Partition hook lengths

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh

7	5	4	3	1
5	3	2	1	
y				

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

The Partition function $p(n)$

Definition

A partition of an integer n is any nonincreasing sequence

$$
\Lambda:=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}\right\}
$$

of positive integers which sum to n.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

The Partition function $p(n)$

Definition

A partition of an integer n is any nonincreasing sequence

$$
\Lambda:=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}\right\}
$$

of positive integers which sum to n.

Notation
The partition function

$$
p(n):=\# \text { partitions of } n
$$

$$
4=3+1=2+2=2+1+1=1+1+1+1 \quad \Longrightarrow \quad p(4)=5
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Partitions in Number Theory

Partitions in Number Theory

Theorem (Hardy and Ramanujan)
We have that

$$
p(n) \sim \frac{1}{4 n \sqrt{3}} \cdot e^{\pi \sqrt{\frac{2 n}{3}}}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Partitions in Number Theory

Theorem (Hardy and Ramanujan)

We have that

$$
p(n) \sim \frac{1}{4 n \sqrt{3}} \cdot e^{\pi \sqrt{\frac{2 n}{3}}}
$$

Theorem (Ramanujan)

For every n, we have that

$$
\begin{aligned}
& p(5 n+4) \equiv 0 \quad(\bmod 5) \\
& p(7 n+5) \equiv 0 \quad(\bmod 7) \\
& p(11 n+6) \equiv 0 \quad(\bmod 11)
\end{aligned}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Partitions in Representation theory

Partitions in Representation theory

Theorem (Classical)

(1) There are $p(n)$ many irreducible representations of S_{n}.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Partitions in Representation theory

Theorem (Classical)

(1) There are $p(n)$ many irreducible representations of S_{n}.
(2) For $\Lambda \vdash n$, the symmetric group S_{n} acts on its tableaux

Partitions in Representation theory

Theorem (Classical)

(1) There are $p(n)$ many irreducible representations of S_{n}.
(2) For $\Lambda \vdash n$, the symmetric group S_{n} acts on its tableaux giving

$$
\rho_{\Lambda}: S_{n} \mapsto \mathrm{GL}_{d(\Lambda)}(\mathbb{Z}),
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Partitions in Representation theory

Theorem (Classical)

(1) There are $p(n)$ many irreducible representations of S_{n}.
(2) For $\Lambda \vdash n$, the symmetric group S_{n} acts on its tableaux giving

$$
\rho_{\Lambda}: S_{n} \mapsto \mathrm{GL}_{d(\Lambda)}(\mathbb{Z}),
$$

where $d(\Lambda):=\#\{$ standard tableaux $\}$ (i.e. \uparrow rows \mathcal{E} columns).

Partitions in Representation theory

Theorem (Classical)

(1) There are $p(n)$ many irreducible representations of S_{n}.
(2) For $\Lambda \vdash n$, the symmetric group S_{n} acts on its tableaux giving

$$
\rho_{\Lambda}: S_{n} \mapsto \mathrm{GL}_{d(\Lambda)}(\mathbb{Z}),
$$

where $d(\Lambda):=\#\{$ standard tableaux $\}$ (i.e. \uparrow rows \mathcal{E} columns).
(3) In terms of hook numbers, we have

$$
d(\Lambda):=\frac{n!}{\prod_{h \in \mathcal{H}(\Lambda)} h(i, j)} .
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Hook numbers?

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Hook numbers?

Definition
Each partition $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{m}$ has a Young diagram

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Hook numbers?

Definition

Each partition $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{m}$ has a Young diagram

\bullet	\bullet	\bullet	\cdots	$\leftarrow \lambda_{1}$ nodes	
\bullet	\bullet	\ldots	\bullet	$\leftarrow \lambda_{2}$ nodes	
\vdots	\vdots	\vdots			
\bullet	\ldots	\bullet		$\leftarrow \lambda_{m}$ nodes,	

The node in row k and column j has hook number

$$
h(k, j):=\left(\lambda_{k}-j\right)+\left(\lambda_{j}^{\prime}-k\right)+1,
$$

Hook numbers?

Definition
Each partition $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{m}$ has a Young diagram

\bullet	\bullet	\bullet	\cdots	\leftarrow	λ_{1} nodes
\bullet	\bullet	\ldots	\bullet	\leftarrow	λ_{2} nodes
\vdots	\vdots	\vdots			
\bullet	\ldots	\bullet		$\leftarrow \lambda_{m}$ nodes,	

The node in row k and column j has hook number

$$
h(k, j):=\left(\lambda_{k}-j\right)+\left(\lambda_{j}^{\prime}-k\right)+1,
$$

where λ_{j}^{\prime} is the number of nodes in column j.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Example

- The partition $\Lambda=2+1+1$ has the 3 standard tableaux

1	4			1	2
2				3	
3		4		4	

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Example

- The partition $\Lambda=2+1+1$ has the 3 standard tableaux

1	4	1	3	1	2
2		2		3	
3		4		4	

And so, we directly see that $\rho_{\Lambda}: S_{4} \longrightarrow \mathrm{GL}_{3}(\mathbb{Z})$.

Example

- The partition $\Lambda=2+1+1$ has the 3 standard tableaux

| 1 | 4 | 1 3 1 2
 2
 2
 3
 3 | |
| :--- | :--- | :--- | :--- | :--- | :--- |

And so, we directly see that $\rho_{\Lambda}: S_{4} \longrightarrow \mathrm{GL}_{3}(\mathbb{Z})$. The hook numbers of Λ are

4	1
2	
1	

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Example

- The partition $\Lambda=2+1+1$ has the 3 standard tableaux

| 1 | 4 | 1 3 1 2
 2
 2

 | 4 | |
| :--- | :--- | :--- | :--- | :--- | :--- |

And so, we directly see that $\rho_{\Lambda}: S_{4} \longrightarrow \mathrm{GL}_{3}(\mathbb{Z})$.
The hook numbers of Λ are

4	1
2	
1	

We have the "hook multiset" $\mathcal{H}(\Lambda)=\{1,1,2,4\}$, and so

$$
d(\Lambda)=\frac{4!}{4 \cdot 2 \cdot 1 \cdot 1}=3
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Hook numbers in representation theory

Hook numbers in Representation theory

REmARK
For primes p, the p-hooks "control" the reduction modulo p

$$
\overline{\rho_{\Lambda}}: \quad S_{n} \rightarrow \mathrm{GL}_{d(\Lambda)}(\mathbb{Z})(\bmod p)=\mathrm{GL}_{d(\Lambda)}(\mathbb{Z} / p \mathbb{Z})
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Hook numbers in Representation theory

Remark

For primes p, the p-hooks "control" the reduction modulo p

$$
\overline{\rho_{\Lambda}}: \quad S_{n} \rightarrow \mathrm{GL}_{d(\Lambda)}(\mathbb{Z})(\bmod p)=\mathrm{GL}_{d(\Lambda)}(\mathbb{Z} / p \mathbb{Z})
$$

Theorem (Granville-O, '98)

Every finite simple group has an irreducible representation that remains irreducible "mod p " for $p \geq 5$.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Hooks and Infinite Products

Hooks and Infinite Products

Theorem (Nekrasov-Okounkov, 2003)
For any complex number z, we have

$$
\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{z-1}=\sum_{\Lambda} q^{|\Lambda|} \prod_{h \in \mathcal{H}(\Lambda)}\left(1-\frac{z}{h^{2}}\right)
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Hooks and Infinite Products

Theorem (Nekrasov-Okounkov, 2003)

For any complex number z, we have

$$
\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{z-1}=\sum_{\Lambda} q^{|\Lambda|} \prod_{h \in \mathcal{H}(\Lambda)}\left(1-\frac{z}{h^{2}}\right)
$$

Remark

"Partition formula" for powers of Dedekind's eta function!
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

An Application of Nekrasov-Okounkov

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

An Application of Nekrasov-Okounkov

Let's first classify all 2-hooks.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

An Application of Nekrasov-Okounkov

Let's first classify all 2 -hooks.

