baseline model, we added the MSM to extract the multi-scale features through 555 
convolutional layers with varying kernel sizes. However, the feature fusion across modalities and 556 
scales still relies on feature map concatenation and convolution layers. This addition improves DSC 557 
and sensitivity (0.7386 and 0.7549, respectively), highlighting the importance of multi-scale feature 558 
aggregation in capturing fine-grained tumor details. Nevertheless, the modest improvement in 559 
precision (0.7228) suggests that the increased feature complexity may amplify noise in certain 560 
regions, resulting in false positives. 561 
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• CMA: Based on the baseline model, the CMA model employs the cross-modal attention 562 
mechanism for feature fusion between PET and CT modalities. This mechanism aligns spatial 563 
features from CT with metabolic features from PET, improving boundary delineation and 564 
enhancing the integration of complementary information. As a result, the CMA model significantly 565 
reduced the ASD (3.79 mm) and HD95 (18.23 mm) compared to baseline and MSM models, while 566 
the improved the DSC to 0.7405. However, the limited gain in precision (0.7284) indicates that 567 
challenges remain in handling low-contrast or heterogeneous regions. 568 

• GFM: By adding the GFM individually to baseline model, we replaced the concatenation and 569 
convolution operation for multi-scale feature fusion with a gated fusion mechanism. This allows 570 
the model to dynamically adjust feature contributions from different scales, selectively 571 
emphasizing high-confidence features and suppressing noise. While GFM showed limited 572 
improvement in DSC (0.7369) and sensitivity (0.7443), the precision was increased notably to 573 
0.7415, reflecting the module’s effectiveness in mitigating false positives. However, the slightly 574 
higher ASD (4.22 mm) and HD95 (19.47 mm) suggested a focus on local optimization at the 575 
expense of global consistency. 576 

• MSM+CMA: Combining MSM and CMA introduces multi-scale features with cross-modal 577 
attention for modality fusion but retains concatenation and convolution for multi-scale feature 578 
integration. This configuration achieved the highest DSC  (0.7458) among other baseline models, 579 
reflecting the complementary roles of multi-scale and cross-modal mechanisms. The sensitivity 580 
(0.7544) was also improved significantly, but the achieved precision remained moderate (0.7329) 581 
due to the lack of dynamic scale weighting. The reduced HD95 (17.43 mm) indicated better 582 
handling of outliers and boundary refinement. 583 

• Full Model: The Full Model integrates all three components, combining multi-scale features, cross-584 
modal attention, and gated fusion. This configuration achieved the best overall performance (DSC: 585 
0.7466, ASD: 3.62 mm, HD95: 16.35 mm). The integration of GFM with MSM and CMA allows 586 
for robust feature selection and fusion, balancing local and global segmentation challenges. The 587 
significant improvement in precision (0.7591) confirmed the effectiveness of GFM in addressing 588 
false positives, while MSF and CMA enhance sensitivity and boundary delineation. These results 589 
demonstrate the comprehensive capabilities of the Full Model in extracting lymphoma lesions with 590 
high accuracy and robustness using CT and PET images. 591 

 592 

(Section 4.2 Comparison with Existing TMTV Calculation Methods) 593 

Compared to existing techniques for TMTV segmentation and quantification, our method offers clear 594 
advantages in practicality, automation, and accuracy. While Yousefirizi et al.37,38 and Blanc-Durand et al.14 595 
evaluated their approaches on single-center or multi-center datasets, the validation on publicly available 596 
datasets was not conducted, limiting the generalizability of their methods. In contrast, our approach was 597 
rigorously evaluated on both a private dataset and the autoPET dataset, demonstrating consistent 598 
performance across varied imaging protocols. This dual validation underscores the robustness of our 599 
method in diverse clinical settings. 600 

In terms of accuracy, Yousefirizi et al.38 achieved a Pearson correlation coefficient of R²=0.83 for TMTV 601 
quantification but reported lower segmentation accuracy (DSC=0.68) due to single-modality constraints. 602 
Similarly, Blanc-Durand et al.14 achieved a DSC of 0.73 but faced significant TMTV underestimation on 603 
the external validation dataset. By leveraging multi-scale and cross-modal feature fusion, our method 604 
effectively integrates PET and CT information, achieving superior segmentation accuracy with DSC values 605 
of 0.7512 on the private dataset and 0.7441 on the autoPET dataset. 606 

Furthermore, the semi-automated workflows proposed by Burggraaff et al.39 required manual threshold 607 
adjustments, leading to time-consuming processes prone to variability. In contrast, our fully automated 608 
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pipeline eliminates the need for manual intervention, ensuring consistent, reproducible results while 609 
significantly reducing analysis time. These features make our method particularly suitable for routine 610 
clinical applications. 611 

In conclusion, our method combines automation, accuracy, and generalizability to provide a practical and 612 
efficient solution for TMTV segmentation and quantification, supporting both research and clinical 613 
workflows. 614 

3. However, the significance of the research and its results are sufficiently meaningful, and thus the 615 
following revision comments are provided. 616 

Reply: Thank you for recognizing the significance of our research and its results. We greatly appreciate 617 
your constructive comments, which have provided valuable insights for improving the manuscript.  618 

Specific Comments: 619 

1. The study appears to be a retrospective clinical data analysis, but there is a lack of explicit mention 620 
regarding research ethics. 621 

Reply: Thank you for your valuable comment. To address this, we have revised [Section 2.1] to explicitly 622 
state that ethical approval was obtained from the Institutional Review Board of Peking University People's 623 
Hospital for the private dataset. Additionally, we ensured that all data was anonymized to protect patient 624 
privacy and adhered to ethical guidelines for retrospective clinical data analysis.  625 

