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Abstract. These “notes to self” combine multipartitions (multisets whose elements
are integer partitions) and ideas from algebra with the author’s previous work on a
multiplicative theory of additive partitions. We define a number of notational conventions
and partition operations, with the eventual aim of establishing a purely partition-theoretic
algebra of partitions (i.e., a theory relying only on maps between partitions, as opposed
to mapping from partitions to N or C, or appealing to algebraic properties of the integer
parts) in harmony with the conventions of abstract algebra as well as the techniques of
partition theory.

1. Usual arithmetic holds for partitions

Recall that a multiset is a generalization of a set (finite or infinite) whose different ele-
ments are permitted finitely many repetitions. Let P denote the set of integer partitions,
i.e., all finite multisets of natural numbers N := {1, 2, 3, 4, ...}, and let λ = (λ1, λ2, ..., λr)
denote a generic partition, where λ1 ≥ λ2 ≥ ... ≥ λr ≥ 1, with ∅ the empty partition. We
recall partition multiplication (multiset union of the parts) and partition division (delet-
ing a subpartition) as defined in [8, 9], as well as the multiplicative theory of partition
analogs of classical arithmetic functions, Cauchy products, zeta functions, etc. developed
in [5, 6, 7, 8, 9, 10] and other works, which fits naturally into the theoretical framework
sketched here1.

Let M(S) denote the set of all multisets with elements from some countable set S. In
particular, if S is the set P then A ∈M(P) means

A = {α, β, γ, ...}, α, β, γ, ... ∈ P ,

with partitions α, β, γ, ..., not necessarily distinct. If there are k <∞ components α, β, γ,
etc., then we will call the multiset A a multipartition. We define 0 to be the empty
multipartition, noting 0 6= ∅ (the empty partition is a nonempty multipartition in this
setting). Ordered multipartitions with k components are usually visualized as k-colored
partitions. Differing from the usual multipartition conventions, for full formal generality,
here we allow multipartitions to be unordered, and either finite or infinite in cardinality.
Then P itself is a multipartition (an infinite one), as is any subset P ′ ⊆ P . For notational
ease, we will identify a multipartition consisting of a single partition with the partition
itself:

{λ} = λ.

Let us define an addition “+” between multipartitions by their multiset union, viz.

{α, β}+ {γ} := {α, β, γ},

1This treatment is strongly inspired by conversations with George E. Andrews, Philip Engel, Matthew
Just, Ken Ono and Andrew V. Sills, and by work with Ian Wagner summarized in [9], Appendix B.3.
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and allow this operation (and most of the following algebraic considerations) to extend
to multisets in general. Thus addition is commutative and associative, and A + 0 = A
for all A ∈ M(P) (0 is the additive identity). We note by our convention {λ} = λ that
the “+” operation then extends formally to partitions, e.g.

λ+ γ := {λ}+ {γ} = {λ, γ}.

So we may feel justified in writing, for example,

λ+ 0 = λ, λ+ λ = 2λ,
∑
λ∈A

λ = A,

keeping in mind the sums represent multipartitions, where one might think of the sum
on the right as convergent if no partition is repeated infinitely often (that is, the sum
strictly represents a multiset), and divergent otherwise — or perhaps a better definition of
convergence is in order. In any event, partitions enjoy something like the usual arithmetic.

Moreover, we use the usual multipartition valuation for finite A ∈M(P):

|A| =

∣∣∣∣∣∑
λ∈A

λ

∣∣∣∣∣ :=
∑
λ∈A

|λ| ∈ N,

where |λ| is the size (sum of parts) of the partition.
Let us define a negative multipartition −A as the additive inverse of A ∈M(P):

A−A := A+ (−A) = 0.

Then it also makes sense to write down a “negative partition”, viz. −λ := −{λ}; we will
compute the product of negative partitions using the rule (−∅)(−∅) := ∅. We may also
admit A− B as a “formal multipartition” for A,B ∈M(P).

We define multiplication of multipartitions as in the construction of free algebras:

{α, β}{λ, γ} := {αλ, αγ, βλ, βγ},

where the right-hand elements represent products of partitions as in [8, 9], with ∅ = {∅}
being the identity, and setting 0 · A := 0 for any A ∈ M(P). Multiset brackets behave
well under this product, in terms of partition multiplication:

{λ}{γ} = {λγ} = λγ.

We define the reciprocal multipartition A−1 of A so that every nonempty multipartition
has a multiplicative inverse, e.g. AA−1 = ∅ if A 6= 0, which we can extend to “reciprocal
partitions”, viz. λ−1 := {λ}−1. For consistency, we will take size |λ−1| := −|λ|, length
`(λ−1) := −`(λ), and norm N(λ−1) := 1/N(λ). If λ is a subpartition of partition γ
then we identify the product γλ−1 = λ−1γ = {λ}−1{γ} with the partition γ/λ formed
by deleting the parts of λ from γ. We may admit AB−1 as a “formal multipartition” for
A,B ∈M(P),B 6= 0.