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

An Application of N-O CONT.

- The only partitions without a 2 -hook are triangular:

$$
k+(k-1)+(k-2)+\cdots+1 .
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

An Application of N-O Cont.

- The only partitions without a 2 -hook are triangular:

$$
k+(k-1)+(k-2)+\cdots+1
$$

- The triangular partitions are the only ones that matter here:

$$
\sum_{\Lambda \vdash n} \prod_{h \in \mathcal{H}(\Lambda)}\left(1-\frac{4}{h^{2}}\right)=
$$

An Application of N-O Cont.

- The only partitions without a 2 -hook are triangular:

$$
k+(k-1)+(k-2)+\cdots+1
$$

- The triangular partitions are the only ones that matter here:

$$
\sum_{\Lambda \vdash n} \prod_{h \in \mathcal{H}(\Lambda)}\left(1-\frac{4}{h^{2}}\right)= \begin{cases}(-1)^{k}(2 k+1) & \text { if } n=k(k+1) / 2 \\ 0 & \text { otherwise }\end{cases}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

An Application of N-O Cont.

- The only partitions without a 2 -hook are triangular:

$$
k+(k-1)+(k-2)+\cdots+1
$$

- The triangular partitions are the only ones that matter here:

$$
\sum_{\Lambda \vdash n} \prod_{h \in \mathcal{H}(\Lambda)}\left(1-\frac{4}{h^{2}}\right)= \begin{cases}(-1)^{k}(2 k+1) & \text { if } n=k(k+1) / 2 \\ 0 & \text { otherwise }\end{cases}
$$

- New proof of Jacobi's identity

$$
\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{4-1}=\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{3}=\sum_{k \geq 0}(-1)^{k}(2 k+1) q^{\frac{k^{2}+k}{2}}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

So WE'RE CRAZY ABOUT HOOKS!

So WE'RE CRAZY ABOUT HOOKS!

Problems

(1) How are t-hooks distributed among size n partitions?
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

So WE'RE CRAZY ABOUT HOOKS!

Problems

(1) How are t-hooks distributed among size n partitions?
(2) Is there a limiting distribution as $n \rightarrow+\infty$?
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

EXAMPLE. $t=2$ AND $n=5000$
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

EXAMPLE. $t=2$ AND $n=5000$

$$
\sum_{\Lambda \vdash 5000} x^{\#\{2 \in \mathcal{H}(\Lambda)\}}=0+704 x+9211712 x^{2}+\cdots+1805943379138 x^{98}+2 x^{99}
$$

EXAMPLE. $t=2$ AND $n=5000$

$$
\sum_{\Lambda \vdash 5000} x^{\#\{2 \in \mathcal{H}(\Lambda)\}}=0+704 x+9211712 x^{2}+\cdots+1805943379138 x^{98}+2 x^{99}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

DISTRIBUTION OF t-HOOKS

> Theorem (Griffin, O, Tsai (2022))
> Among size n partitions, t-hooks are asymptotically normal with mean $\mu_{t}(n) \sim \frac{\sqrt{6 n}}{\pi}-\frac{t}{2}$ and variance $\sigma_{t}^{2}(n) \sim \frac{\left(\pi^{2}-6\right) \sqrt{6 n}}{2 \pi^{3}}$.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

DISTRIBUTION OF t-HOOKS

Theorem (Griffin, O, Tsai (2022))

Among size n partitions, t-hooks are asymptotically normal with mean $\mu_{t}(n) \sim \frac{\sqrt{6 n}}{\pi}-\frac{t}{2}$ and variance $\sigma_{t}^{2}(n) \sim \frac{\left(\pi^{2}-6\right) \sqrt{6 n}}{2 \pi^{3}}$.

A key tool in the proof:
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

DISTRIBUTION OF t-HOOKS

Theorem (Griffin, O, Tsai (2022))

Among size n partitions, t-hooks are asymptotically normal with mean $\mu_{t}(n) \sim \frac{\sqrt{6 n}}{\pi}-\frac{t}{2}$ and variance $\sigma_{t}^{2}(n) \sim \frac{\left(\pi^{2}-6\right) \sqrt{6 n}}{2 \pi^{3}}$.

A key tool in the proof:
Theorem (Han, 2008)
If $n_{t}(\Lambda):=\#\{t \in \mathcal{H}(\Lambda)\}$, then

$$
\sum_{\Lambda} x^{n_{t}(\Lambda)} q^{|\Lambda|}=\prod_{n=1}^{\infty} \frac{\left(1+(x-1) q^{t n}\right)^{t}}{1-q^{n}}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Question

How about self-conjugate partitions?

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh

Partition hook lengths

SELF-CONJUGATE PARTITIONS

Definition
 The conjugate of a partition is obtained by switching the rows and columns of its Young diagram.

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

SELF-CONJUGATE PARTITIONS

Definition

The conjugate of a partition is obtained by switching the rows and columns of its Young diagram. A partition is self-conjugate if it equals its conjugate.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

SELF-CONJUGATE PARTITIONS

Definition

The conjugate of a partition is obtained by switching the rows and columns of its Young diagram.
A partition is self-conjugate if it equals its conjugate.

EXAMPLES (SELF-CONJUGATES OF SIZE $3 \leq n \leq 10$)

$n=3$	-®	$n=8$	\% $\square^{\bullet \bullet}$	\%\%\%
$n=4$:			
$n=5$! ${ }^{\bullet}$	$n=9$	$\square^{\bullet \bullet \bullet \bullet}$	\%\%
$n=6$! ${ }^{\bullet}$	$n=10$	$!{ }^{\circ}$	$!\%^{\circ}$
$n=7$	$!{ }^{\bullet \bullet}$			

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Elementary Observation

Theorem (EZ)
If $s c(n)=\#\{$ self-conjugate partitions of size $n\}$, then

$$
\sum_{n=0}^{\infty} s c(n) q^{n}=\prod_{n=0}^{\infty}\left(1+q^{2 n+1}\right)
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Elementary Observation

Theorem (EZ)

If $s c(n)=\#\{$ self-conjugate partitions of size $n\}$, then

$$
\sum_{n=0}^{\infty} s c(n) q^{n}=\prod_{n=0}^{\infty}\left(1+q^{2 n+1}\right)
$$

Proof by picture.

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Elementary Observation

Theorem (EZ)

If $s c(n)=\#\{$ self-conjugate partitions of size $n\}$, then

$$
\sum_{n=0}^{\infty} s c(n) q^{n}=\prod_{n=0}^{\infty}\left(1+q^{2 n+1}\right)
$$

Proof by picture.