(Section 2.1 Dataset) 626 

This study utilized two datasets: (1) our private dataset comprising 165 PET/CT scan datasets from patients 627 
clinically diagnosed with DLBCL, provided by Peking University People's Hospital, and (2) the FDG-628 
PET/CT dataset (autoPET), comprising 145 PET/CT scans of lymphoma patients with manually annotated 629 
tumor lesions, obtained from The Cancer Imaging Archive (TCIA). The use of the autoPET dataset in this 630 
study complies with TCIA's data usage policy and is authorized for research purposes23. 631 
 632 

For the private dataset, ethical approval was obtained from the hospital's Institutional Review Board, and 633 
all data was de-identified to protect patient privacy, adhering to ethical guidelines for retrospective clinical 634 
data analysis. 635 

 636 

2. If multiple nuclear medicine experts were involved in manual segmentation, there needs to be a 637 
discussion on how differences in their segmentation abilities might have impacted the validation of the 638 
algorithm's performance. 639 

Reply: Thank you for your insightful comment. To address this, we have revised [Section 2.1] to clarify 640 
how the ground truth segmentations were validated.  641 

(Section 2.1 Dataset) 642 

Ground truth volumes of interest (VOI) were manually extracted on PET images by two experienced 643 
nuclear medicine experts. The extracted VOIs were cross-reviewed and confirmed by both experts to ensure 644 
consistency and accuracy. 645 

 646 

3. While the introduction briefly mentions the Swin Transformer, it is necessary to provide further 647 
explanation on why it was used for encoding in this study's network and why it is superior compared to 648 
other networks. 649 

Reply: Thank you for your insightful comment. In response, we have revised the introduction to provide a 650 
detailed explanation of why the Swin Transformer was chosen as the backbone encoder for this study.  651 



 

27 
 

(Section 1. Introduction) 652 

However, existing convolutional neural networks (CNNs) face challenges in fully leveraging multimodal 653 
PET/CT data, particularly due to their limited receptive field, which restricts their ability to capture global 654 
and local contextual information16-18.  655 

Recent approaches, such as the Vision Transformer (ViT)19, have introduced global self-attention 656 
mechanisms to capture long-range dependencies. However, the high computational cost and absence of 657 
hierarchical feature representation in ViT limit its practicality for high-resolution medical image processing. 658 
The Swin Transformer addresses these limitations by combining a hierarchical structure with a shifted 659 
window attention mechanism20-22. This design enables the Swin Transformer to effectively capture global 660 
and local context while reducing computational complexity, making it particularly suited for multimodal 661 
PET/CT segmentation. 662 

 663 

4. The originality of the paper should be discussed in more detail in the methods or discussion sections. 664 

Reply: Thank you for your valuable suggestion. We have revised the manuscript to include a more detailed 665 
discussion of the originality of our work. In [Section 2.3], we elaborated on the innovations introduced by 666 
our MSIF module, highlighting its dynamic modality contribution adjustment, enhanced multi-scale feature 667 
fusion, and computational efficiency, which address the limitations of existing methods. In [Section 4.2], 668 
we emphasized the unique contributions of our approach compared to state-of-the-art techniques, 669 
particularly its ability to leverage multi-modal feature fusion effectively and its clinical applicability in 670 
lymphoma diagnosis. 671 

(Section 2.3 Network architecture) 672 

The MSIF module draws inspiration from existing multi-modal and multi-scale feature fusion methods in 673 
medical imaging, such as MDRANet27, CA-Net28, MFCPNet29, and SwinCross22. These methods have made 674 
significant progress in leveraging multi-scale information and cross-modal interactions; however, they 675 
exhibit certain limitations. For instance, MDRANet and CA-Net focus on single-modality feature 676 
enhancement and lack mechanisms for cross-modal interaction, while MFCPNet employs fixed fusion 677 
strategies that hinder its adaptability in multi-modal tasks. SwinCross captures complementary PET and 678 
CT information through shifted window-based attention but does not dynamically adjust modality 679 
contributions and does not fully exploit multi-scale feature integration. Building upon these approaches, 680 
the MSIF module addresses these limitations through dynamic modality contribution adjustment, enhanced 681 
multi-scale feature fusion, and computational efficiency. These innovations enable robust and flexible 682 
performance across a wide range of medical imaging tasks, including scenarios with limited data 683 
availability or complex modality interactions. 684 

 685 

(Section 4.2 Comparison with Existing TMTV Calculation Methods) 686 

Compared to existing techniques for TMTV segmentation and quantification, our method offers clear 687 
advantages in practicality, automation, and accuracy. While Yousefirizi et al.37,38 and Blanc-Durand et al.14 688 
tested their approaches on single-center or multi-center datasets, they lacked validation on publicly 689 
available datasets, limiting the generalizability of their methods. In contrast, our approach was rigorously 690 
evaluated on both a private dataset and the autoPET dataset, demonstrating consistent performance across 691 
varied imaging protocols. This dual validation underscores the robustness of our method in diverse clinical 692 
settings. 693 
In terms of accuracy, Yousefirizi et al.38 achieved a Pearson correlation coefficient of R²=0.83 for TMTV 694 
quantification but reported lower segmentation accuracy (DSC=0.68) due to single-modality constraints. 695 
Similarly, Blanc-Durand et al.14 achieved a DSC of 0.73 but faced significant TMTV underestimation on 696 
the external validation dataset. By leveraging multi-scale and cross-modal feature fusion, our method 697 
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effectively integrates PET and CT information, achieving superior segmentation accuracy with DSC values 698 
of 0.7512 on the private dataset and 0.7441 on the autoPET dataset. 699 
Furthermore, the semi-automated workflows proposed by Burggraaff et al.39 required manual threshold 700 
adjustments, leading to time-consuming processes prone to variability. In contrast, our fully automated 701 
pipeline eliminates the need for manual intervention, ensuring consistent, reproducible results while 702 
significantly reducing analysis time. These features make our method particularly suitable for routine 703 
clinical applications. 704 