Clearly this multipartition product induces a semiring theory in the set M(P) and
a ring theory if we admit negative multipartitions, as the product is defined to yield
distributivity, viz.

λ(α + β) = {λ}{α, β} = {αλ, βλ} = αλ+ βλ.
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If we denote by M̃ = M̃(P) the set of formal multipartitions consisting of M(P) adjoined
with the negative and reciprocal multipartitions and all formal combinations of these

elements, then M̃ is a field.

2. Functions on partitions extend to multipartitions

Consider now a function f : P → T defined on partitions, with a target set T in
which we shall assume addition, multiplication, and inverse operations make sense, when
needed. As we did with |A| above, we wish to extend all functions on partitions to
functions f : M(P) → M(T ) on multipartitions (as well as “formal multipartitions”

M̃(P)) by applying them to each constituent partition:

f(A) = f ({α, β, γ, ...}) := {f(α), f(β), f(γ), ...} ∈M(T ),

or in summation form,

f

(∑
λ∈A

λ

)
=
∑
λ∈A

f(λ),

which (unless T ⊆M(P)) now represents a multiset of elements from T on the right-hand
side (or perhaps a sum in T if addition is defined there) instead of a multipartition.

If, furthermore, the function f : P → T is completely multiplicative, i.e., f(λγ) =
f(λ)f(γ) with f(∅) mapped to the multiplicative identity in T , a quick calculation shows
that f is also multiplicative as a function on M(P), e.g. for A,B ∈M(P) we have

f(AB) = f(A)f(B).

These formal ideas are in harmony with the theory of product-sum generating functions.
For (n) ∈ P a partition of length one, n ≥ 1, let us define a multipartition that captures
the essence of Eulerian partition generating functions.

Definition 1. We define an “empty” Pochhammer symbol as follows:

( · )∞ := {∅,−(1)} {∅,−(2)} {∅,−(3)} · · · =
∞∏
n=1

(∅ − (n)) .

Theorem 2. The reciprocal of this “empty” Pochhammer symbol is the set of partitions:

( · )−1∞ = P .

Proof. If we formally extend geometric series to this multipartition setting, and further
extend the action of partition functions to formal multipartitions, then by the notations
above and standard ideas about generating functions we write

( · )−1∞ =
∞∏
n=1

(∅ − (n))−1 =
∞∏
n=1

(∅+ (n) + (n)2 + (n)3 + ...)

=
∑
λ∈P

∞∏
n=1

(n)mn(λ) =
∑
λ∈P

λ = P ,

where mn(λ) ≥ 0 denotes the frequency (or multiplicity) of n as a part of λ. �



4 ROBERT SCHNEIDER

Along similar lines, if f : P → T is completely multiplicative we have

f
(
( · )−1∞

)
=
∞∏
n=1

f
(
(∅ − (n))−1

)
=
∞∏
n=1

(f(∅)− f ((n)))−1

=
∑
λ∈P

∞∏
n=1

f ((n))mn(λ) =
∑
λ∈P

f(λ) = f

(∑
λ∈P

λ

)
= f (P) .

If T ⊆ C (thus f(∅) = 1), we can define a convenient analytic object f : P → C by

fz,q(λ) := f(λ)z`(λ)q|λ|

for appropriate z, q ∈ C so as to ensure convergence, where `(λ), |λ| denote the length and
size of λ, respectively, giving connections to classical q-series such as in the next identity.

Theorem 3. Let I(λ) ≡ 1 for all partitions λ; thus Iz,q(λ) = z`(λ)q|λ|. Then for |q| < 1:

Iz,q(P) = (1− z)
∞∑
n=0

zn

(q; q)n
,

where (q; q)n :=
∏n

i=1(1− qi) is the usual q-Pochhammer symbol.

Proof. From the preceding considerations, noting Iz,q ((n)) := z`((n))q|(n)| = zqn is com-
pletely multiplicative in the partition sense, set |q| < 1 for convergence to yield

Iz,q(P) = Iz,q(( · )−1∞ ) =
∞∏
n=1

(1− zqn)−1,

where the product is taken in C, and apply the q-binomial theorem. �

If for X ⊆ N we more generally define

( · )X :=
∏
n∈X

(∅ − (n)),

then if PX ⊆ P denotes partitions whose parts are elements of X, we also have that

( · )−1X = PX, f
(
( · )−1X

)
= f(PX),

for f completely multiplicative in the partition sense. For example, let N(λ) := λ1λ2 · · ·λr
denote the norm of the partition with N(∅) := 1, and N−s(λ) := 1/N(λ)s for s ∈ C.

Theorem 4. For Re(s) > 1 we have that

N−s (PP) = ζ(s).