- Each "right angle" has odd length and cannot be repeated.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Natural Questions

$$
\text { Problems }(\mathcal{S C}=\{\text { self-conjugate partitions }\})
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Natural Questions

Problems $(\mathcal{S C}=\{$ self-conjugate partitions $\})$
(1) In analogy with Han's work, what is the generating function

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{t}(\Lambda)} q^{|\Lambda|}=?
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Natural Questions

Problems $(\mathcal{S C}=\{$ self-conjugate partitions $\})$
(1) In analogy with Han's work, what is the generating function

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{t}(\Lambda)} q^{|\Lambda|}=?
$$

(2) How many t-hooks are there among the partitions in $\mathcal{S C}(n)$?
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Natural Questions

Problems $(\mathcal{S C}=\{$ self-conjugate partitions $\})$
(1) In analogy with Han's work, what is the generating function

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{t}(\Lambda)} q^{|\Lambda|}=?
$$

(2) How many t-hooks are there among the partitions in $\mathcal{S C}(n)$?
(3) How are t-hooks among partitions $\mathcal{S C}(n)$ distributed as $n \rightarrow+\infty$?
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

BBCFW Conjecture (2023)

Conjecture (Ballantine, Burson, Craig, Folsom, Wen)
For $t \geq 2$ and positive integers n, then let

$$
a_{t}^{\star}(n):=\sum_{\Lambda \in \mathcal{S C}(n)} n_{t}(\Lambda)=\#\{t \text {-hooks in all size } n \text { self-conj } \Lambda\} .
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

BBCFW Conjecture (2023)

Conjecture (Ballantine, Burson, Craig, Folsom, Wen)
For $t \geq 2$ and positive integers n, then let

$$
a_{t}^{\star}(n):=\sum_{\Lambda \in \mathcal{S C}(n)} n_{t}(\Lambda)=\#\{t \text {-hooks in all size } n \text { self-conj } \Lambda\} .
$$

If $m \geq 1$, then for all n we have

$$
a_{2 m}^{\star}(n) \equiv 0 \quad(\bmod 2 m) .
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Some notation

Notation (Pochhammer Symbol)

$$
(a ; q)_{n}:= \begin{cases}1 & \text { if } n=0 \\ (1-a)(1-a q) \cdots\left(1-a q^{n-1}\right) & \text { if } n \in \mathbb{Z}_{+} \\ \prod_{j=0}^{\infty}\left(1-a q^{j}\right) & \text { if } n=+\infty\end{cases}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Some notation

Notation (Pochhammer Symbol)

$$
(a ; q)_{n}:= \begin{cases}1 & \text { if } n=0 \\ (1-a)(1-a q) \cdots\left(1-a q^{n-1}\right) & \text { if } n \in \mathbb{Z}_{+} \\ \prod_{j=0}^{\infty}\left(1-a q^{j}\right) & \text { if } n=+\infty\end{cases}
$$

Remark (EZ Observation Revisited)

$$
\sum_{n=0}^{\infty} s c(n) q^{n}=\left(-q ; q^{2}\right)_{\infty}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Theorem 1 (AAOS)

If t is even, then we have that

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{t}(\Lambda)} q^{|\Lambda|}=\left(-q ; q^{2}\right)_{\infty} \cdot\left(\left(1-x^{2}\right) q^{2 t} ; q^{2 t}\right)_{\infty}^{\frac{t}{2}}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Theorem 1 (AAOS)

If t is even, then we have that

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{t}(\Lambda)} q^{|\Lambda|}=\left(-q ; q^{2}\right)_{\infty} \cdot\left(\left(1-x^{2}\right) q^{2 t} ; q^{2 t}\right)_{\infty}^{\frac{t}{2}}
$$

Theorem 2 (AAOS)

If t is odd, then we have that

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{t}(\Lambda)} q^{|\Lambda|}=\left(-q ; q^{2}\right)_{\infty} \cdot H^{\star}\left(x ; q^{t}\right) \cdot\left(\left(1-x^{2}\right) q^{2 t} ; q^{2 t}\right)^{\frac{t-1}{\infty^{2}}}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Theorem 1 (AAOS)

If t is even, then we have that

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{t}(\Lambda)} q^{|\Lambda|}=\left(-q ; q^{2}\right)_{\infty} \cdot\left(\left(1-x^{2}\right) q^{2 t} ; q^{2 t}\right)_{\infty}^{\frac{t}{2}}
$$

Theorem 2 (AAOS)

If t is odd, then we have that

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{t}(\Lambda)} q^{|\Lambda|}=\left(-q ; q^{2}\right)_{\infty} \cdot H^{\star}\left(x ; q^{t}\right) \cdot\left(\left(1-x^{2}\right) q^{2 t} ; q^{2 t}\right)^{\frac{t-1}{2}}
$$

where

$$
H^{\star}(x ; q):=\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(-q^{t} ; q^{2 t}\right)_{\infty}} \cdot\left[\left(1-\frac{1}{x}\right) \sum_{n \geq 0} \frac{\left(x^{2}-1\right)^{n} q^{2 n^{2}+n}}{\left(q^{2} ; q^{2}\right)_{n}\left(-q ; q^{2}\right)_{n+1}}+\frac{1}{x} \sum_{n \geq 0} \frac{\left(x^{2}-1\right)^{n} q^{22^{2}-n}}{\left(q^{2} ; q^{2}\right)_{n}\left(-q ; q^{2}\right)_{n}}\right] .
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Number of t-HOOKS: EvEn CASE

Number of t-HOOKS: EvEN CASE

Theorem 3 (AAOS)
If t is even, then we have that

$$
\sum_{n \geq 1} a_{t}^{\star}(n) q^{n}=t \cdot \frac{q^{2 t} \cdot\left(-q ; q^{2}\right)_{\infty}}{1-q^{2 t}}
$$

Number of t-Hooks: Even case

Theorem 3 (AAOS)

If t is even, then we have that

$$
\sum_{n \geq 1} a_{t}^{\star}(n) q^{n}=t \cdot \frac{q^{2 t} \cdot\left(-q ; q^{2}\right)_{\infty}}{1-q^{2 t}}
$$

Furthermore, we have that

$$
a_{t}^{\star}(n)=t \sum_{j \geq 1} s c(n-2 t j)
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Number of t-Hooks: Even case

Theorem 3 (AAOS)

If t is even, then we have that

$$
\sum_{n \geq 1} a_{t}^{\star}(n) q^{n}=t \cdot \frac{q^{2 t} \cdot\left(-q ; q^{2}\right)_{\infty}}{1-q^{2 t}}
$$

Furthermore, we have that

$$
a_{t}^{\star}(n)=t \sum_{j \geq 1} s c(n-2 t j) .
$$

Corollary (AAOS)
The BBCFW Conjecture is true.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

EXAMPLE: $\mathcal{S C}(16)$
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

EXAMPLE: $\mathcal{S C}(16)$

7	6	5	4
6	5	4	3
5	4	3	2
4	3	2	1

Figure 1. Hook lengths of the self-conjugate partitions of 16

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	≥ 16
$a_{t}^{*}(16)$	14	14	12	12	8	6	2	8	1	0	1	0	1	0	1	0

Table 1. Values of $a_{t}^{*}(16)$
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

EXAMPLE CONTINUED

- The first few terms of the generating function for $s c(n)$:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} s c(n) q^{n}=\left(-q ; q^{2}\right)_{\infty} \\
& \quad=1+q+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+2 q^{8}+2 q^{9}+2 q^{10}+2 q^{11}+3 q^{12}+\cdots
\end{aligned}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

EXAMPLE CONTINUED

- The first few terms of the generating function for $s c(n)$:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} s c(n) q^{n}=\left(-q ; q^{2}\right)_{\infty} \\
& \quad=1+q+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+2 q^{8}+2 q^{9}+2 q^{10}+2 q^{11}+3 q^{12}+\cdots
\end{aligned}
$$

- For even t, Theorem 3 gives

$$
a_{t}^{\star}(n)=t(s c(n-2 t)+s c(n-4 t)+s c(n-6 t)+\ldots) .
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