In conclusion, our method combines automation, accuracy, and generalizability to provide a practical and 705 
efficient solution for TMTV segmentation and quantification, supporting both research and clinical 706 
workflows. 707 

5. There seem to be several multi-scale information fusion methods similar to MSIF; are there any 708 
references to such methods? 709 

Reply: Thank you for your insightful comment. In response, we have revised [Section 2.3] to include a 710 
discussion of the relationship between the MSIF module and existing multi-modal and multi-scale feature 711 
fusion methods, such as MDRANet17, CA-Net18, MFCPNet19, and SwinCross7. These methods represent 712 
significant advancements in medical imaging but exhibit certain limitations, such as the lack of cross-modal 713 
interaction mechanisms or dynamic contribution adjustment. Building upon these approaches, we 714 
highlighted the unique contributions of the MSIF module, including dynamic modality contribution 715 
adjustment, enhanced multi-scale feature fusion, and computational efficiency. These additions clarify the 716 
relationship between MSIF and existing methods while emphasizing its innovations. 717 

(Section 2.3 Network architecture) 718 

The MSIF module draws inspiration from existing multi-modal and multi-scale feature fusion methods in 719 
medical imaging, such as MDRANet27, CA-Net28, MFCPNet29, and SwinCross22. These methods have made 720 
significant progress in leveraging multi-scale information and cross-modal interactions; however, they 721 
exhibit certain limitations. For instance, MDRANet and CA-Net focus on single-modality feature 722 
enhancement and lack mechanisms for cross-modal interaction, while MFCPNet employs fixed fusion 723 
strategies that hinder its adaptability in multi-modal tasks. SwinCross captures complementary PET and 724 
CT information through shifted window-based attention but does not dynamically adjust modality 725 
contributions and does not fully exploit multi-scale feature integration. Building upon these approaches, 726 
the MSIF module addresses these limitations through dynamic modality contribution adjustment, enhanced 727 
multi-scale feature fusion, and computational efficiency. These innovations enable robust and flexible 728 
performance across a wide range of medical imaging tasks, including scenarios with limited data 729 
availability or complex modality interactions. 730 

 731 

6. Are the terms query, key, and value adopted from databases, and how exactly are the three defined and 732 
distinguished in PET and CT data? 733 

Reply: Thank you for your thoughtful comment. To address your concern, we have expanded [Section 2.3.2] 734 
to clarify the roles and definitions of query (𝑄), key (𝐾), and value (𝑉) in the context of PET and CT data 735 
fusion. These terms, originally adopted from attention mechanisms in natural language processing (NLP), 736 
share conceptual similarities with database terms but are specifically tailored for feature alignment in multi-737 
modal data fusion. 738 

In our framework, 𝑄 represents the features within one modality (e.g., PET) that attend to complementary 739 
features in the other modality (e.g., CT), defined as 𝐾, while 𝑉 provides the actual information from the 740 
complementary modality that contributes to the fused representation. 741 

(Section 2.3.2 Multi-Scale Information Fusion) 742 
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As shown in Fig. 3 (i), we compute 𝑄 (𝑞𝑢𝑒𝑟𝑦), 𝐾 (𝑘𝑒𝑦), and 𝑉(𝑣𝑎𝑙𝑢𝑒)for each patch as show in Eqs. 2 to 743 
4: 744 

𝑄𝑚𝑜𝑑𝑎𝑙𝑛

𝑙 = 𝐹𝑚𝑜𝑑𝑎𝑙𝑛

𝑙 𝑊𝑄 (2) 745 

𝐾𝑚𝑜𝑑𝑎𝑙𝑛

𝑙 = 𝐹𝑚𝑜𝑑𝑎𝑙𝑛

𝑙 𝑊𝐾 (3) 746 

𝑉𝑚𝑜𝑑𝑎𝑙𝑛

𝑙 = 𝐹𝑚𝑜𝑑𝑎𝑙𝑛

𝑙 𝑊𝑉 (4) 747 

where 𝑙 is the layer of Swin Transformer. 𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉  ∈ 𝑅𝐷𝑓×𝐷𝑞 are the weight matrices, where 𝐷𝑓 is the 748 
feature dimension, and 𝐷𝑞 is the dimension of the queries and keys. Here,  𝑄 captures the specific features 749 
within a modality's patch that should attend to features in the other modality. 𝐾 represents the features from 750 
the complementary modality that the query seeks alignment with, while 𝑉 provides the actual information 751 
from the complementary modality that will contribute to the fused representation. 752 
   753 

7. An explanation of how the equation (Eq. 5) was derived and why this equation facilitates better fusion 754 
of PET and CT. 755 

Reply: Thank you for your insightful comment. In response, we have revised [Section 2.3.2] to provide a 756 
more detailed explanation of how Eq. (5) was derived and its role in facilitating the fusion of PET and CT 757 
data. Specifically, Eq. (5) is derived from the scaled dot-product attention mechanism, which normalizes 758 
the dot product of queries and keys by the square root of their dimensionality √𝐷𝑘. This normalization 759 
reduces excessively large values in the Softmax operation, ensuring stable gradient flow during training. 760 
By enabling selective attention between PET and CT features, this mechanism effectively captures spatial 761 
and metabolic complementarities, leading to more precise feature fusion. 762 

(Section 2.3.2 Multi-Scale Information Fusion) 763 

As shown in Fig. 3 (ii), cross-modal attention is then computed as shown in Eqs. 5 and 6:  764 