Proof. The proof proceeds much as with Theorem 3, noting N−s (PP) = N−s
(
( · )−1P

)
. �

3. Frequencies represent logarithms

We now turn our attention to structures within the set of frequencies (i.e., multiplicities)
of the parts of partitions. Letting mi(λ) ≥ 0 denote the frequency of i as a part of λ ∈ P
(or just mi if the partition λ is clear), recall the usual “part-frequency notation”:

λ = (1m1 2m2 3m3 ...),

where only finitely many mi are nonzero. It is just a slight abuse of this notation to allow
infinitely many nonzero frequencies, and we will identify these more general multisets
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{1m12m2 ... imi ...} with infinite multisets of natural numbers (or subsets of N if all mi

equal 0 or 1). If we also allow mi to take negative values, then we will assume a part i
appearing −mi times means it belongs to a “reciprocal” partition, e.g.

λ−1 = (1−m1 2−m2 3−m3 ...),

or as a component of a “formal multipartition” of the shape γλ−1.
We wish to abstract the structures of partitions’ frequencies. Let us define a frequency

operator (m1,m2,m3, ...) from the sequence of frequencies associated to partition λ or
another multiset of natural numbers (allowing infinitely or finitely many nonzero mi ∈ Z),
the entries of which we let act by “exponentiation” on the natural numbers as follows:

N(m1,m2,m3,...) = {1, 2, 3, ...}(m1,m2,m3,...) := {1m1 2m2 3m3 ...}.

If there are only finitely many nonzero mi the object is a (formal) partition, and we write

N(m1,m2,m3,...) = (1m1 2m2 3m3 ...) = λ.

Thus the frequency operators (central players in Andrews’s theory of partition ideals [2])
are analogous to logarithms in this setting. It is natural then to define

logN λ := (m1,m2,m3, ...),

with logN ∅ = (0, 0, 0, ...). Direct computation of partition products and quotients shows
frequency operators enjoy addition “⊕”, subtraction “	” and multiplication by a positive
integral constant:

(m1,m2,m3, ...)⊕ (n1, n2, n3, ...) := (m1 + n1,m2 + n2,m3 + n3, ...),

(m1,m2,m3, ...)	 (n1, n2, n3, ...) := (m1 − n1,m2 − n2,m3 − n3, ...),

k · (m1,m2,m3, ...) := (k ·m1, k ·m2, k ·m3, ...),

much as with standard exponents (thus (0, 0, 0, ...) is the additive identity), such that

logN(λγ) = logN λ⊕ logN γ, logN(λ/γ) = logN λ	 logN γ, logN(λk) = k logN λ.

We can allow the frequency operator to act on a multiset of natural numbers as well
by turning each of the mi occurrences of i in the initial multiset, into ni copies of itself
in the resulting multiset. Then by noting the effect of applying two frequency operators
to the set N one after the other, we can also define multiplication “⊗” by the operation

(m1,m2,m3, ...)⊗ (n1, n2, n3, ...) := (m1n1,m2n2,m3n3, ...).

Endowed with the ⊕ and ⊗ operations, frequency operators form a semiring with identity
(1, 1, 1, ...); if we also allow negative frequencies, these operators form a ring.

4. Partitions induce other multisets and bijections

Likewise, one may abstract the frequency sequence (m1,m2,m3, ...) from a partition λ
and apply it to any ordered set S = {s1, s2, s3, ...} to induce a multiset in M(S) indexed
by λ:

S(logN λ) = S((m1,m2,m3,...)) = {sm1
1 sm2

2 sm3
3 ...},
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where we use additional parentheses in the exponent when S 6= N to distinguish cases
where the frequencies act on the indices (and, conversely, every finite ordered multiset is
associated to a partition by abstracting the frequencies in order). For instance, we have∑

λ∈P

P(logN λ) =
∑
λ∈P

(2m1(λ) 3m2(λ) 5m3(λ) ... p
mi(λ)
i ...) = PP,

producing a bijective map, say π : P → PP, between P and the set PP ⊂ P of “prime
partitions” whose parts are all prime numbers, which is studied in [3, 4]. As the prime
factorizations of natural numbers are in bijective correspondence with prime partitions
(see [1]), then if we set m = N(π(λ)), n = N(π(γ)), where N is the partition norm
(product of parts), we recover integer arithmetic from this multipartition algebra, viz.

N(π (λ+ γ)) = m+ n, N(π(λγ)) = mn.

Furthermore, well-known bijections between subsets of P reveal rather obscure bijec-
tions between subsets of N. For instance, as is studied in [3], there is a natural one-to-one
correspondence between natural numbers with k prime factors including repetition, and
natural numbers whose largest prime factor is pk (the kth prime), by the correspondence
between partitions of length k and partitions with largest part k. Similarly, there is a
natural bijection between the squarefree integers and integers having only odd-indexed
prime factors (i.e., divisible only by p1 = 2, p3 = 5, p5 = 11, etc.), by the correspondence
between partitions into distinct parts and partitions into odd parts.

It is the author’s hope that new partition bijections, congruences and interrelations can
be identified by applying the isomorphism theorems and other tools from abstract algebra.
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