EXAMPLE CONTINUED

- The first few terms of the generating function for $s c(n)$:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} s c(n) q^{n}=\left(-q ; q^{2}\right)_{\infty} \\
& \quad=1+q+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+2 q^{8}+2 q^{9}+2 q^{10}+2 q^{11}+3 q^{12}+\cdots
\end{aligned}
$$

- For even t, Theorem 3 gives

$$
a_{t}^{\star}(n)=t(s c(n-2 t)+s c(n-4 t)+s c(n-6 t)+\ldots)
$$

- And so, we have

$$
\begin{aligned}
a_{2}^{\star}(16) & =2(s c(16-4)+s c(16-8)+s c(16-12)+s c(0))=14, \\
a_{4}^{\star}(16) & =4(s c(16-8)+s c(16-16))=12, \\
a_{6}^{\star}(16) & =6 s c(16-12)=6, \\
a_{8}^{\star}(16) & =8 s c(16-16)=8 .
\end{aligned}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Number of t-HOOKS: OdD CASE

Theorem 4 (AAOS)

If t is odd, then we have that

$$
\sum_{n \geq 1} a_{t}^{\star}(n) q^{n}=\frac{q^{t}\left(1+(t-1) q^{t}+t q^{2 t}\right)}{\left(1-q^{2 t}\right)\left(1+q^{t}\right)} \cdot\left(-q ; q^{2}\right)_{\infty}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Number of t-HOOKS: OdD CASE

Theorem 4 (AAOS)

If t is odd, then we have that

$$
\sum_{n \geq 1} a_{t}^{\star}(n) q^{n}=\frac{q^{t}\left(1+(t-1) q^{t}+t q^{2 t}\right)}{\left(1-q^{2 t}\right)\left(1+q^{t}\right)} \cdot\left(-q ; q^{2}\right)_{\infty}
$$

Furthermore, we have that

$$
\begin{aligned}
a_{t}^{\star}(n) & =\sum_{j \geq 1}\left((-1)^{j-1} j \cdot s c(n-t j)+t \cdot s c(n-2 t j)\right) \\
& =\sum_{j \geq 1}\left((-1)^{j-1} j \cdot q^{*}(n-t j)+t \cdot q^{*}(n-2 t j)\right) .
\end{aligned}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

t-HOOK DISTRIBUTIONS IN $\mathcal{S C}$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

t-HOOK DISTRIBUTIONS IN $\mathcal{S C}$

Theorem 5 (Craig + OS)
 As $n \rightarrow+\infty$, the t-hooks are asymptotically normal in $\mathcal{S C}(n)$.

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

t-CORE PARTITIONS

DEFINITION

A partition Λ is a t-core if its hook numbers are all coprime to t.

t-CORE PARTITIONS

Definition

A partition Λ is a t-core if its hook numbers are all coprime to t.

Remark

Equivalently, a partition Λ is a t-core if $t \notin \mathcal{H}(\Lambda)$.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

t-CORE PARTITIONS

Definition

A partition Λ is a t-core if its hook numbers are all coprime to t.

Remark

Equivalently, a partition Λ is a t-core if $t \notin \mathcal{H}(\Lambda)$.

Theorem (Classic)
If $c_{t}(n)$ denotes the number of t-core partitions of size n, then

$$
\sum_{n=0}^{\infty} c_{t}(n) q^{n}=\frac{\left(q^{t} ; q^{t}\right)_{\infty}^{t}}{(q ; q)_{\infty}}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

SELF-CONJUGATE t-CORES

Theorem (Garvan, Kim, Stanton)
If $s c_{t}(n):=\#\{$ size n self-conjugate size t-cores $\}$, then TFAT.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

SELf-CONJUGATE t-CORES

Theorem (Garvan, Kim, Stanton)

If $s c_{t}(n):=\#\{$ size n self-conjugate size t-cores $\}$, then TFAT. (1) If t is even, then we have that

$$
\sum_{n \geq 0} s c_{t}(n) q^{n}=\left(-q ; q^{2}\right)_{\infty} \cdot\left(q^{2 t} ; q^{2 t}\right)_{\infty}^{\frac{t}{2}}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

SElf-Conjugate t-CORES

Theorem (Garvan, Kim, Stanton)

If $s c_{t}(n):=\#\{$ size n self-conjugate size t-cores $\}$, then TFAT. (1) If t is even, then we have that

$$
\sum_{n \geq 0} s c_{t}(n) q^{n}=\left(-q ; q^{2}\right)_{\infty} \cdot\left(q^{2 t} ; q^{2 t}\right)_{\infty}^{\frac{t}{2}}
$$

(2) If t is odd, then we have that

$$
\sum_{n \geq 0} s c_{t}(n) q^{n}=\left(-q ; q^{2}\right)_{\infty} \cdot \frac{\left(q^{2 t} ; q^{2 t}\right)_{\infty}^{\frac{t-1}{2}}}{\left(-q^{t} ; q^{2 t}\right)_{\infty}}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Littlewood's Bijections

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Littlewood's Bijections

"Theorem" (Littlewood)

(1) The "Littlewood algorithm" associates to each $\Lambda \in \mathcal{P}$ a t-core $\omega \in \mathcal{P}_{t}$ and a t-quotient $\left(\nu^{(0)}, \nu^{(1)}, \ldots, \nu^{(t-1)}\right) \in \mathcal{P}^{t}$.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Littlewood's Bijections

"Theorem" (Littlewood)

(1) The "Littlewood algorithm" associates to each $\Lambda \in \mathcal{P}$ a t-core $\omega \in \mathcal{P}_{t}$ and a t-quotient $\left(\nu^{(0)}, \nu^{(1)}, \ldots, \nu^{(t-1)}\right) \in \mathcal{P}^{t}$.
(2) This map defines a bijection $\phi_{t}: \mathcal{P} \rightarrow \mathcal{P}_{t} \times \mathcal{P}^{t}$ given by

$$
\phi_{t}(\Lambda):=\left(w ; \nu^{(0)}, \ldots, \nu^{(t-1)}\right),
$$

where $|\Lambda|=|\omega|+t \sum_{i=0}^{t-1}\left|\nu^{(i)}\right|$.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

LitTLEWOOD FOR SELF-CONJUGATES

Theorem (Pétréolle)
 If $\Lambda \in \mathcal{S C}$, then TFAT.

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Littlewood for self-CONJUGATES

Theorem (Pétréolle)

If $\Lambda \in \mathcal{S C}$, then TFAT.
(1) We have that $\omega \in \mathcal{S C}_{t}$ is a t-core and $\left(\nu^{(0)}, \ldots, \nu^{(t-1)}\right) \in \mathcal{P}^{t}$.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Littlewood for self-CONJUGATES

Theorem (Pétréolle)

If $\Lambda \in \mathcal{S C}$, then TFAT.
(1) We have that $\omega \in \mathcal{S C}_{t}$ is a t-core and $\left(\nu^{(0)}, \ldots, \nu^{(t-1)}\right) \in \mathcal{P}^{t}$.
(2) We have $\nu^{(j)}=\left(\nu^{(t-1-j)}\right)^{\prime}$ for $j \in\{0,1, \ldots,\lfloor t / 2\rfloor-1\}$.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Littlewood for self-CONJUGATES

Theorem (Pétréolle)