𝐴𝑡𝑡1
𝑙 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑄1
𝑙 (𝐾2

𝑙)
𝑇

√𝐷𝑘

) 𝑉1
𝑙  (5) 765 

𝐴𝑡𝑡2
𝑙 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑄2
𝑙 (𝐾1

𝑙)
𝑇

√𝐷𝑘

) 𝑉2
𝑙 (6) 766 

where 𝐷𝑘 is the dimension of the keys and queries, 𝑇 denotes the matrix transpose. Normalizing the dot 767 
product of queries and keys by √𝐷𝑘 ensures stable gradient flow by preventing excessively large values 768 
during the Softmax operation. This mechanism allows the PET query (𝑄1

𝑙 ) to selectively attend to relevant 769 
CT features (𝐾2

𝑙) and vice versa(𝑄2
𝑙  𝑎𝑛𝑑 𝐾1

𝑙). This bidirectional interaction enables spatial features from 770 
CT to provide anatomical context for PET’s metabolic activity, while PET’s metabolic features enhance 771 
CT’s structural understanding. To maintain consistency and stability in feature alignment, we empirically 772 
set 𝐷𝑞 = 𝐷𝑘. 773 

 774 

8. The rationale behind setting 𝐷𝑞=𝐷𝑘, and how changing this value affects network performance. 775 

Reply: Thank you for your insightful comment regarding the rationale behind setting 𝐷𝑞=  𝐷𝑘 . This choice 776 
is a standard practice in attention-based models, including Swin Transformer, due to the mathematical and 777 
functional consistency it ensures in the attention mechanism. To clarify, this setting is derived from the core 778 
formula of the scaled dot-product attention: 779 



 

30 
 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒𝑠 =
𝑄 ⋅ 𝐾𝑇

√𝐷𝑘

 780 

here, 𝑄 (𝑄𝑢𝑒𝑟𝑦) and 𝐾 (𝐾𝑒𝑦) represent feature embeddings of dimension 𝐷𝑞 and 𝐷𝑘, respectively. For the 781 
dot-product operation 𝑄 ⋅ 𝐾𝑇 to be valid, it is necessary that 𝐷𝑞=  𝐷𝑘. This ensures alignment in feature 782 

space, allowing meaningful computation of similarity scores. Additionally, the normalization term √𝐷𝑘 is 783 
specifically designed to stabilize the gradient flow during training, and altering the relationship between  784 
𝐷𝑞 and 𝐷𝑘 could disrupt this stability. 785 

Maintaining 𝐷𝑞=  𝐷𝑘 also ensures semantic consistency in comparing query and key vectors, as both are 786 
projected into the same latent space, which is critical for effective attention computation. This design 787 
principle has been extensively validated in foundational works, including Vaswani et 788 
al.20,  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑖𝑠 𝐴𝑙𝑙 𝑌𝑜𝑢 𝑁𝑒𝑒𝑑 (𝑁𝑒𝑢𝑟𝐼𝑃𝑆 2017) , and has been widely adopted in subsequent 789 
Transformer-based models3,14-16. Given the theoretical basis and its established effectiveness, we followed 790 
this standard practice in our implementation. We hope this explanation sufficiently clarifies our rationale, 791 
and we appreciate the opportunity to provide additional context. 792 

 793 

9. By shifting the layers 𝑙 and 𝑙+1, why does this reduce redundant calculations, and how does it enhance 794 
feature extraction capabilities for multi-modal imaging? 795 

Reply: Thank you for your thoughtful comment. The shifted window mechanism in the Swin Transformer 796 
reduces redundant calculations and enhances feature extraction capabilities, particularly in multi-modal 797 
imaging tasks, through a combination of local attention and dynamic window shifting. By restricting self-798 
attention computation to fixed-size windows (e.g. 7×7), the computational complexity decreases 799 
from 𝑂(𝑛2) to 𝑂(𝑛), where 𝑛 is the number of input pixels. This ensures that the complexity scales linearly 800 
with the input size, making it computationally efficient. The shift in windows across layers facilitates 801 
information exchange between adjacent windows, overcoming the limitations of isolated computations and 802 
enabling better integration of global and local features16. For multi-modal imaging, such as PET and CT, 803 
this mechanism enhances feature fusion by allowing complementary information, such as PET’s metabolic 804 
activity and CT’s anatomical structure, to be effectively integrated across window boundaries. The 805 
progressive patch merging in the hierarchical structure further enlarges the receptive field, capturing both 806 
fine details and contextual information critical for understanding multi-modal relationships. This design 807 
reduces redundant computations while maximizing the extraction of meaningful features, thus enabling the 808 
Swin Transformer to deliver both computational efficiency and superior performance in complex imaging 809 
scenarios. 810 

 811 

(Section 2.3.2 Multi-Scale Information Fusion) 812 

At each layer 𝑙, the image is partitioned into windows of size 𝑀 × 𝑀 × 𝑀. In the subsequent layer 𝑙 + 1, 813 

these windows are shifted by [
𝑀

2
,

𝑀

2
,

𝑀

2
] voxels, allowing interaction between adjacent windows and 814 

reducing redundant calculations. This shifting strategy eliminates the repeated processing of overlapping 815 
regions, which is common in fixed-window attention mechanisms, thus optimizing computational 816 
efficiency. Moreover, by enabling neighboring regions to interact across layers, the shifted window multi-817 
head self-attention (𝑆𝑊_𝑀𝑆𝐴) facilitates seamless information flow, addressing the issue of isolated 818 
window processing. 819 

 820 
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10. Although various networks were selected for comparison, was the optimization of parameters for each 821 
comparison network conducted? Since the performance of a network can vary depending on the input data, 822 
verification of whether network performance was optimized accordingly is necessary. 823 

