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Outline

@ Background

@ Kleshchev bipartitions in A“? with residue statistics
@ Two variable generating function formula for Ay?

© Generating function for Aj”> and combinatorial proof

The Ariki-Koike Algebras and ¢-Appell Functions (2 /33)



Integer partitions
@ A = (A, A2, A\s,...): partition of n if

M=X=2X=>--->0 and n=XA\+ X+ X+

Write |A] := A1 + X2 + A3 + -+, and £(\) := number of parts.

Example. n = 4: (4),(3,1),(2,2),(2,1,1),(1,1,1,1).

4=4
=341
=242
—2+1+1
=1+1+1+1

@ p(n) := total number of partitions of .

n_ 1
gkwq_ﬂ—wO—fm_@yq
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The Rogers—Ramanujan identities
@ The Rogers—Ramanujan identities:

2

q" _ 1
Z (1—gq)--- (1 —q") - H (1 — g5+1)(1 — g5nt4)’

n=0 n=0
O | [
n=0 (I-¢)---(1—¢") 750 (1 — g5 +2)(1 — g +3)°

First given by Rogers (1894), and rediscovered later by
Ramanujan (1919).

@ The Andrews—Gordon generalization:

gV B 1
Z - - g 1 — qn'

k—1 v
Niz--=Ni—120 1 Lj=1 (1 —q) T (1 — qN/ N/+1)

n#0,4k  (mod 2k+1)

@ Appear in other areas, e.g., representation theory of Lie
algebras.
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The Ariki—Koike Algebras

@ Ariki—Koike Algebras Hc .0,.,....0, (G(m, 1,n)): Iwahori-Hecke
algebras associated to the complex reflection groups

G(m,1,n) =~ (Z/mZ)" x S,, where v,Qy,...,Q,, are parameters.
Introduced by Ariki—Koike (1994) and Broué—Malle (1993)
independently.

@ Ariki-Mathas (2000): Simple modules of the algebras are labeled
by partitions of a certain type, namely Kleshchev multipartitions.

These partitions are defined recursively, and in general no simple
description is known except for v = —1.

To state their result, we need to define Kleshchev multipartitions. I'm
going to define them for a special case.
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Kleshchev multipartitions (Special case)

For1 < a < m, assume

V:_17Ql :"':Qa:_LQu-H ::szla

and set
th=--=t, =0ty =--=t,=1.

@ A Kleshchev multipartition A = (A()... A\(")) is a multipartition
satisfying the following conditions:

@ each \? is a strict partition, i.e., partition into distinct parts;
Q 2\ <t(AFD) (1 — ) for1 <i<m— 1.

@ A4™ := { Kleshchev multipartitions }.
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Exmaple: a =2,m =3

A

A®

A®

Figure: A = (A(D, A@ \®)) g A3
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Notation

(x5q)n = (1= x)(1 —xq)--- (1 —xq" "),
()0 := lim (x; ¢)n,

n—0o0

(xla cee 7xk;Q)n = (XI;Q)n ce (xk; CI)n,
(X], s 7xk;LI)OO = (xlaq)oo e (xk;q)OO7

[Z] = [ZL = M%fomékén.
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Theorem (Ariki-Mathas (2000))

<qa+l qm—a+l’ qm+2; qm+2)oo

b

T (43 4% (4 9) o0

Their proof is based on the categorification theorem and the
Weyl-Kac character formula.

Recently, a g-series proof is given by Chern—Li—Stanton—Xue-Y.

Theorem (Chern—Li—Stanton—Xue-Y. (2024))

m  (Ni+1
Z ﬂ |:N2+5“+172] |:N3+5a+173j| [Nm+5a+l,m
Ni,y...,Ny=0 (49w, Ny N> N1
_ (qa+1,qm—a+17qm+2;qm+2)oo

(4:6*) (4 9) w0

|
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Blocks of Ariki—Koike algebras

@ Lyle—Mathas (2007) classified the blocks of the Ariki—-Koike
algebras.

This classification is given in combinatorial terms, but they didn’t
even compute the generating function for simple modules in a
fixed block.

@ Question: Find a generating function formula for the number of
simple modules in a fixed block.

@ The m = 2 case is done by Chern—Li—Stanton—Xue-Y. But, this
question is still open for m > 2.
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2-Residues

For a partition A,
@ 2-residue of a node x = (i,j) € A:

Res(x) := (j—i) mod 2.

o[1]o]

il k=2 Cl =]
(=N L [l e
(=]

—

Figure: 2-residue diagram of (5,4,4,2)
@ Statistic w(A):

w(A) := (# nodes with residue 0) — (# nodes with residue 1).