If $\Lambda \in \mathcal{S C}$, then TFAT.
(1) We have that $\omega \in \mathcal{S C}_{t}$ is a t-core and $\left(\nu^{(0)}, \ldots, \nu^{(t-1)}\right) \in \mathcal{P}^{t}$.
(2) We have $\nu^{(j)}=\left(\nu^{(t-1-j)}\right)^{\prime}$ for $j \in\{0,1, \ldots,\lfloor t / 2\rfloor-1\}$.
(3) If t is odd, then $\nu^{((t-1) / 2)}=\left(\nu^{((t-1) / 2)}\right)^{\prime}:=\mu \in \mathcal{S C}$.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

LitTLEWOOD FOR SELF-CONJUGATES

Theorem (Pétréolle)

If $\Lambda \in \mathcal{S C}$, then TFAT.
(1) We have that $\omega \in \mathcal{S C}_{t}$ is a t-core and $\left(\nu^{(0)}, \ldots, \nu^{(t-1)}\right) \in \mathcal{P}^{t}$.
(2) We have $\nu^{(j)}=\left(\nu^{(t-1-j)}\right)^{\prime}$ for $j \in\{0,1, \ldots,\lfloor t / 2\rfloor-1\}$.
(3) If t is odd, then $\nu^{((t-1) / 2)}=\left(\nu^{((t-1) / 2)}\right)^{\prime}:=\mu \in \mathcal{S C}$.
(4) We have that

$$
|\Lambda|= \begin{cases}|\omega|+2 t \sum_{i=0}^{t / 2-1}\left|\nu^{(i)}\right| & \text { if } t \text { is even } \\ |\omega|+2 t \sum_{i=0}^{(t-1) / 2-1}\left|\nu^{(i)}\right|+t|\mu| & \text { if } t \text { is odd. }\end{cases}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

LitTLEWOOD FOR SELF-CONJUGATES

Theorem (Pétréolle)

If $\Lambda \in \mathcal{S C}$, then TFAT.
(1) We have that $\omega \in \mathcal{S C}_{t}$ is a t-core and $\left(\nu^{(0)}, \ldots, \nu^{(t-1)}\right) \in \mathcal{P}^{t}$.
(2) We have $\nu^{(j)}=\left(\nu^{(t-1-j)}\right)^{\prime}$ for $j \in\{0,1, \ldots,\lfloor t / 2\rfloor-1\}$.
(3) If t is odd, then $\nu^{((t-1) / 2)}=\left(\nu^{((t-1) / 2)}\right)^{\prime}:=\mu \in \mathcal{S C}$.
(4) We have that

$$
|\Lambda|= \begin{cases}|\omega|+2 t \sum_{i=0}^{t / 2-1}\left|\nu^{(i)}\right| & \text { if } t \text { is even } \\ |\omega|+2 t \sum_{i=0}^{(t-1) / 2-1}\left|\nu^{(i)}\right|+t|\mu| & \text { if } t \text { is odd. }\end{cases}
$$

(5) The hooks that are multiples of t in Λ are $t \mathcal{H}(\underline{\nu})$.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

LitTlewood for self-CONJUGATES

Theorem (Pétréolle)

If $\Lambda \in \mathcal{S C}$, then TFAT.
(1) We have that $\omega \in \mathcal{S C}_{t}$ is a t-core and $\left(\nu^{(0)}, \ldots, \nu^{(t-1)}\right) \in \mathcal{P}^{t}$.
(2) We have $\nu^{(j)}=\left(\nu^{(t-1-j)}\right)^{\prime}$ for $j \in\{0,1, \ldots,\lfloor t / 2\rfloor-1\}$.
(3) If t is odd, then $\nu^{((t-1) / 2)}=\left(\nu^{((t-1) / 2)}\right)^{\prime}:=\mu \in \mathcal{S C}$.
(4) We have that

$$
|\Lambda|= \begin{cases}|\omega|+2 t \sum_{i=0}^{t / 2-1}\left|\nu^{(i)}\right| & \text { if } t \text { is even } \\ |\omega|+2 t \sum_{i=0}^{(t-1) / 2-1}\left|\nu^{(i)}\right|+t|\mu| & \text { if } t \text { is odd. }\end{cases}
$$

(5) The hooks that are multiples of t in Λ are $t \mathcal{H}(\underline{\nu})$.

Remark

$B y(5), n_{t}(\Lambda)$ is determined from 1-hooks of the quotient $\underline{\nu}$.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Counting 1-HOOKS

Theorem (AAOS)

(1) We have that

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{1}(\Lambda)} q^{|\Lambda|}=\frac{\left(-q ; q^{2}\right)_{\infty}}{2 x}\left[\left(1-\sqrt{\frac{1-x}{1+x}}\right)\left(-\sqrt{1-x^{2}} ;-q\right)_{\infty}+\left(1+\sqrt{\frac{1-x}{1+x}}\right)\left(\sqrt{1-x^{2}} ;-q\right)_{\infty}\right]
$$

(2) We have that

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{1}(\Lambda)} q^{|\Lambda|}=\left(-q ; q^{2}\right)_{\infty} \cdot\left[\left(1-\frac{1}{x}\right) \sum_{n \geq 0} \frac{\left(x^{2}-1\right)^{n} q^{2 n^{2}+n}}{\left(q^{2} ; q^{2}\right)_{n}\left(-q ; q^{2}\right)_{n+1}}+\frac{1}{x} \sum_{n \geq 0} \frac{\left(x^{2}-1\right)^{n} q^{2 n^{2}-n}}{\left(q^{2} ; q^{2}\right)_{n}\left(-q ; q^{2}\right)_{n}}\right]
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Counting 1-HOOKS

Theorem (AAOS)

(1) We have that

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{1}(\Lambda)} q^{|\Lambda|}=\frac{\left(-q ; q^{2}\right)_{\infty}}{2 x}\left[\left(1-\sqrt{\frac{1-x}{1+x}}\right)\left(-\sqrt{1-x^{2}} ;-q\right)_{\infty}+\left(1+\sqrt{\frac{1-x}{1+x}}\right)\left(\sqrt{1-x^{2}} ;-q\right)_{\infty}\right]
$$

(2) We have that

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{1}(\Lambda)} q^{|\Lambda|}=\left(-q ; q^{2}\right)_{\infty} \cdot\left[\left(1-\frac{1}{x}\right) \sum_{n \geq 0} \frac{\left(x^{2}-1\right)^{n} q^{2 n^{2}+n}}{\left(q^{2} ; q^{2}\right)_{n}\left(-q ; q^{2}\right)_{n+1}}+\frac{1}{x} \sum_{n \geq 0} \frac{\left(x^{2}-1\right)^{n} q^{2 n^{2}-n}}{\left(q^{2} ; q^{2}\right)_{n}\left(-q ; q^{2}\right)_{n}}\right]
$$

Remark (Two types of self-conjugates)

Figure 4. Self-conjugate partitions of 17 of Type 1 and Type 2
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Proof of 1-HOOKS IN $\mathcal{S C}$

- We have that

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{1}(\Lambda)} q^{|\Lambda|}=1+D_{1}(x ; q)+D_{2}(x ; q)
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Proof of 1 -Hooks in $\mathcal{S C}$

- We have that

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{1}(\Lambda)} q^{|\Lambda|}=1+D_{1}(x ; q)+D_{2}(x ; q)
$$

where

$$
\begin{aligned}
& D_{1}(x ; q):=\sum_{\Lambda \in \mathcal{S C}_{1}} x^{n_{1}(\Lambda)} q^{|\Lambda|} \\
& D_{2}(x ; q):=\sum_{\Lambda \in \mathcal{S C}_{2}} x^{n_{1}(\Lambda)} q^{|\Lambda|} .
\end{aligned}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Proof of 1 -Hooks in $\mathcal{S C}$