Reply: Thank you for your insightful comment. In response, we have revised [Section 2.5] to clarify that 824 
we optimized the hyperparameters for each state-of-the-art method based on validation set performance. 825 
Detailed hyperparameter settings for each method are provided in the table RL2. 826 

Table RL2. Detailed hyperparameter settings for the peer models for performance comparison. 827 

Method Learning 
rate 

Batch 
Size 

Optimizer Weight 
Decay 

Additional Settings 

UnetR 0.0001 2 Adam 0.0001 feature size=16, hidden size =768, num heads = 12, dropout rate = 0.2 

SegResNet 0.0001 8 Adam  0.0001 Spatial dims = 3, dropout prob = 0.2, norm = batch 

Swin-
UnetR 

0.0001 2 Adam 0.0001 Feature size =12, depths = (2,2,2,2), num heads = (3,6,12,24), drop rate 
= 0.2, dropout rate = 0.1 

SwinCross 0.0001 4 Adam  0.0001 patch size = 2, embed dim = 48, depths = (2,4,2,2), num heads = 

(3,6,12,24), window size = (3,3,3), drop rate =0 

Unet++ 0.0001 4 Adam 0.0001 Features = [32,32,64,128,256,32], deep supervision = False dropout = 0 

Att-Unet 0.0001 4 Adam  0.0001 channels = (16,32,64,128,256), strides = (2,2,2,2), dropout = 0.2 

 828 

(Section 2.5 Implementation and experiments) 829 

We evaluated the effectiveness of our method on both the private dataset and the autoPET dataset, 830 
comparing its performance with various state-of-the-art (SOTA) methods, including UnetR32, Swin-831 
UnetR21, Att-Unet33, Unet++34, SegResNet35, and SwinCross22. Consistent data splitting was ensured for all 832 
methods by employing the same 5-fold cross-validation approach. In each fold, the training set consisted 833 
of 60% of the data, while the validation and test set each accounted for 20%. 834 

To ensure fairness, all experiments were conducted within the same computational environment, using 835 
identical hardware and software configurations. A sliding window technique was employed to reduce GPU 836 
memory consumption, extracting 32 consecutive slices per batch to form a 3D volume. Hyperparameter 837 
optimization, including adjustments to learning rates, batch sizes, and optimizer settings, was performed 838 
for each method based on validation set performance. 839 

 840 

11. Sections 4.1 and 4.2 in the discussion mainly focus on network structure optimization. It is 841 
recommended to summarize this content into a single paragraph by presenting a condensed table and 842 
mentioning only the key features. Rather than merely describing the results of ablation studies, it would be 843 
beneficial to discuss the reasons behind the observed results. 844 

Reply: Thank you for your valuable suggestion. We have carefully revised the manuscript to consolidate 845 
[Section 4.1] and [Section 4.2] into a single section, [Section 4.1]. This revision includes a summary of 846 
ablation experiments in Table 3 (network configuration performance) and Table 3 (module contributions) 847 
and a streamlined narrative that highlights key findings. Additionally, we have provided detailed 848 
explanations for the observed results, emphasizing the contributions of different network configurations 849 
and modules to overall segmentation performance. 850 

(Section 4.1 Optimization of Network Design and Ablation Study) 851 
Table 3: Optimal Network Configuration. 852 

Configuration Attention Heads Swin Transformer Layers Patch Embedding Dimension  Windows Size 

Best Setting [3,6,12,24) [2, 2, 2, 2] 24 [3,3,3] 

 853 

To identify the optimal network configuration, we conducted ablation experiments by varying key 854 
parameters, including the number of attention heads, the number of layers in each stage of the Swin 855 
Transformer, and the patch embedding dimension. Based on these experiments, we determined the optimal 856 
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configuration that balances segmentation performance and computational efficiency. Table 3 summarizes 857 
the best settings for each parameter. 858 

To evaluate the contributions of the MSM, CMA, and GFM, we conducted an ablation study with the 859 
following experimental setups in Table 4. The Baseline model was designed with single-scale fusion and 860 
dual encoders, without attention mechanisms or gated networks, serving as the benchmark for comparison. 861 

 862 
Table 4: Impact of each module on overall model performance. 863 

Model MSM CMA GFM DSC ↑ Sensitivity ↑ Precision ↑ ASD (mm) ↓ HD95 (mm) ↓ 

Baseline ☐  ☐  ☐ 0.7291±0.0112 0.7405±0.0123 0.7152±0.0184 4.35±0.25 22.98±2.64 

MSM ☑  ☐  ☐ 0.7386±0.0121 0.7549±0.0115 0.7228±0.0173 4.01±0.18 21.77±1.71 

CMA ☐ ☑  ☐ 0.7405±0.0101 0.7538±0.0099 0.7284±0.0112 3.79±0.26 18.23±1.64 

GFM ☑ ☐  ☑ 0.7369±0.0132 0.7443±0.0109 0.7415±0.0118 4.22±0.21 19.47±2.13 

MSM+CMA ☑  ☑  ☐ 0.7458±0.0137 0.7544±0.0172 0.7329±0.0201 3.77±0.19 17.43±1.65 

Full Model ☑  ☑  ☑ 0.7466±0.0118 0.7648±0.0145 0.7591±0.0178 3.62±0.17 16.35±1.55 

 864 

Table 4 highlights the contributions of each module to overall model performance, offering insight into 865 
their roles in improving segmentation accuracy and robustness. Below, we provide a detailed analysis of 866 
each configuration: 867 