@ Remark: This w statistic is the same as the BG-rank of Berkovich
and Garvan introduced in 2008.
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2-Residues for Kleshchev multipartitions

For A = (A, ... \m) e Aam,

@ 2-residue of a node x = (i,j) € A®):

Res(x) := (j—i+1) mod 2.
@ Statistic w(A):
w(A) :=

(w()\(l)) NS w(/\(a))) _ (w(/\(aJrl)) T w()\(m)))_

o[1]o]1] 1o
1]o]1 ol1]o
1o

—_

0f1]

Figure: ((4,3),(5,3,2)) e A", w = —1

@ A4 = {\e AY" |w() = w}.
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Theorem (Lyle—Mathas (2007))

Simple modules in a fixed block of the Ariki—Koike algebras are
labeled by A&™.
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Theorem (Chern—Li—Stanton—Xue-Y. (2024))

3 OGN = (~, —xg,—a/% ¢P)eo
AeAl2

S g

AEAZ2

((—q, X, =@ /%0 ) + (¢, %, /x; qz)oo)-

N —

2 2
3 g = gt ( )oo ST N =g 1>('_)w

AeAl’ AeALPUAT?

NOTE. These results can be derived by combining results of
Ariki-Mathas—Lyle and the Weyl-Kac character formula computations
for affine Lie algebras.
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Combinatorial Questions

Recall

A gt (4
g =g

Nt (q q)

Any combinatorial explanations on the following identities?
AL ()] = |AL (n)],
A ()] = A% (n = )],
A2 ()] = p((n —w?)/2).
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Identities arising from Kleshchev bipartitions

Theorem (Chern—Li—Stanton—Xue-Y., (2024))

2.2
Z qr i +r+s(q2;q2)r+s+1 — (—C] ;6]2)00

2 (@) )P )% Pt (07D

r2+sz+2s(q2; qz)rﬂ

q
Z;o (% 9 (a% 4%)s(a% 4%)r(a% 47)s

)
2 2
D q TR ) e (4w

S (@) (@ a1 ()55 st (4347
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Generalizations

Theorem (Li-Seo—Stanton-Y. (preprint))

3 g (265 ) o _ ()
520 @@ a°)r (@ P)r(d )52 @P)s1 (20756
r2+s2+2s(zq2; qz)rﬂ

T

o 4% 6)r(@% 4%)r(26% 47)s (45 4°)s

P2 +s? (

.y 29 (2% ) s _ 44w
(2¢% ¢*)r(@% 4*)r—1(20% )5 4*)s—1 (24% 4o

r,s=1
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Non-negativity

Define
_ (295 ) r 4541
8rs(2) = T = ——
(2¢;0) (45 @) (45 0)s (245 ) s+1
Note
oi(1) = 1[r+s+ 1]
(@9 (g:q)s| s+1
Proposition
As a formal power series in ¢ and z, g, ;(z) has non-negative
coefficients.

NOTE. We know what statistic z keeps track of in the r, s double sum.
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Jackson’s Transformation Formula

Let
0 0 . . n ,An(n—1)
(@; @)m+n (b3 @)m X"¥"q
\I!l(a,b;c,c,x,y,)\)=22 K : )
m=0n=0 (Q7 C7 Q)m(Q7 C/, ‘I)n
0
. . (Avq)m(B7 q)m m
PABCX) = ), @D Cih
m=0 bl m bl m
[ee}
(A;q)n An(n—1
I(I)](A’C7 Y;)\) :Z . y" n(n—1)
= (q39)(Cq)n

Theorem (Jackson (1944))

W (a;b;c,csx, 35 \)
1+X)r(r—1)

_ i (a,b;q),x'y'a’ql

(g,¢,¢;9) ©(aq';bq"scq"sx)121(ag"s ' g™ N).
r=0 6, C 0 q)r
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Sketch of Proof

@ The double sum, once ¢’ is replaced by g, is

lim Wy (a;b;c,c’;x/b,y; )
b—0
witha = ¢’ = z¢>,c = zq,x = —c = —z2q,y = ¢, A\ = 1/2.
1®@1(aq";aq"3q" 15 1/2) = (4" 4)eo,s