- We have that

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{1}(\Lambda)} q^{|\Lambda|}=1+D_{1}(x ; q)+D_{2}(x ; q)
$$

where

$$
\begin{aligned}
& D_{1}(x ; q):=\sum_{\Lambda \in \mathcal{S C}_{1}} x^{n_{1}(\Lambda)} q^{|\Lambda|} \\
& D_{2}(x ; q):=\sum_{\Lambda \in \mathcal{S C}_{2}} x^{n_{1}(\Lambda)} q^{|\Lambda|} .
\end{aligned}
$$

- One sees that these series are

$$
\begin{aligned}
& D_{1}(x ; q)=\sum_{n \geq 1} x q^{n^{2}} \prod_{j=1}^{n-1}\left(1+x^{2} q^{2 j}+x^{2} q^{4 j}+\cdots\right) \quad \text { (lonely 1-hook }+ \text { paired 1-hooks) } \\
& D_{2}(x ; q)=\sum_{n \geq 1} q^{n^{2}}\left(x^{2} q^{2 n}+x^{2} q^{4 n}+\cdots\right) \prod_{j=1}^{n-1}\left(1+x^{2} q^{2 j}+x^{2} q^{4 j}+\cdots\right) . \quad \text { (paired 1-hooks) }
\end{aligned}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Proof of 1-Hooks in $\mathcal{S C}$ cont.

- By combining these, we obtain

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{1}(\Lambda)} q^{|\Lambda|}=1+x \cdot \sum_{n \geq 1} \frac{q^{n^{2}} \cdot\left(1-(1-x) q^{2 n}\right) \cdot\left(\left(1-x^{2}\right) q^{2} ; q^{2}\right)_{n-1}}{\left(q^{2} ; q^{2}\right)_{n}}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Proof of 1-HOOKS in $\mathcal{S C}$ cont.

- By combining these, we obtain

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{1}(\Lambda)} q^{|\Lambda|}=1+x \cdot \sum_{n \geq 1} \frac{q^{n^{2}} \cdot\left(1-(1-x) q^{2 n}\right) \cdot\left(\left(1-x^{2}\right) q^{2} ; q^{2}\right)_{n-1}}{\left(q^{2} ; q^{2}\right)_{n}}
$$

- If we let

$$
\begin{aligned}
& F(A ; q):=\sum_{n \geq 0} \frac{q^{n^{2}}\left(A ; q^{2}\right)_{n}}{\left(q^{2} ; q^{2}\right)_{n}}, \\
& G(A ; q):=\sum_{n \geq 0} \frac{q^{n^{2}+2 n}\left(A ; q^{2}\right)_{n}}{\left(q^{2} ; q^{2}\right)_{n}},
\end{aligned}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Proof of 1-HOOKS IN $\mathcal{S C}$ cont.

- By combining these, we obtain

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{1}(\Lambda)} q^{|\Lambda|}=1+x \cdot \sum_{n \geq 1} \frac{q^{n^{2}} \cdot\left(1-(1-x) q^{2 n}\right) \cdot\left(\left(1-x^{2}\right) q^{2} ; q^{2}\right)_{n-1}}{\left(q^{2} ; q^{2}\right)_{n}}
$$

- If we let

$$
\begin{aligned}
& F(A ; q):=\sum_{n \geq 0} \frac{q^{n^{2}}\left(A ; q^{2}\right)_{n}}{\left(q^{2} ; q^{2}\right)_{n}}, \\
& G(A ; q):=\sum_{n \geq 0} \frac{q^{n^{2}+2 n}\left(A ; q^{2}\right)_{n}}{\left(q^{2} ; q^{2}\right)_{n}},
\end{aligned}
$$

then we obtain

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{1}(\Lambda)} q^{|\Lambda|}=1+\frac{1}{x} \cdot\left[\left(F\left(1-x^{2} ; q\right)-1\right)+(x-1) \cdot\left(G\left(1-x^{2} ; q\right)-1\right)\right] .
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Proof of 1-HOOKS IN $\mathcal{S C}$ cont.

- Heine's ${ }_{2} \phi_{1}$ basic hypergeometric series transformation gives:
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Proof of 1-HOOKS in $\mathcal{S C}$ cont.

- Heine's ${ }_{2} \phi_{1}$ basic hypergeometric series transformation gives:

Lemma 3.2. The following are true.
(1) If we let $F(A ; q):=\sum_{n \geq 0} \frac{q^{n^{2}}\left(A ; q^{2}\right)_{n}}{\left(q^{2} ; q^{2}\right)_{n}}$, then we have that

$$
F(A ; q)=\frac{1}{2} \cdot\left(-q ; q^{2}\right)_{\infty}\left[(-\sqrt{A} ;-q)_{\infty}+(\sqrt{A} ;-q)_{\infty}\right] .
$$

$$
G(A ; q)=\frac{1}{2 \sqrt{A}} \cdot\left(-q ; q^{2}\right)_{\infty}\left[(-\sqrt{A} ;-q)_{\infty}-(\sqrt{A} ;-q)_{\infty}\right]
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Proof of 1-HOOKS in $\mathcal{S C}$ cont.

- Heine's ${ }_{2} \phi_{1}$ basic hypergeometric series transformation gives:

Lemma 3.2. The following are true.
(1) If we let $F(A ; q):=\sum_{n \geq 0} \frac{q^{n^{2}}\left(A ; q^{2}\right)_{n}}{\left(q^{2} ; q^{2}\right)_{n}}$, then we have that

$$
F(A ; q)=\frac{1}{2} \cdot\left(-q ; q^{2}\right)_{\infty}\left[(-\sqrt{A} ;-q)_{\infty}+(\sqrt{A} ;-q)_{\infty}\right] .
$$

$$
G(A ; q)=\frac{1}{2 \sqrt{A}} \cdot\left(-q ; q^{2}\right)_{\infty}\left[(-\sqrt{A} ;-q)_{\infty}-(\sqrt{A} ;-q)_{\infty}\right] .
$$

- This completes the proof of the 1-hook $\mathcal{S C}$ gen fun formulas.

Generating Functions

Theorem 1 (AAOS)

If t is even, then we have that

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{t}(\Lambda)} q^{|\Lambda|}=\left(-q ; q^{2}\right)_{\infty} \cdot\left(\left(1-x^{2}\right) q^{2 t} ; q^{2 t}\right)_{\infty}^{\frac{t}{2}}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Generating Functions

Theorem 1 (AAOS)

If t is even, then we have that

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{t}(\Lambda)} q^{|\Lambda|}=\left(-q ; q^{2}\right)_{\infty} \cdot\left(\left(1-x^{2}\right) q^{2 t} ; q^{2 t}\right)_{\infty}^{\frac{t}{2}}
$$

Theorem 2 (AAOS)

 If t is odd, then we have that$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{t}(\Lambda)} q^{|\Lambda|}=\left(-q ; q^{2}\right)_{\infty} \cdot H^{\star}\left(x ; q^{t}\right) \cdot\left(\left(1-x^{2}\right) q^{2 t} ; q^{2 t}\right)_{\infty}^{\frac{t-1}{2}}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Proving the generating functions

- For $\Lambda \in \mathcal{S C}$, Pétréolle's "Littlewood bijection" gives

$$
\phi_{t}(\Lambda):=\left(w ; \nu^{(0)}, \ldots, \nu^{(t-1)}\right) \in \mathcal{P}_{t} \times \mathcal{P}^{t} .
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Proving the generating functions

- For $\Lambda \in \mathcal{S C}$, Pétréolle's "Littlewood bijection" gives

$$
\phi_{t}(\Lambda):=\left(w ; \nu^{(0)}, \ldots, \nu^{(t-1)}\right) \in \mathcal{P}_{t} \times \mathcal{P}^{t} .
$$

- The quotient $\underline{\nu}$ satisfies "conjugation" properties.