• Baseline: The Baseline model excludes multi-scale features and advanced cross-modal fusion 868 
mechanisms. Instead, it employs feature map concatenation and convolution layers for feature 869 
fusion across PET and CT modalities. This design limits the model’s ability to leverage 870 
complementary information from the two modalities, resulting in suboptimal performance (DSC: 871 
0.7291, ASD: 4.35 mm). The achieved HD95 (22.98 mm) indicates difficulties in accurately 872 
delineating complex tumor boundaries using the baseline model, especially in regions with blurred 873 
edges or low contrast. 874 

• MSM: Based on the baseline model, we added the MSM to extract the multi-scale features through 875 
convolutional layers with varying kernel sizes. However, the feature fusion across modalities and 876 
scales still relies on feature map concatenation and convolution layers. This addition improves DSC 877 
and sensitivity (0.7386 and 0.7549, respectively), highlighting the importance of multi-scale feature 878 
aggregation in capturing fine-grained tumor details. Nevertheless, the modest improvement in 879 
precision (0.7228) suggests that the increased feature complexity may amplify noise in certain 880 
regions, resulting in false positives. 881 

• CMA: Based on the baseline model, the CMA model employs the cross-modal attention 882 
mechanism for feature fusion between PET and CT modalities. This mechanism aligns spatial 883 
features from CT with metabolic features from PET, improving boundary delineation and 884 
enhancing the integration of complementary information. As a result, the CMA model significantly 885 
reduced the ASD (3.79 mm) and HD95 (18.23 mm) compared to baseline and MSM models, while 886 
the improved the DSC to 0.7405. However, the limited gain in precision (0.7284) indicates that 887 
challenges remain in handling low-contrast or heterogeneous regions. 888 

• GFM: By adding the GFM individually to baseline model, we replaced the concatenation and 889 
convolution operation for multi-scale feature fusion with a gated fusion mechanism. This allows 890 
the model to dynamically adjust feature contributions from different scales, selectively 891 
emphasizing high-confidence features and suppressing noise. While GFM showed limited 892 
improvement in DSC (0.7369) and sensitivity (0.7443), the precision was increased notably to 893 
0.7415, reflecting the module’s effectiveness in mitigating false positives. However, the slightly 894 
higher ASD (4.22 mm) and HD95 (19.47 mm) suggested a focus on local optimization at the 895 
expense of global consistency. 896 
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• MSM+CMA: Combining MSM and CMA introduces multi-scale features with cross-modal 897 
attention for modality fusion but retains concatenation and convolution for multi-scale feature 898 
integration. This configuration achieved the highest DSC  (0.7458) among other baseline models, 899 
reflecting the complementary roles of multi-scale and cross-modal mechanisms. The sensitivity 900 
(0.7544) was also improved significantly, but the achieved precision remained moderate (0.7329) 901 
due to the lack of dynamic scale weighting. The reduced HD95 (17.43 mm) indicated better 902 
handling of outliers and boundary refinement. 903 

• Full Model: The Full Model integrates all three components, combining multi-scale features, cross-904 
modal attention, and gated fusion. This configuration achieved the best overall performance (DSC: 905 
0.7466, ASD: 3.62 mm, HD95: 16.35 mm). The integration of GFM with MSM and CMA allows 906 
for robust feature selection and fusion, balancing local and global segmentation challenges. The 907 
significant improvement in precision (0.7591) confirmed the effectiveness of GFM in addressing 908 
false positives, while MSF and CMA enhance sensitivity and boundary delineation. These results 909 
demonstrate the comprehensive capabilities of the Full Model in extracting lymphoma lesions with 910 
high accuracy and robustness using CT and PET images. 911 

12. Additionally, discussing other studies related to the comments made above, as well as peculiarities in 912 
the network or parameters, and elaborating on the topics mentioned in Section 4.3 limitations, such as 913 
generalization and plans for multi-center studies, would enhance the quality of the paper. 914 

Reply: Thank you for your valuable suggestion. We have added [Section 4.2] to provide a detailed 915 
discussion of related studies, highlighting the advantages and limitations of current methods in comparison 916 
to ours. Additionally, we expanded [Section 4.3] to address generalization challenges and interpretability, 917 
proposing federated learning and explainable AI as potential future directions. 918 

(Section 4.2 Comparison with Existing TMTV Calculation Methods) 919 

Compared to existing techniques for TMTV segmentation and quantification, our method offers clear 920 
advantages in practicality, automation, and accuracy. While Yousefirizi et al.37,38 and Blanc-Durand et al.14 921 
tested their approaches on single-center or multi-center datasets, they lacked validation on publicly 922 
available datasets, limiting the generalizability of their methods. In contrast, our approach was rigorously 923 
evaluated on both a private dataset and the autoPET dataset, demonstrating consistent performance across 924 
varied imaging protocols. This dual validation underscores the robustness of our method in diverse clinical 925 
settings. 926 

In terms of accuracy, Yousefirizi et al.38 achieved a Pearson correlation coefficient of R²=0.83 for TMTV 927 
quantification but reported lower segmentation accuracy (DSC=0.68) due to single-modality constraints. 928 
Similarly, Blanc-Durand et al.14 achieved a DSC of 0.73 but faced significant TMTV underestimation on 929 
the external validation dataset. By leveraging multi-scale and cross-modal feature fusion, our method 930 
effectively integrates PET and CT information, achieving superior segmentation accuracy with DSC values 931 
of 0.7512 on the private dataset and 0.7441 on the autoPET dataset. 932 

Furthermore, the semi-automated workflows proposed by Burggraaff et al.39 required manual threshold 933 
adjustments, leading to time-consuming processes prone to variability. In contrast, our fully automated 934 
pipeline eliminates the need for manual intervention, ensuring consistent, reproducible results while 935 
significantly reducing analysis time. These features make our method particularly suitable for routine 936 
clinical applications. 937 

In conclusion, our method combines automation, accuracy, and generalizability to provide a practical and 938 
efficient solution for TMTV segmentation and quantification, supporting both research and clinical 939 
workflows. 940 