1
1 —cq"

lim ®(aq”,bq";cq"; —c/b) = (—cq™;
b—00

@ The right hand side of Jackson’s transformation identity:

0 ’q)rq4() 2r Zr
,;) 9)r(c;q)r(cg; q)
)

_ (49w _ (49
(¢;q)

o0 (245 @)oo
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Recall

and

2 2
q " +r+s(q25q2)r+S+l (_q2§q2)oo

,éo (@ ) (@ )@ P )51 (@587

r2+s2+r+s( 2

LD q 454 ) rist1

R S0 (@55.47)r (0% 47)r (0% 4%)s(0% )5
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t-Core Partitions

@ Hook and hook length:

@ +-Core if no hook lengths are divisible by .

EXAMPLE. The partition (4,2,2,1) is 6-core.

s[2]1]

l»—m#\l
)

@ There is a well-known algorithm for getting a r-core partition
Ar-core from an arbitrary partition A. This algorithm can be
described using an abacus diagram.
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8 9 8 9 8 9
6D 6 7 N 6 7
@ 5 4 (5 4 5
2 ® @B 2 ®
0® 0® Q)

Figure: 2-abacus of (4,2,2,1)

The 2-core partition of A can be easily constructed from the abacus
on the right side, namely Aycore = (2, 1).
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2-Core Partitions

Let
A= (,j—1,...,1).

Proposition

A is a 2-core partition if and only if A = A; for some j > 1.

Let
P := { partitions }.

Theorem (Littlewood decomposition)

(J
Z g™ = Z.—z)z

AeP (6] 14" )0

A2-core =4
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Results on strict partitions

Let
D := { strict partitions }.

Theorem (Li-Seo—Stanton-Y. (preprint))

AeD (q 5 q )00 '
X2-core =Aj

NOTE. Huang, Senger, Wear and Wu proved the above theorem
combinatorially, and their proof is essentially the same as ours.
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Berkovich—Uncu’s Result

Theorem (Berkovich—Uncu)

ST g =) [[(N iVJ‘)/ZJLZ'

XED, A| <N
A2-core=4Aj

NOTE. We can also prove this finite form using our proof.

NOTE. Recently, Dhar and Mukhopadhyay gave another
combinatorial proof.
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DTN = (—xg, - /%, ") oo (— % 4o
AeD

Key Ingredients of the proof:

w(A) = w(Azcore),

ol = -1y |1].
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Generating function for A,”

Recall

r2+s2+r+s( 2. 2

T M=) q 457 )r+s+1 _ (@5d)w

(@2 82)r (% ) (@ P)s(@ dP)se1 (@%54Y)w

)\EACI,’Z r,s=0
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Sketch of Proof

Let A = (A, A@) e A
@ Since

1 2
w(A) = wAD) —w(A®) = WA re) — WA re) = 0,

1 2
)‘g—gore = )‘é—gore'
o Let
s; := # beads in the i-runner in the 2-abacus for X,
Then

si+s=00®) and AV <eA@) 41 =5 45+ 1.

@ )\ has its 2-core equal to A; when (s1,s2) = (s +.j,s) or
(s,s +j+ 1) for some s = 0.
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. i+1
2 Z q‘)\a)‘ Z q‘)\(l)‘ _ Z qZS(S+j+1)+2(l2 ) [25 +j+ l]qz
(7% 4%)s(@5q%)sei L S ’

= G %"%?i.o Ko™ =

and

Z 2 qlz\(z)l 2 qlz\(l’l B Z qz(s+1)(S+j+1)+(fJ§1) [25 +j+ 2]612.
20,0 4 AD A, >0 (4% 4%)s(q%; 4% )s+j+1 s+1

(s1,52)=(s+i+1,5)

These are the r > s and r < s cases, respectively, in the theorem.
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Combinatorial Questions

Recall

A gt (4
g =g

Nt (q q)

Any combinatorial explanations on the following identities?
AL ()] = |AL (n)],
A ()] = A% (n = )],
A2 ()] = p((n —w?)/2).
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Combinatorial Proof of [AL2(n)| = |A"2 (n)]

Q@ \\Y <(x®):
Move the first column of A(?) to the top of the first row of A(1).

Q )\ >0y
Move the first row of A(D to the left of the first column of A().

1]o]

o[1]o] =

1 o[1]
1 0|1
L1

(=]

lO'—‘O
(=]
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Thank you!
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