Proving the generating functions

- For $\Lambda \in \mathcal{S C}$, Pétréolle's "Littlewood bijection" gives

$$
\phi_{t}(\Lambda):=\left(w ; \nu^{(0)}, \ldots, \nu^{(t-1)}\right) \in \mathcal{P}_{t} \times \mathcal{P}^{t} .
$$

- The quotient $\underline{\nu}$ satisfies "conjugation" properties.
- If t is odd, then the middle "quotient partition" is self-conjugate.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Proving The generating functions

- For $\Lambda \in \mathcal{S C}$, Pétréolle's "Littlewood bijection" gives

$$
\phi_{t}(\Lambda):=\left(w ; \nu^{(0)}, \ldots, \nu^{(t-1)}\right) \in \mathcal{P}_{t} \times \mathcal{P}^{t} .
$$

- The quotient $\underline{\nu}$ satisfies "conjugation" properties.
- If t is odd, then the middle "quotient partition" is self-conjugate.
- The t-hooks of Λ arise from 1-hooks in the quotient.

Proving The generating functions

- For $\Lambda \in \mathcal{S C}$, Pétréolle's "Littlewood bijection" gives

$$
\phi_{t}(\Lambda):=\left(w ; \nu^{(0)}, \ldots, \nu^{(t-1)}\right) \in \mathcal{P}_{t} \times \mathcal{P}^{t} .
$$

- The quotient $\underline{\nu}$ satisfies "conjugation" properties.
- If t is odd, then the middle "quotient partition" is self-conjugate.
- The t-hooks of Λ arise from 1 -hooks in the quotient.
- Han counted 1-hooks in all partitions.

Proving The generating Functions

- For $\Lambda \in \mathcal{S C}$, Pétréolle's "Littlewood bijection" gives

$$
\phi_{t}(\Lambda):=\left(w ; \nu^{(0)}, \ldots, \nu^{(t-1)}\right) \in \mathcal{P}_{t} \times \mathcal{P}^{t}
$$

- The quotient $\underline{\nu}$ satisfies "conjugation" properties.
- If t is odd, then the middle "quotient partition" is self-conjugate.
- The t-hooks of Λ arise from 1 -hooks in the quotient.
- Han counted 1-hooks in all partitions.
- We just counted 1-hooks in $\mathcal{S C}$ (needed for odd t).
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Proving THE GENERATING FUNCTIONS

- For $\Lambda \in \mathcal{S C}$, Pétréolle's "Littlewood bijection" gives

$$
\phi_{t}(\Lambda):=\left(w ; \nu^{(0)}, \ldots, \nu^{(t-1)}\right) \in \mathcal{P}_{t} \times \mathcal{P}^{t} .
$$

- The quotient $\underline{\nu}$ satisfies "conjugation" properties.
- If t is odd, then the middle "quotient partition" is self-conjugate.
- The t-hooks of Λ arise from 1-hooks in the quotient.
- Han counted 1-hooks in all partitions.
- We just counted 1-hooks in $\mathcal{S C}$ (needed for odd t).
- Recall the generating functions for $s c(n)$ and $s c_{t}(n)$.

Proving THE GENERATING FUNCTIONS

- For $\Lambda \in \mathcal{S C}$, Pétréolle's "Littlewood bijection" gives

$$
\phi_{t}(\Lambda):=\left(w ; \nu^{(0)}, \ldots, \nu^{(t-1)}\right) \in \mathcal{P}_{t} \times \mathcal{P}^{t} .
$$

- The quotient $\underline{\nu}$ satisfies "conjugation" properties.
- If t is odd, then the middle "quotient partition" is self-conjugate.
- The t-hooks of Λ arise from 1 -hooks in the quotient.
- Han counted 1-hooks in all partitions.
- We just counted 1-hooks in $\mathcal{S C}$ (needed for odd t).
- Recall the generating functions for $s c(n)$ and $s c_{t}(n)$.
- Assemble these pieces! \square

Counting t-hooks: Even Case

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Counting t-hooks: Even Case

Theorem 3 (AAOS)
If t is even, then we have that

$$
\sum_{\Lambda \in \mathcal{S C}} n_{t}(\Lambda) q^{|\Lambda|}=\sum_{n \geq 1} a_{t}^{\star}(n) q^{n}=t \cdot \frac{q^{2 t} \cdot\left(-q ; q^{2}\right)_{\infty}}{1-q^{2 t}}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Counting t-hooks: Even Case

Theorem 3 (AAOS)

If t is even, then we have that

$$
\sum_{\Lambda \in \mathcal{S C}} n_{t}(\Lambda) q^{|\Lambda|}=\sum_{n \geq 1} a_{t}^{\star}(n) q^{n}=t \cdot \frac{q^{2 t} \cdot\left(-q ; q^{2}\right)_{\infty}}{1-q^{2 t}}
$$

Furthermore, we have that

$$
a_{t}^{\star}(n)=t \sum_{j \geq 1} s c(n-2 t j)
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Counting t-hooks: Even Case

Theorem 3 (AAOS)

If t is even, then we have that

$$
\sum_{\Lambda \in \mathcal{S C}} n_{t}(\Lambda) q^{|\Lambda|}=\sum_{n \geq 1} a_{t}^{\star}(n) q^{n}=t \cdot \frac{q^{2 t} \cdot\left(-q ; q^{2}\right)_{\infty}}{1-q^{2 t}}
$$

Furthermore, we have that

$$
a_{t}^{\star}(n)=t \sum_{j \geq 1} s c(n-2 t j)
$$

In particular, the BBCFW Conjecture is true.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Proof of Theorem 3

- As t is even, Theorem 1 gives

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{t}(\Lambda)} q^{|\Lambda|}=\left(-q ; q^{2}\right)_{\infty} \cdot\left(\left(1-x^{2}\right) q^{2 t} ; q^{2 t}\right)_{\infty}^{\frac{t}{2}}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Proof of Theorem 3

- As t is even, Theorem 1 gives

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{t}(\Lambda)} q^{|\Lambda|}=\left(-q ; q^{2}\right)_{\infty} \cdot\left(\left(1-x^{2}\right) q^{2 t} ; q^{2 t}\right)_{\infty}^{\frac{t}{2}}
$$

- Differentiating with respect to x and letting $x=1$ gives

$$
\sum_{n \geq 1} a_{t}^{\star}(n) q^{n}=t \cdot \frac{q^{2 t} \cdot\left(-q ; q^{2}\right)_{\infty}}{1-q^{2 t}}=t \cdot\left(q^{2 t}+q^{4 t}+q^{6 t}+\cdots\right) \cdot\left(-q ; q^{2}\right)_{\infty}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Proof of Theorem 3

- As t is even, Theorem 1 gives

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{t}(\Lambda)} q^{|\Lambda|}=\left(-q ; q^{2}\right)_{\infty} \cdot\left(\left(1-x^{2}\right) q^{2 t} ; q^{2 t}\right)_{\infty}^{\frac{t}{2}}
$$