 941 

(Section 4.3 Limitations) 942 
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Although our model demonstrates strong performance in segmenting DLBCL lesions in PET/CT images, 943 
its effectiveness is highly dependent on the quality and consistency of the training data. Variations in 944 
imaging protocols and equipment across different centers or institutions may introduce significant data 945 
variability, which could limit the model's generalizability. Federated learning offers a promising solution 946 
by enabling model training on distributed data sources without the need to directly share sensitive patient 947 
information. This approach helps mitigate the impact of inter-center variability and enhances the model's 948 
robustness across heterogeneous datasets. 949 

Another limitation of the current model is its interpretability, particularly in understanding how it integrates 950 
multimodal information (e.g., PET and CT images) for segmentation decisions. Understanding the model’s 951 
decision-making process is crucial for its clinical adoption. In this context, explainable AI techniques, such 952 
as uncertainty quantification, can play an essential role. By quantifying the uncertainty in model predictions, 953 
clinicians can receive more reliable guidance, enabling more informed clinical decision-making. 954 

 955 

Minor comments: 956 

1. Please revise the reference list to accurately match the required format. 957 

Reply: Thank you for pointing this out. We have carefully revised the reference list to ensure it aligns with 958 
the required format. 959 

  960 

2. In the second paragraph of the introduction, the last sentence is a redundant expression of the same 961 
content as the last sentence of the third paragraph. Kindly revise this to avoid repetition. 962 

Reply: Thank you for highlighting this redundancy. We have revised the introduction to eliminate repetition 963 
and improve clarity. 964 

(Section 1 Introduction) 965 

Moreover, total metabolic tumor volume (TMTV), which quantifies the metabolic activity of tumors, is a 966 
key prognostic biomarker for DLBCL8. Accurate lymphoma segmentation is essential for determining 967 
TMTV, but manual delineation is both time-consuming and subjective. Traditional lymphoma 968 
segmentation methods, such as thresholding and region growing, have inherent limitations. Thresholding, 969 
while straightforward, lacks adaptability9, especially when image conditions cause lymphoma and normal 970 
tissue to appear with similar gray values. Region growing is highly dependent on initial seed points10, which 971 
require careful selection to handle the diverse shapes and sizes of lymphoma. Recent advances in deep 972 
learning have led to the development of automated segmentation methods, providing greater consistency 973 
and accuracy11.  974 

Li et al.12 proposed an end-to-end network for semi-supervised lymphoma segmentation, achieving a Dice 975 
similarity coefficient (DSC) of 0.72 using PET/CT data from 80 lymphoma cases. Yuan et al.13 introduced 976 
a dual-branch encoder network for lymphoma segmentation, achieving a DSC of 0.73 on 45 DLBCL 977 
patients. Blanc-Durand et al.14 achieved a DSC of 0.73 using their 3D U-Net, trained and validated on 978 
PET/CT data from 639 DLBCL patients, with 94 cases reserved for testing. Yousefirizi et al.15 proposed a 979 
cascaded approach for automated tumor delineation in lymphoma involving 1418 PET/CT scans from 980 
multiple centers. This approach combined multi-resolution 3D U-Nets and model ensembling, achieving 981 
an average DSC of 0.68 on internal test data and 0.66 on external multi-site data. However, existing 982 
convolutional neural networks (CNNs) face challenges in fully leveraging multimodal PET/CT data, 983 
particularly due to their limited receptive field, which restricts their ability to capture global and local 984 
contextual information16-18.  985 

   986 

3. For Figure 4, improve readability by aligning the order of the plots with the table. 987 



 

35 
 

Reply: Thank you for the suggestion. We have revised Fig. 4 in [Section 3.1] to ensure the order of the plots 988 
aligns with the corresponding table. 989 

 990 

(Section 3.1 Results of segmentation) 991 

Table 1: Results of different methods on the private dataset for lymphoma segmentation. 992 
Method DSC ↑ Sensitivity ↑ Precision ↑ ASD (mm) ↓ HD95 (mm) ↓ 

UnetR 0.7107±0.0178 ** 0.7608±0.0128 0.6686±0.0298 ** 4.10±0.20 ** 18.05±2.36 

SegResNet 0.7223±0.0146 * 0.7175±0.0466  0.7289±0.0125 ** 4.61±0.26 ** 21.01±0.69 ** 

Swin-UnetR 0.7271±0.0163 * 0.7659±0.0123 0.7041±0.0246 ** 3.92±0.22 * 15.74±0.98 

SwinCross 0.7414±0.0209 0.7405±0.0213 0.7432±0.0176 4.04±0.22 ** 16.82±1.51 

Unet++ 0.7446±0.0129 0.7322±0.0072 ** 0.7577±0.0137 4.21±0.09 ** 18.05±1.51 ** 

Att-Unet 0.7463±0.0113 0.7622±0.0075 0.7314±0.0179 * 4.75±0.04 ** 17.16±2.26 

Ours 0.7512±0.0078 0.7548±0.0063 0.7611±0.0078 3.61±0.11 15.20±0.78 

The best metric is shown in bold. Statistical significance was assessed using paired t-tests across all metrics, where * indicates p < 993 
0.05, and ** indicates p < 0.01 when compared to our method. 994 

 995 

Table 2: Results of different methods on the autoPET dataset for lymphoma segmentation. 996 
Method DSC ↑ Sensitivity ↑ Precision ↑ ASD (mm) ↓ HD95 (mm) ↓ 

UnetR 0.6865±0.0478 ** 0. 6924±0.0812 0.6851±0.0404 * 6.65±0.73 22.38±1.95 * 

SegResNet 0.6740±0.0412 * 0.6951±0.0627  0.6483±0.0505 * 6.12±1.02 21.26±1.29 

Swin-UnetR 0.7282±0.0605 0.7311±0.0833 0.7274±0.0450 5.40±0.92 19.08±2.63 

SwinCross 0.7267±0.0146 ** 0.7382±0.0717 * 0.7233±0.0525 6.40±1.48 23.37±2.95 

Unet++ 0.7302±0.0192 0.7424±0.0818 0.7277±0.0523 5.11±0.92 19.92±1.59 

Att-Unet 0.6941±0.0261 ** 0.7016±0.0657 0.6917±0.0401 ** 6.17±1.04 21.29±1.25 

Ours 0.7441±0.0241 0.7573±0.0874 0.7427±0.0647 5.83±1.18 21.27±1.44 

The best metric is shown in bold. Statistical significance was assessed using paired t-tests across all metrics, where * indicates p < 997 
0.05, and ** indicates p < 0.01 when compared to our method. 998 

 999 
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 1000 
Fig. 4. Stability analysis using box plots for the private and autoPET datasets: This Fig. presents the ranges of DSC, sensitivity, 1001 
precision, ASD and HD95 across five cross-validation folds for different models. Subfigure (a) displays the results on the private 1002 
dataset, while subfigure (b) shows the corresponding results on the autoPET dataset. The box shows the 1st quartile (lower 1003 
boundary), median (red line), and 3rd quartile (upper boundary). The whiskers represent the range of data, excluding outliers, which 1004 
are marked as blue dots. 1005 
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 1006 

 1007 

4. In Figure 5, please use arrows or other pointing elements to highlight the emphasized regions. 1008 

Reply: Thank you for your valuable suggestion. To address this issue, we have replaced the original Fig. 5 1009 
with two new figures (Fig. 5 and Fig. 6), which provide a more detailed and informative visual 1010 
representation. 1011 

 1012 

.  1013 
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Fig. 5. Difference maps of segmentation results compared with ground truth for private datasets. The green, red, and blue regions 1014 
represent true positive, false negative, and false positive pixels, respectively. Subfigures (a)–(g) show results generated by our 1015 
method, Att-Unet, Unet++, SwinCross, Swin-UnetR, SegResNet, and UnetR, respectively.  1016 
 1017 

 1018 
Fig. 6. Difference maps of segmentation results compared with ground truth for autoPET datasets. The green, red, and blue regions 1019 
represent true positive, false negative, and false positive pixels, respectively. Subfigures (a)–(g) show results generated by our 1020 
method, Att-Unet, Unet++, SwinCross, Swin-UnetR, SegResNet, and UnetR, respectively. 1021 

  1022 

5. Correct the typo "gtTMTV" in the caption of Fig. 7. 1023 

Reply: Thank you for pointing this out. This Fig. has been corrected in the revised manuscript. 1024 
 1025 
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 1026 
Fig. 9. Bland-Altman analysis for cTMTV vs. gtTMTV on (a) private dataset and (b) autoPET dataset. The horizontal axis 1027 
represents the mean of cTMTV and gtTMTV, while the vertical axis represents their difference. The red dashed line shows the 1028 
mean difference, and the green dashed lines represent the 95% limits of agreement, calculated as the mean difference ± 1.96 1029 
standard deviations of the differences. 1030 
 1031 

6. In Eq. 6 and Eq. 8, "(W-MSA)" and "(SW-MSA)" seem to be used as operators, but they may be 1032 
misunderstood as a minus sign. Consider connecting them with an underscore or assigning a different 1033 
designation to avoid confusion. 1034 

Reply: Thank you for your observation. We have addressed this issue in the revised manuscript by 1035 
modifying the notation for "(W-MSA)" and "(SW-MSA)" to avoid any potential confusion with a minus 1036 
sign. 1037 

(Section 2.3.2 Multi-Scale Information Fusion) 1038 

The outputs for layers 𝑙 and 𝑙 + 1 are computed using Eqs. 7 to 10: 1039 

𝐴̂𝑚𝑜𝑑𝑎𝑙_𝑛
𝑙 = 𝑊_𝑀𝑆𝐴 (𝐿𝑁(𝐴𝑚𝑜𝑑𝑎𝑙_𝑛

𝑙−1 )) + 𝐴̂𝑚𝑜𝑑𝑎𝑙_𝑛
𝑙−1 (7) 1040 
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𝐴𝑚𝑜𝑑𝑎𝑙_𝑛
𝑙 = 𝑀𝐿𝑃 (𝐿𝑁(𝐴̂𝑚𝑜𝑑𝑎𝑙_𝑛

𝑙 )) + 𝐴̂𝑚𝑜𝑑𝑎𝑙_𝑛
𝑙 (8) 1041 

𝐴̂𝑚𝑜𝑑𝑎𝑙_𝑛
𝑙+1 = 𝑆𝑊_𝑀𝑆𝐴 (𝐿𝑁(𝐴𝑚𝑜𝑑𝑎𝑙_𝑛

𝑙 )) + 𝐴𝑚𝑜𝑑𝑎𝑙_𝑛
𝑙 (9) 1042 

𝐴𝑚𝑜𝑑𝑎𝑙_𝑛
𝑙+1 = 𝑀𝐿𝑃 (𝐿𝑁(𝐴̂𝑚𝑜𝑑𝑎𝑙_𝑛

𝑙+1 )) + 𝐴̂𝑚𝑜𝑑𝑎𝑙_𝑛
𝑙+1 (10) 1043 

In these equations, 𝑊_𝑀𝑆𝐴 and 𝑆𝑊_𝑀𝑆𝐴 stand for regular and shifted window multi-head self-attention 1044 
modules, respectively. 1045 

  1046 
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