- Differentiating with respect to x and letting $x=1$ gives

$$
\sum_{n \geq 1} a_{t}^{\star}(n) q^{n}=t \cdot \frac{q^{2 t} \cdot\left(-q ; q^{2}\right)_{\infty}}{1-q^{2 t}}=t \cdot\left(q^{2 t}+q^{4 t}+q^{6 t}+\cdots\right) \cdot\left(-q ; q^{2}\right)_{\infty}
$$

- The recursive formula follows from

$$
\sum_{n \geq 0} s c(n) q^{n}=\prod_{n=0}^{\infty}\left(1+q^{2 n+1}\right)=\left(-q ; q^{2}\right)_{\infty}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

MOTIVATION: t-HOOKS FOR all partitions

Theorem (Griffin, O, Tsai (2022))

Among size n partitions, t-hooks are asymptotically normal with mean $\mu_{t}(n) \sim \frac{\sqrt{6 n}}{\pi}-\frac{t}{2}$ and variance $\sigma_{t}^{2}(n) \sim \frac{\left(\pi^{2}-6\right) \sqrt{6 n}}{2 \pi^{3}}$.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

MOTIVATION: t-HOOKS FOR all partitions

Theorem (Griffin, O, Tsai (2022))

Among size n partitions, t-hooks are asymptotically normal with mean $\mu_{t}(n) \sim \frac{\sqrt{6 n}}{\pi}-\frac{t}{2}$ and variance $\sigma_{t}^{2}(n) \sim \frac{\left(\pi^{2}-6\right) \sqrt{6 n}}{2 \pi^{3}}$.

Theorem (Han, 2008)

$$
\sum_{\Lambda} q^{|\Lambda|} x^{\#\{t \in \mathcal{H}(\Lambda)\}}=\prod_{n=1}^{\infty} \frac{\left(1+(x-1) q^{t n}\right)^{t}}{1-q^{n}}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Generating Functions for $\mathcal{S C}$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Generating Functions for $\mathcal{S C}$

Theorem (AAOS)
(1) If t is even, then we have that

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{t}(\Lambda)} q^{|\Lambda|}=\left(-q ; q^{2}\right)_{\infty} \cdot\left(\left(1-x^{2}\right) q^{2 t} ; q^{2 t}\right)_{\infty}^{\frac{t}{2}}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Generating Functions for $\mathcal{S C}$

Theorem (AAOS)

(1) If t is even, then we have that

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{t}(\Lambda)} q^{|\Lambda|}=\left(-q ; q^{2}\right)_{\infty} \cdot\left(\left(1-x^{2}\right) q^{2 t} ; q^{2 t}\right)_{\infty}^{\frac{t}{2}}
$$

(2) If t is odd, then we have that

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{t}(\Lambda)} q^{|\Lambda|}=\left(-q ; q^{2}\right)_{\infty} \cdot H^{\star}\left(x ; q^{t}\right) \cdot\left(\left(1-x^{2}\right) q^{2 t} ; q^{2 t}\right)_{\infty}^{\frac{t-1}{2}}
$$

where
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Generating Functions for $\mathcal{S C}$

Theorem (AAOS)

(1) If t is even, then we have that

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{t}(\Lambda)} q^{|\Lambda|}=\left(-q ; q^{2}\right)_{\infty} \cdot\left(\left(1-x^{2}\right) q^{2 t} ; q^{2 t}\right)_{\infty}^{\frac{t}{2}}
$$

(2) If t is odd, then we have that

$$
\sum_{\Lambda \in \mathcal{S C}} x^{n_{t}(\Lambda)} q^{|\Lambda|}=\left(-q ; q^{2}\right)_{\infty} \cdot H^{\star}\left(x ; q^{t}\right) \cdot\left(\left(1-x^{2}\right) q^{2 t} ; q^{2 t}\right)^{\frac{t-1}{2}}
$$

where

$$
H^{\star}(x ; q):=\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(-q^{t} ; q^{2 t}\right)_{\infty}} \cdot\left[\left(1-\frac{1}{x}\right) \sum_{n \geq 0} \frac{\left(x^{2}-1\right)^{n} q^{2 n^{2}+n}}{\left(q^{2} ; q^{2}\right)_{n}\left(-q ; q^{2}\right)_{n+1}}+\frac{1}{x} \sum_{n \geq 0} \frac{\left(x^{2}-1\right)^{n} q^{2 n^{2}-n}}{\left(q^{2} ; q^{2}\right)_{n}\left(-q ; q^{2}\right)_{n}}\right] .
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Number of t-Hooks: Even case

Theorem (AAOS)
If t is even, then we have that

$$
\sum_{\Lambda \in \mathcal{S C}} n_{t}(\Lambda) q^{|\Lambda|}=\sum_{n \geq 1} a_{t}^{\star}(n) q^{n}=t \cdot \frac{q^{2 t} \cdot\left(-q ; q^{2}\right)_{\infty}}{1-q^{2 t}}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Number of t-Hooks: Even case

Theorem (AAOS)

If t is even, then we have that

$$
\sum_{\Lambda \in \mathcal{S C}} n_{t}(\Lambda) q^{|\Lambda|}=\sum_{n \geq 1} a_{t}^{\star}(n) q^{n}=t \cdot \frac{q^{2 t} \cdot\left(-q ; q^{2}\right)_{\infty}}{1-q^{2 t}}
$$

Furthermore, we have that

$$
a_{t}^{\star}(n)=t \sum_{j \geq 1} s c(n-2 t j) .
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Number of t-Hooks: Even case

Theorem (AAOS)

If t is even, then we have that

$$
\sum_{\Lambda \in \mathcal{S C}} n_{t}(\Lambda) q^{|\Lambda|}=\sum_{n \geq 1} a_{t}^{\star}(n) q^{n}=t \cdot \frac{q^{2 t} \cdot\left(-q ; q^{2}\right)_{\infty}}{1-q^{2 t}}
$$

Furthermore, we have that

$$
a_{t}^{\star}(n)=t \sum_{j \geq 1} s c(n-2 t j) .
$$

In particular, the BBCFW Conjecture is true.
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

Number of t-HOOKS: OdD CASE

Theorem (AAOS)

If t is odd, then we have that

$$
\sum_{n \geq 1} a_{t}^{\star}(n) q^{n}=\frac{q^{t}\left(1+(t-1) q^{t}+t q^{2 t}\right)}{\left(1-q^{2 t}\right)\left(1+q^{t}\right)} \cdot\left(-q ; q^{2}\right)_{\infty}
$$

Number of t-HOOKS: ODD CASE

Theorem (AAOS)

If t is odd, then we have that

$$
\sum_{n \geq 1} a_{t}^{\star}(n) q^{n}=\frac{q^{t}\left(1+(t-1) q^{t}+t q^{2 t}\right)}{\left(1-q^{2 t}\right)\left(1+q^{t}\right)} \cdot\left(-q ; q^{2}\right)_{\infty}
$$

Furthermore, we have that

$$
\begin{aligned}
a_{t}^{\star}(n) & =\sum_{j \geq 1}\left((-1)^{j-1} j \cdot s c(n-t j)+t \cdot s c(n-2 t j)\right) \\
& =\sum_{j \geq 1}\left((-1)^{j-1} j \cdot q^{*}(n-t j)+t \cdot q^{*}(n-2 t j)\right) .
\end{aligned}
$$

T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

t-HOOK DISTRIBUTIONS IN $\mathcal{S C}$

Theorem (Craig + OS)

As $n \rightarrow+\infty$, we have that t-hooks are asymptotically normally distributed in $\mathcal{S C}(n)$.

I
T. Amdeberhan, G. E. Andrews, K. Ono, \& A. Singh Partition hook lengths

